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   Dear Editor,

The main components of multi-view geometry and computer vision
are  robust  pose  estimation  and  feature  matching.  This  letter  dis-
cusses  how  to  recover  two-view  geometry  and  match  features
between a pair of images, and presents MCNet (a multiscale cluster-
ing network) as an algorithm for extracting multiscale features. It can
identify  the  true  inliers  from  the  established  putative  correspon-
dences,  where  outliers  may  degenerate  the  geometry  estimation.  In
particular,  the  proposed  MCNet  is  based  on  graph  clustering,  in
which the embedded correspondence features are mapped to a num-
ber  of  clusters  by  graph  pooling.  We designed  a  multiscale  cluster-
ing  layer  into  the  two-view  correspondence  learning  framework  in
order to improve correspondence representation efficiency. As a con-
sequence  of  the  multi-group  feature  fusion,  we  also  constructed  the
network architectures termed MCNet-U and MCNet-M, respectively,
utilizing  the  UNet  and  Pyramid  techniques.  Based  on  experimental
results, the proposed model achieves state-of-the-art performance on
feature matching with heavy outliers under weak supervision.

Related work: In the case of images with different views, a puta-
tive  correspondence  can  be  determined  by  local  features  like  scale-
invariant  feature  transform  (SIFT)  [1]  and  Superpoint  [2],  which
always contain more outliers because of the ambiguity. As a result of
the  heavy  outliers,  matching-based  tasks  fail.  A  number  of
approaches  have  been  developed  to  solve  the  geometry  estimation
and  feature  matching  problems,  from  handcrafted  matchers  to  deep
neural  networks.  The  RANSAC  algorithm  [3]  and  its  variants  are
classical  solutions  in  which  the  key  idea  is  to  obtain  sampling  con-
sensus by hypothesizing and verifying. It is widely used for estimat-
ing  multi-view  geometry,  but  it  is  sensitive  to  outliers,  especially
heavy  outliers  in  the  scene.  A  prominent  deep  learning  approach  is
the permutation-equivariant network, which operates on a single data
point  using  a  basic  perceptron  and  extracts  contextual  information
through  global  pooling.  This  can  be  achieved  by  simple  normaliza-
tion of the feature maps, a global procedure that is not influenced by
the order. With weakly supervised learning, correspondence learning
can  be  modeled  to  be  a  classification  problem.  PointCN  [4]  intro-
duces  context  normalization  (CN)  and  employs  multilayer  percep-
trons (MLPs) to find reliable correspondences. CN can be viewed as
an alternative to global feature pooling for PointNets [5], but with a
different role: aggregating point feature maps and producing contex-
tual information. DFE [6], N3Net [7], OANet [8] and CAT-C [9] use
PointCN  as  the  baseline  module  to  generate  contextual  information
while  retaining  permutation  equivariance.  However,  PointCN  has
two drawbacks: 1) It is hard to extract local context from correspon-

dence owing to the MLPs being applied to each correspondence indi-
vidually. 2) It encodes the global context through the mean and vari-
ance  of  features,  which  ignores  potentially  complex  relationships
between correspondences. This then leads to difficulty in adequately
capturing  the  scene  geometry  encoded  by  inliers,  especially  in  the
case of  heavy outliers.  To this  end,  OANet  [8]  introduces  an order-
aware filtering module, named OAFilter, to integrate contextual and
spatial correlations. ACNE [10] presents an attentive context normal-
ization with training a perceptron to convert the intermediate feature
maps  to  the  corresponding  attention  weights.  Besides,  CAT-C  [9]
leverages self-attention in the PointCN to enhance the geometry from
inliers and reject outliers using the extracted reliable context informa-
tion.
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Learning  correspondence  with  classification  and  regression:
Given  a  set  of N  putative  correspondences ,
which are constructed between two local key-points 

