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   Dear Editor,
This  letter  deals  with  the  stabilization  of  Lurie  networked  control

systems with network-induced delays (NID). By constructing a two-
sided looped Lyapunov functional, a sufficient condition is derived to
ensure the absolute stability of the resultant closed-loop system under
a  state  feedback  controller.  Then,  based  on  this  condition,  a  cone
complementary  linearisation  (CCL)  iterative  algorithm  is  presented
to design state feedback controller. It is shown via a numerical exam-
ple that the proposed method can deliver less conservative results as
well as fewer iterations if compared with existing ones.

With  the  rapid  development  of  computer  science  and  communi-
cation  technology,  networked  control  systems  (NCSs)  have  gained
wide attention due to advantages such as low cost,  simple diagnosis
and maintenance, flexibility of operation. In an NCS, data exchange
among  the  devices  is  implemented  through  a  shared  network
medium. Consequently, NID like transmission delays in the S-C and
C-A  channels  cannot  be  avoided.  These  delays  may  result  in  the
degradation  of  system  performance  and  even  destabilize  the  NCS
[1]–[3]. Therefore, research interests on this topic are usually focused
on designing  a  certain  controller  to  ensure  that  the  NCS is  stable  if
network-induced delays vary within a proper range [4].

For  example,  in  [5],  a  stability  condition  is  presented  with  an
assumption  that  the  upper  bound  of  NID  is  no  more  than  the  sam-
pling period.  When the upper bound of  NID is  larger  than the sam-
pling  period,  a  novel  model  is  proposed  in  [6]  based  on  an  input
delay  approach.  In  [7],  by  introducing  some free  matrices  to  reflect
the relationship between NID and its upper bound, less conservative
stability  conditions  for  NCSs  are  obtained.  However,  the  literature
aforementioned above focuses on the linear NCSs rather than nonlin-
ear ones that are more practical.

In  [8],  a  kind  of  nonlinear  NCS,  namely  Lurie  NCS,  is  investi-
gated based on the input delay approach and its stability is analyzed,
in which some useful terms are ignored in the derivative of the cho-
sen Lyapunov functional. By retaining those ignored terms and emplo-
ying  an  improved  free-weighting  matrix  method,  less  conservative
conditions than [8] are proposed in [9]. Further improvement can be
found  in  [10].  However,  those  results  aforementioned  above  do  not
take NID into account, leading to limited application scopes of them.

Usually, a stability criterion for a closed-loop NCS is a set of non-
linear matrix inequalities since the control gain is unknown. To solve
the  control  gain,  there  are  three  methods  available.  The  first  one  is
called  a  parameter-tuning  method  [6].  By  setting  two  matrix  vari-
ables  to  be  linear  with  a  tuning  parameter,  the  nonlinear  matrix
inequalities  are  turned  into  linear  matrix  inequalities  (LMIs)  with
tuning  parameters.  Then  suitable  control  gains  can  be  calculated  if
the LMIs are feasible by tuning those parameters. The second one is
based on some skills to enlarge a nonlinear term such that the nonlin-
ear  matrix  inequalities  are  linearized  [8].  Nevertheless,  it  is  well
known that these two methods just produce conservative results. The
third  method  is  the  CCL  iterative  algorithm  [11],  by  which  control
gains  can  be  designed  with  less  conservativeness  after  finite  itera-
tions. Whereas, the stopping conditions involved in the iterative algo-

rithm [11] are somewhat strict. By revising the stopping condition, an
improved  iterative  algorithm  is  developed  in  [7].  This  method  is
employed  to  design  suitable  controllers  for  Lurie  NCSs  in  [9]  and
[10].

In  this  letter,  a  looped  functional  method is  used  to  deal  with  the
stabilization of a Lurie NCS with NID. By constructing a two-sided
looped  functional,  a  novel  stability  criterion  is  presented  for  the
closed-loop Lurie NCS. Then, by introducing a CCL algorithm, a sta-
bilizing  state-feedback  controller  can  be  designed.  It  is  shown
through a  numerical  example that  the proposed method can provide
less conservative results and the number of iterations is reduced.

Sn(Sn
+) n×n

∗ He{U} = U +UT

Notation: Throughout  the  letter,  is  the  set  of  real
(positive-definite) symmetric matrices; Symmetric terms in a symm-
etric matrix are represented by the symbol “ ” and .