,  which  are  detected  from  a  pair  of  images  ( ),  where
 denotes a correspondence, and the key-points have

been normalized by the known camera intrinsics. We aim to find the
good correspondences (i.e., inliers S) and estimate the geometry (i.e.,
an essential matrix E). As formulated in [4], we construct a permuta-
tion-equivariant  neural  network  with  learnable  parame-
ters ϕ  to  learn  the  inlier  probability 

 under  the  weighted  eight-point  algorithm  [4 ]  to
identify  inliers  and  get  the  regressed  essential  matrix ,
where  denotes an outlier, and the inlier weights can be easily
obtained  after  operating  and   activation  functions.  The
overall training objective can be denoted as
 

L = αLCLS(w,S)+λLREG(Ê,E) (1)
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where λ and α are weighting factors to balance the classification and
regression.  The  classification  term  is  a  binary-cross  entropy
loss  where  H  is  the  binary-cross
entropy,  and  is  the per-label  weight  to trade-off  inlier  and outlier
examples.  The  regression  term  represents  a  geometry  loss  on
regressed  and can be expressed as
 

LREG =
(p2Êp1)2

∥Ep1∥2[1] + ∥Ep1∥2[2] + ∥ET p2∥2[1] + ∥ET p2∥2[2]
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where  and  denote a pair of components of one correspondence
 between  images  and   in  homogenous  coordinates.

 denotes the i-th entry of vector t.
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Multiscale graph clustering network: In this letter, we propose a
multiscale  graph  clustering  network  to  capture  more  local-global
context  by  using  multi-cluster  fusion  instead  of  choosing  a  fixed
cluster  number.  Following  the  order-aware  paradigm,  the  proposed
MCNet (Fig. 1) can be utilized to correspondence learning since it is
a  permutation-equivariant  network  in  the  guarantee.  Our  approach
can  deal  with  the  unordered  correspondences  under  permutation-
equivariant. The multiscale cluster layer is plugged into the network
after embedding with ResNet blocks, where each ResNet block con-
sists  of  one  CN  layer,  one  Batch-Norm  layer  with  ReLU,  and  one
shared Perceptron layer as used in [4], [8] and [9]. Note that the first
embedding layer is also one shared Perceptron layer to map the input
from 4 (initialization) or 6 (information fusion) channels to 128 chan-
nels. Then, the following ResNet blocks and tanh(ReLU(·)) can map
the  multiscale fusion output to  weights.

Adown = softmax
(ResNetBlock(N→M)(X(l))) ∈ RN×M
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Multiscale  cluster  layer: Given  the  embedded  graph  nodes,  we
can operate multiscale clustering with the Pooling-OAFilter-Unpool-
ing  pipeline  [8].  The  learned  soft-assignments  are  used  in  differen-
tiable  pooling  [11],  which  can  be  denoted  as 

.  Then  the  feature  at  layer l  is
reduced to M clusters from N graph nodes: , where
the M clusters can be defined as  in multiscale. For pre-
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dicting the whole correspondences, the clusters should be upsampled
to the entire graph nodes with a permutation-equivariant differential
unpooling layer: , where feature  is in
a canonical order which denotes the new feature computed by 
at the same layer , and the feature  can be transformed back
to  at  layer  l  with  the  learned  upsampling  soft-assign-
ments , where each
cluster  in  corresponds  to  one  row  in ,  and  the  encoded  the
order information in  can be decoded to the previous step in the
same way. In order to obtain the global context information, a spatial
correlation  layer  is  applied  to  a  ResNetBlock  to  relate  the  cluster
nodes [8] in OAFilter, where weight-sharing perceptrons are used on
the spatial dimension to build relations between nodes. This is due to
the fact that the cluster features are in a canonical order.
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The  exploited  two  styles  of  multiscale  cluster  layer  are  shown  in
Fig. 1, where MCNet-U follows [8] to obtain a large model with deep
levels  with  UNet  [12].  As  discussed  in  [8],  fusing  two  levels  with
two  cluster  scales  cannot  improve  the  performance.
Here,  we  use  four  levels  with  to  redesign  the
model (see Fig. 1), and the output can be written as follows:
 

OMCNet-U = [X, X̂]M ∈ RN×256 (3)
[·]Mwhere  denotes the multiscale concatation.