Problem statement: Consider the following system:
 

ẋ(t) =Ax(t)+Bu(t)+Dσ(t)
z(t) = Cx(t)
σ(t) = −ϖ(t,z(t))

(1)

x(t) ∈ Rn u(t) ∈ Rm

z(t) ∈ Rp ϖ(t,z(t))
z(t)

ϖ(t,0) = 0

where  and   are  state  vector  and  input  vector,
respectively.  is  the  measured  output.  is  a  piece-
wise  continuous  nonlinear  function  that  is  global  Lipschitz  in ,

, and satisfies
 

ϖT (t,z(t))[ϖ(t,z(t))−Γz(t)] ≤ 0 (2)
∀t ≥ 0 ∀z(t) ∈ Rp

F[0,Γ]

for  and ,  where Γ is a real diagonal matrix. The set
of all functions that satisfy the sector condition above is denoted by

.
Under  Assumption  1  presented  in  [6],  the  digital  control  law  for

networked control systems may be represented as
 

u(t) =K x(tk), t ∈ [tk, tk+1). (3)
Then, the closed-loop system can be represented as

 
ẋ(t) =Ax(t)+BK x(tk)+Dσ(t), t ∈ [tk, tk+1)
z(t) = Cx(t)
σ(t) = −ϖ(t,z(t))

(4)

{t0, t1, t2, . . . , tk, . . .} tk+1 − tk =
hk ∈ [η,η]
where  is  a  time  sequence  satisfying 

.
τ(t) = t− tkRemark 1: By defining ,  system (4) can be represented

as the following system with time-delay:
 

ẋ(t) =Ax(t)+BK x(t−τ(t))+Dσ(t), t ∈ [tk, tk+1) (5)
τ(t) τ(t) ≤ η
τ̇(t) = 1 t , tk

where  is the network-induced delay with . It is observed
that  for , yet this condition is ignored in [8]–[10], lead-
ing to conservative stability conditions.

In  the  sequel,  we  introduce  the  following  lemma,  which  is  indis-
pensable in deriving the main results. [

α,β
]→ Rn

R ∈ Sn
+ N1 N2 ∈ Rm×n

Lemma 1 [12]: Let x  be a differentiable signal in .  For
any  matrices ,  and , ,  the  following  inequality
holds:
 

−
βw
α

ẋT (s)Rẋ(s)ds ≤ ξ̄T {He{N1(ē1 − ē2)

+N2(ē1 + ē2 −2ē3)}+ (β−α)

× (N1R−1NT
1 +

1
3
N2R−1NT

2 )}ξ̄ (6)

ξ̄ ∈ Rm ēi(i = 1,2,3) x(β) =
ē1ξ̄, x(α) = ē2ξ̄,

1
β−α

r β
α xT (s)ds = ē3ξ̄.

where  and   are  entry  matrices  such  that 

Main results: For simplifying the description of vectors and matri-
ces, we denote
 

ξ(t) = col
{
x(t), x(tk), x(tk+1),

w t

tk
x(s)ds,

w tk+1

t
x(s)ds,

w t

tk

x(s)
t− tk

ds,
w tk+1

t

x(s)
tk+1 − t

ds,σ(t)
}
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ei i ∈ {1,2, . . . ,8} x(t) = e1ξ(t)
x(tk) = e2ξ(t), . . . ,σ(t) = e8ξ(t).
and ,  are  row-block  vectors  such  that ,

KFirst,  consider  Lurie  NCS  (4)  with  a  given .  By  using  looped-
functional method, the following stability condition is obtained.

η η η ≥ η ≥ 0
K

ϖ(·) ∈ F[0,Γ] P ∈ Sn
+ Q1,∈ Rn×n

Q2,∈ S3n R1,R2 ∈ Sn Y1,Y2 ∈ R(7n+p)×n, M,N ∈ R3n×2n

hk ∈ [η,η]

Theorem  1:  Given  scalars  and   with  ,  and  the  con-
troller  gain ,  the  closed-loop  system  (4)  with  nonlinear  function

 is  absolutely  stable  if  there  exist , ,
, , ,  such  that,

for , (7) and (8) hold
 

Φ̄1(hk) =

Φ0 +hkΦ1
√

hkΠ
T
4 M

√
hkΠ

T
1R1

∗ −R̄2 0
∗ ∗ −R1

 < 0 (7)

 

Φ̄2(hk) =

Φ0 +hkΦ2
√

hkΠ
T
3 N

√
hkΠ

T
1R2

∗ −R̄1 0
∗ ∗ −R2

 < 0 (8)

where
 

Φ0 = He{eT
1PΠ1 − eT

1Q1e4 + eT
5Q1e1}−He{Y1e4 +Y2e5

+ eT
8 e8 + eT

8 ΓCe1}+He{ΠT
3 NΠ5 +Π

T
4 MΠ6}

Φ1 = He{Y1e6}−ΠT
2Q2Π2, Φ2 = He{Y2e7}+ΠT

2Q2Π2

Π1 =Ae1 +BKe2 +De8, Π2 =
[
eT

2 eT
3 eT

4 + eT
5

]T
Π3 =

[
eT

3 eT
1 eT

7

]T
, Π4 =

[
eT

1 eT
2 eT

6

]T
Π5 =

[ e3 − e1
e3 + e1 −2e7

]
, Π6 =

[ e1 − e2
e1 + e2 −2e6

]
R̄1 = diag{R1,3R1}, R̄2 = diag{R2,3R2}.

Proof: Choose a Lyapunov functional candidate as
 

V(xt) = V0(t)+W(t), t ∈ [tk, tk+1) (9)
V0(t) = xT (t)Px(t)where  and

 

W(t) = 2
w tk+1

t
xT (s)dsQ1

w t

tk
x(s)ds

+ (tk+1 − t)(t− tk)ζTQ2ζ

− (t− tk)
w tk+1

t
ẋT (s)R1 ẋ(s)ds

+ (tk+1 − t)
w t

tk
ẋT (s)R2 ẋ(s)ds

P ∈ Sn
+ Q1 ∈ Rn×n Q2 ∈ S3n R1,R2 ∈ Sn

ζ = col
{
x(tk), x(tk+1),

r tk+1
tk x(s)ds

}with , , ,  to  be  determined and
.

V(xt)Calculating the derivative of  yields
 

V̇(t) = 2xT (t)Pẋ(t)−2xT (t)Q1

w t

tk
x(s)ds

+2
w tk+1

t
xT (s)dsQ1x(t)+ (tk+1 − t)ζTQ2ζ

− (t− tk)ζTQ2ζ + (t− tk)ẋT (t)R1 ẋ(t)

+ (tk+1 − t)ẋT (t)R2 ẋ(t)−
w tk+1

t
ẋT (s)R1 ẋ(s)ds

−
w t

tk
ẋT (s)R2 ẋ(s)ds. (10)

ϑ1 = −
r tk+1

t ẋT (s)R1 ẋ(s)ds ϑ2 = −
r t

tk ẋT (s)R2 ẋ(s)dsDenote  and . It
follows from Lemma 1 that:
 

ϑ1 ≤ ξT (t)[(tk+1−t)ΠT
3 NR̄−1

1 NTΠ3 +He{ΠT
3 NΠ5}]ξ(t) (11)

 

ϑ2 ≤ξT (t)[(t− tk)ΠT
4 MR̄−1

2 MTΠ4 +He{ΠT
4 MΠ6}]ξ(t) (12)

M,N ∈ R3n×2nfor any matrices .
Y1,Y2 ∈ R(7n+p)×nFor  any  matrices ,  the  following  zero  equations

are true:
 

0 = 2ξT (t)Y1((t− tk)e6 − e4)ξ(t) (13)
 

0 = 2ξT (t)Y2((tk+1 − t)e7 − e5)ξ(t). (14)
It follows from (2) that: 

0 ≤ −2ξT (t)[eT
8 e8 + eT

8 ΓCe1]ξ(t). (15)
Adding the right  sides of (13)–(15) to (10) and applying (11) and

(12) yield
 

V̇(xt) ≤ ξT (t)
[
t− tk
hk
Φ̄1(hk)+

tk+1 − t
hk
Φ̄2(hk)