X ∈ RN×128

{X̂m}4m=1 ∈ R
N×128

Besides, considering the multiscale features after the graph cluster-
ing, we construct a multi-layer pyramid model, called MCNet-M (see
Fig. 1), instead of extracting features by progressive pipeline as used
in  MCNet-U.  Precisely,  the  input  is  mapped  into  four
scales of clusters in MCNet-M with operating graph pooling, and the
filtered features are transformed back to each new feature at the same
level  with six OAFilter  blocks and one upsampling layer.  Then,  the
new features  are concatenated to create an output
 

OMCNet-M = [X̂1, X̂2, X̂3, X̂4]M ∈ RN×512. (4)
MCNet-U  requires  the  pooling  output  from  the  previous  step.

Experiments  have  demonstrated  that  MCNet-M  is  more  effective
than MCNet-U because of the ability to apply multi-head techniques
to  the  feature  representation.  A  fixed  number  of  clusters  cannot  be
adapted  to  practical  applications  because  the  inlier  ratios  of  corre-
spondence  vary.  Multiscale  clustering  MCNet-M  captures  the  com-
plex local and global contextual information to adapt to the inlier and
outlier distribution of nodes in a graph.

N = 2000

Experimental setup: Yahoo’s YFCC100M [13] and [14] outdoor
scenes  and  the  SUN3D  [15]  indoor  scenes  are  used  to  evaluate  the
models. Following [8], the entire YFCC100M scenes are segmented
into  disjoint  subsets  for  training  (60%,  68  sequences),  validation
(20%)  and  testing  (20%).  Here,  we  retrain  all  models  on  outdoor
scenes  and test  them on the indoor  testing scenes  (15 sequences)  to
evaluate the generalization ability. The ground-truth can be obtained
by the generated camera pose via VisualSFM [16]. The putative cor-
respondences are obtained by the SIFT and Superpoint local features
and ratio test with setting .

5◦ 10◦ 20◦
Results on geometry estimation: We use mean average precision

(mAP) under ,  and  as the evaluation protocol for the cam-
era  pose  estimation.  The  baselines  contain  PointCN,  OANet++  and
CAT-C,  where  OANet++  is  trained  with  6  OAFilter  blocks  while
vanilla OANet uses one OAFilter block. There are two approaches to
generating  the  essential  matrix  with  the  weighted  eight-point  algo-
rithm and RANSAC. We also evaluate  the  performance using SIFT
and  Superpoint  correspondences. Table 1  reports  the  quantitative
results  of  the  YFCC100M  training  (known  scene)  and  test  sets
(unknown scene). All models can get more accuracy by post-process-
ing with RANSAC. The proposed MCNet-M provides better perfor-
mance  than  PointCN  and  OANet++  because  it  operates  multiscale
feature fusion. CAT-C applies self-attention to capture context infor-
mation but needs more time and space consumption. MCNet-M out-
performs CAT-C on the known scenes and is comparable to CAT-C
in  the  unknown  scenes. Table 2  reports  the  results  on  unknown
indoor scenes, where MCNet gets the better generalization ability.
 
Table 1.  Camera Pose Estimation Comparison Results on YFCC100M With

or Without RANSAC (R)

Model
mAP@5° mAP@10° mAP@20°

w/o
R w/ R w/o

R w/ R w/o
R w/ R

SIFT

Known

PointCN [4] 18.93 36.42 29.05 46.70 42.27 58.47
OANet++ [8] 44.06 46.97 55.67 57.83 67.26 69.27

CAT-C [9] 35.09 42.87 46.72 53.55 59.29 65.11
MCNet-U 52.09 50.58 62.98 61.39 73.34 72.49
MCNet-M 52.02 50.59 63.16 61.39 73.67 72.45

Unknown

PointCN [4] 29.33 49.55 41.89 59.46 56.82 69.65
OANet++ [8] 39.12 52.30 52.79 62.25 67.03 72.41

CAT-C [9] 44.52 53.90 57.54 64.09 69.99 73.98
MCNet-U 40.20 53.23 54.39 63.11 68.37 73.51
MCNet-M 41.08 53.73 54.91 64.09 68.61 74.17

Super-
point

Known

PointCN [4] 17.45 29.50 26.62 39.88 39.20 52.34
OANet++ [8] 37.06 37.35 48.26 48.23 60.25 60.43

CAT-C [9] 30.12 34.74 41.08 45.51 53.66 57.75
MCNet-U 24.69 33.20 34.90 43.80 47.50 56.12
MCNet-M 44.35 40.60 55.25 51.44 66.33 63.30

Unknown

PointCN [4] 27.20 39.17 39.98 51.60 55.48 65.06
OANet++ [8] 36.48 43.23 51.48 56.11 67.14 69.64

CAT-C [9] 37.00 44.35 51.36 56.94 66.42 69.86
MCNet-U 29.00 42.60 43.21 54.52 59.16 67.67
MCNet-M 36.98 43.15 52.50 55.96 68.03 69.46

 
 
 

Table 2.  Generalization Ability Evaluation on SUN3D Indoor Scenes

Model SIFT Superpoint
5° 10° 20° 5° 10° 20°

PointCN [4] 1.00 2.54 7.22 3.43 6.61 13.96
OANet++ [8] 3.41 6.95 10.92 5.30 9.78 18.96

CAT-C [9] 3.58 7.12 14.32 5.72 10.3 19.23
MCNet-U 3.66 7.68 16.24 4.07 8.21 16.66
MCNet-M 3.49 7.61 16.17 5.28 10.3 20.28

 
 

Results  on  feature  matching: Table 3  reports  the  comparison
results  on  YFCC100M with  SIFT and  Superpoint  features.  MCNet-
M achieves the best average precision and F1-scores. OANet++ and
CAT-C get better recall values. Our models get a slightly slower run-
time  than  PointCN  and  OANet++,  but  faster  than  CAT-C. Fig. 2
shows  the  qualitative  results  of  feature  matching  on  unknown  out-
door scenes, where MCNet-M provides more inliers, while RANSAC
is sensitive with heavy outliers. Fig. 3 shows the cumulative distribu-
tion of inlier ratios, precision, recall, and F1-scores. The putative cor-
respondences  generated  on  the  test  set  of  YFCC100M  have  about
90% outliers,  and  deep  learning  models  can  establish  more  robust
context information.

[ N
2 ,

N
4 ]

Impact on different scales: Table 4 presents an analysis of multi-
scale  clustering  (MCNet-U)  using  different  scale  parameters.  Clus-
ters  are  correlated with  inliers  as  more information is  lost  when the
scale  is  reduced.  Multiscale  is  slightly  less  efficient  than
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Fig. 1. The  proposed  multiscale  clustering  network  (MCNet)  architecture.
Bottom left: MCNet-U. Bottom right: MCNet-M.
 

 1508 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 6, JUNE 2023



OANet++,  but  if  all  four  scales  are  taken  into  consideration,  it  per-
forms better. As a result of its pooling operations being not indepen-
dent on each scale, MCNet-U performs unstably. MCNet-M has bet-
ter  performance with multi-head approach than UNet-like structures
because it captures context independently from each scale.

Conclusion: Using  classification  and  regression,  we  propose  a
multiscale  graph  clustering  network  that  can  deal  with  correspon-
dence  learning.  Our  approach  entails  the  use  of  a  multiscale  cluster
layer  combined  with  a  Pooling-OAFilter-Unpooling  technique,  so
that local and global contextual information can be captured without
setting  a  fixed  cluster  number.  In  order  to  achieve  a  better  feature
fusion with  multiscale  graph clustering,  it  is  necessary  to  adjust  the
model  to  accommodate  different  inliers  and  outliers.  As  a  result  of

analyzing  the  network  with  the  UNet  and  Pyramid  approaches,  we
recommend using a stable multi-scale graph clustering approach for
correspondence learning, and it gets the state-of-the-art performance
on challenging scenes.
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Table 4.  Analysis of Multiscale Clustering on YFCC100M and SIFT Features
With Different Scales

N
2

N
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Fig. 2. Feature matching (using SIFT features) on YFCC100M.
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Fig. 3. Comparison  results  of  feature  matching  using  cumulative  distribution
of inlier ratio, precision, recall, and F1-score. Top: SIFT; Bottom: Superpoint.
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