]
ξ(t) (16)

where
 

Φ̄1(hk) = Φ0 +hkΦ1 +hkΠ
T
1R1Π1 +hkΠ

T
4 MR̄−1

2 MTΠ4

Φ̄2(hk) = Φ0 +hkΦ2 +hkΠ
T
1R2Π1 +hkΠ

T
3 NR̄−1

1 NTΠ3.

Φ̄1(hk) < 0 Φ̄2(hk) < 0

V̇(xt) < −ε∥x(t)∥2 ε > 0

Thus, if  and , which are, respectively, equiv-
alent  to  (7)  and  (8)  in  the  sense  of  the  Schur  complement,

 for a sufficiently small . Hence, system (4) is
absolutely stable. ■

W(t)

Remark 2:  A two-sided looped functional  approach was proposed
in [13], which shows great potential in the reduction of conservative-
ness. However, the derived condition in [13] is difficult to be applied
to controller design due to the fact that there are a lot of free matri-
ces  coupled  with  system  matrices.  Inspired  by  [13],  an  improved
looped  functional, ,  is  constructed  and  introduced  in  the  Lya-
punov functional (9). As the characteristics of the networked-induced
delay was considered in the looped functional, the derived condition
is less conservative than [8]–[10].

KNext,  Theorem 1  is  extended  to  design  a  stabilizing  controller 
for system (4).

η η η ≥ η ≥ 0
ϖ(·) ∈ F[0,Γ]

L ∈ Sn
+ Q̂1 ∈ Rn×n Q̂2 ∈ S3n Z1,Z2 ∈ Sn

Ŷ1, Ŷ2 ∈ R(7n+p)×n, M̂, N̂ ∈ R3n×2n hk ∈ [η,η]

Theorem 2: Given scalars  and  with , the closed-loop
system (4) with nonlinear function  is absolutely stable
if  there  exist  matrices , , , ,

,  such  that,  for ,  the  foll-
owing matrix inequalities hold:
 

Φ̂1(hk) =

Ψ̂0 +hkΨ̂1
√

hkΠ
T
4 M̂

√
hkΠ̂

T
1

∗ −Ẑ2 0
∗ ∗ −Z1

 < 0 (17)

 

Φ̂2(hk) =

Ψ0 +hkΨ̂2
√

hkΠ
T
3 N̂

√
hkΠ̂1

T

∗ −Ẑ1 0
∗ ∗ −Z2

 < 0 (18)

where
 

Ψ̂0 = He{eT
1 Π̂1 − eT

1 Q̂1e4 + eT
5 Q̂1e1}−He{Ŷ1e4 + Ŷ2e5

+ eT
8 e8 + eT

8 ΓCLe1}+He{ΠT
3 N̂Π5 +Π

T
4 M̂Π6}

Ψ̂1 = He{Ŷ1e6}−ΠT
2 Q̂2Π2, Ψ̂2 = He{Ŷ2e7}+ΠT

2 Q̂2Π2

Π̂1 =ALe1 +BVe2 +De8, Ẑ1 = diag{LZ−1
1 L,3LZ−1

1 L}
Ẑ2 = diag{LZ−1

2 L,3LZ−1
2 L}

Πi, i ∈ {2,3, . . . ,6}
K = VL−1

with  being  defined  in  Theorem  1.  Moreover,  the
controller gain is obtained by .

Proof: Donate
 

Λ1 = diag{P−1, P−1, P−1,P−1,P−1,P−1,P−1, I}
Λ2 = diag{P−1,P−1,R−1

1 }, Λ3 = diag{P−1,P−1,R−1
2 }

Λ4 = diag{P−1, P−1, P−1}, Λ5 = diag{P−1, P−1}.
Φ̄1(hk) diag{Λ1, Λ2}

Φ̄2(hk) diag{Λ1, Λ3}
Pre-multiply  and  post-multiply  by  ,  and

 by  ,  respectively.  Make  the  following  changes
on the variables:
 

L = P−1, Q̂1 = P−1Q1P−1, Q̂2 = Λ4Q2Λ4
Zi = Ri

−1, Ŷi = Λ1YiP−1, i ∈ {1,2}
M̂ = Λ4MΛ5, N̂ = Λ4NΛ5, V =KP−1

then (17) and (18) are derived. ■
LZ−1

2 L LZ−1
1 LNote that there are nonlinear terms  and  in (17) and

(18).  Thus,  the  conditions  given  in  Theorem  2  cannot  be  directly
implemented  by  using  existing  numerical  software.  The  following
CCL algorithm is presented to deal with this non-convex problem.

U1 U2 U1 ≤ LZ−1
1 L

U2 ≤ LZ−1
2 L

Define two new variables  and  such that  and
. Replace the conditions (17) and (18) with
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Φ̂1(hk) =

Ψ̂0 +hkΨ̂1
√

hkΠ
T
4 M̂

√
hkΠ̂

T
1

∗ −diag{U2,3U2} 0
∗ ∗ −Z1

 < 0 (19)

 

Φ̂2(hk) =

Ψ0 +hkΨ̂2
√

hkΠ
T
3 N̂

√
hkΠ̂

T
1

∗ −diag{U1,3U1} 0
∗ ∗ −Z2

 < 0 (20)

and
 

Ui ≤ LZ−1
i L, i = 1,2. (21)
U−1

i −L−1ZiL−1 ≥ 0Notice  that  (21)  is  equal  to .  By  the  Schur
complement, it is equivalent to
 [

U−1
i L−1

L−1 Z−1
i

]
≥ 0, i = 1,2. (22)

P, Hi, Ri, i = 1,2Thus, by introducing new variables , the original
conditions (17) and (18) are represented as (19), (20) and
 [

Hi P
P Ri

]
≥ 0, P = L−1, Hi =U−1

i , Ri =Z−1
i , i = 1,2.

Then, this non-convex problem can be transformed to become the
following LMI-based nonlinear minimization problem:
 

Minimize Tr
{
LP+

2∑
i=1

(UiHi +ZiRi)
}

s.t. (19), (20) and[
Hi P
P Ri

]
≥ 0,

[
L I
I P

]
≥ 0[Ui I

I Hi

]
≥ 0,

[Zi I
I Ri

]
≥ 0, i = 1,2. (23)

K ηmaxAlgorithm 1: Design the gain  with the maximum .
η η η ≥ η ≥ 0

ηmax = η

Step  1:  Choose  sufficiently  small  initial  and   with  
such  that  there  exists  a  set  of  feasible  solution  to  (19)–(23).  Set

.
(P0,L0,U10,U20,H10,H20,Z10,Z20

R10,R20,V)
Step  2:  Find  a  feasible  set ,

 satisfying (19)–(23).
Step 3: Solve the following LMI problem:

 

Minimize Tr
{ 2∑

i=1

(UikHi +UiHik +ZikRi +ZiRik)

+LPk +LkP
}
, s.t. (19), (20) and (23).

Lk+1 = L Pk+1 = L−1 Ui(k+1) =Ui Hi(k+1) =U−1
i Zi(k+1) =

Zi Ri(k+1) =Z−1
i , i = 1,2

Set , , , , 
, .

K
ηmax = η η

k = k+1

Step  4:  If  LMIs  (7)  and  (8)  hold  with  the  controller  gain 
obtained in Step 3, then set , increase  to some extent and
return to Step 2. If (7) and (8) hold within a given times of iteration,
then exit. Otherwise, set  and go to Step 3.

Numerical example: This section provides a numerical example to
verify the efficiency of the proposed approach.

Example 1: Consider system (1) with
 

A =
[
0 1
1 −2

]
, B =

[
1
0

]
, C = [1 −0.5] , D =

[
0
1

]
ϖ(·) ∈ F[0,1].

η = 1.2841
K = [−0.5324 −0.2419] η =

It  is  reported  in  [8]–[10]  that  system  (4)  is  stable  for 
with  the  controller  gain  in  [8],  and 

1.5250 K = [−0.5347 −0.2469]
η = 1.5279 K = [−0.5296 −0.2532]

η = 0 η = 2.4558
K = [−0.5858 −0.2074]

 with   after  84  times  of  iteration  in
[9], and  with the controller gain 
after 39 times of iteration in [10]. For the purpose of comparison, set

.  By applying Algorithm 1,  it  is  obtained that  with
 after 29 times of iteration. It is obvious that

the  approach  presented  in  this  letter  can  yield  less  conservative
results with fewer iterations in comparison with [8]–[10].

Conclusion: This letter has investigated the problem of stabilizing
Lurie NCSs. Based on a looped function method, an improved stabil-
ity  condition  for  the  closed-loop  Lurie  NCSs  has  been  formulated.
Then,  a  CCL  algorithm  has  been  presented  to  design  suitable  state
feedback  controllers.  Finally,  a  numerical  example  has  been  carried
out to demonstrate the effectiveness of the proposed method.
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