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Abstract—Visual semantic segmentation aims at separating
a visual sample into diverse blocks with specific semantic at-
tributes and identifying the category for each block, and it
plays a crucial role in environmental perception. Conventional
learning-based visual semantic segmentation approaches count
heavily on large-scale training data with dense annotations
and consistently fail to estimate accurate semantic labels for
unseen categories. This obstruction spurs a craze for studying
visual semantic segmentation with the assistance of few/zero-
shot learning. The emergence and rapid progress of few/zero-
shot visual semantic segmentation make it possible to learn
unseen-category from a few labeled or zero-labeled samples,
which advances the extension to practical applications. Therefore,
this paper focuses on the recently published few/zero-shot visual
semantic segmentation methods varying from 2D to 3D space and
explores the commonalities and discrepancies of technical settle-
ments under different segmentation circumstances. Specifically,
the preliminaries on few/zero-shot visual semantic segmentation,
including the problem definitions, typical datasets, and technical
remedies, are briefly reviewed and discussed. Moreover, three
typical instantiations are involved to uncover the interactions of
few/zero-shot learning with visual semantic segmentation, includ-
ing image semantic segmentation, video object segmentation, and
3D segmentation. Finally, the future challenges of few/zero-shot
visual semantic segmentation are discussed.

Index Terms—Few-shot learning, zero-shot learning, low-shot
learning, semantic segmentation, computer vision, deep learning.

I. INTRODUCTION

V ISUAL semantic segmentation targets at fine-grained
classification for collected samples, such as images,

videos, and 3D meshes. It has gradually drawn research
interests in virtue of the extensive applications to self-driving
[1], [2], medical diagnosis [3], [4], remote sensing [5], and
so on. As three typical representatives in visual semantic
segmentation, image semantic segmentation (ISS) [6], [7],
video object segmentation (VOS) [8], [9] and 3D segmentation
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Fig. 1. An example of few/zero-shot visual semantic segmentation, where the
segmentation model is pre-trained on the categories except “cat”. The visual
samples are selected from the PASCAL VOC [13].

(3DS) [10], [11] have been well-developed. Among them, ISS
and VOS attempt to automatically assign a label for each
pixel located in 2D images, while 3DS endeavors to allocate
annotations to target shapes or objects for given 3D samples,
such as point clouds [10], [11] and 3D meshes [12].

Thanks to the advance in deep learning, the conventional
supervised learning-based visual semantic segmentation ap-
proaches have made considerable breakthroughs in both real-
time performance and prediction accuracy [118]–[121]. They
learn to fit the distribution of specific classes from a great deal
of training samples and strive to segment them on test samples.
Whereas, these visual semantic segmentation algorithms still
confront various challenges. Firstly, a great deal of training
data with fine-grained annotations is desperately required for
these segmentation models to learn a category of interest,
where the annotations are expensive to obtain. Particularly,
in 3D point cloud segmentation, the order of millions is
commonly reached by the number of captured point clouds
[122], leading to laborious labeling processes. Moreover, the
structure of point clouds is irregular, which further attaches
enormous challenges to manual annotations. Secondly, these
algorithms rely heavily on an implicit assumption that the
test categories must be the same as the training ones [123]–
[125]. Consequently, when dealing with unseen categories
after training, these segmentation models always suffer from
severe performance degradation, which hinders their flexible
application in dynamic scenarios. Although the methods based
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TABLE I
A SUMMARY OF TECHNICAL SOLUTIONS FOR FEW/ZERO-SHOT VISUAL SEMANTIC SEGMENTATION TASKS

Space Samples Scenarios Profiles Solutions Typical datasets Literatures

2D

Images
Few-shot ISS Predict pixel-wise labels for unseen

categories with a few annotated images

Metric
PASCAL-5i [14],
COCO-20i [15]

[16]–[37]
Parameter [14], [38], [39]
Fine-tune [40]–[42]
Memory [43], [44]

Zero-shot ISS Predict pixel-wise labels for unseen
categories with zero annotated images

Metric PASCAL VOC [13],
PASCAL Context [45]

[46]–[51]
Generative [52]–[55]

Videos
Few-shot VOS Segment the object specified in the

first frame in the remaining frames

Metric
Youtube-VOS [56],
DAVIS 2016 [57]

[58]–[67]
Fine-tune [68]–[72]
Memory [73]–[84]

Zero-shot VOS Segment the primary object in the
video sequence without annotations

Metric
Youtube-VOS [56],
DAVIS 2016 [57]

[85]–[98]
Fine-tune [99]
Memory [100]–[103]

3D Point clouds
/3D meshes

Few-shot 3DS Assign labels for unseen categories
with a few annotated 3D samples

Metric
ShapeNet Part [104],
ScanNet [105]

[106]–[109]
Parameter [110]
Fine-tune [111]–[114]

Zero-shot 3DS Assign labels for unseen categories
with zero annotated 3D samples Generative ScanNet [105], S3DIS

[115] [116], [117]

1 Each technical solution is represented by its first word.
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Fig. 2. The relationship among ISS, VOS, and 3DS under both few-shot and
zero-shot cases.

on weakly-supervised learning [126]–[128] alleviate the data
hunger significantly, they still require that the categories
encountered at test-time must have been seen in training,
leading to the problem of cross-class adaptation failing to
be addressed. These limitations encourage the employment
of few-shot learning and zero-shot learning [129]–[131] on
visual semantic segmentation, which promotes the skills of
segmentation models in dealing with unseen categories, even
though they have only been exposed to a few labeled, or even
unlabeled, samples, as shown in Fig. 1.

In recent years, a significant number of meaningful and
valuable few/zero-shot visual semantic segmentation studies
[132]–[134] have been spawned, which eliminates the bar-
riers on the cross-class adaptation with a limited number
of annotated samples. To summarize these approaches, some
related and well-written surveys were published [132]–[134].
Compared with these previous efforts [132]–[134], this paper
creatively summarizes relevant studies from the perspective
of problem settings and technical solutions of few/zero-shot
learning and strengthens the relationship between different
segmentation methods, including ISS, VOS, and 3DS, in
both few-shot and zero-shot scenarios. In addition, this paper
provides some discussions on open challenges that few/zero-

shot learning brought to visual semantic segmentation, such
as cross-domain few/zero-shot segmentation and generalized
few/zero-shot segmentation. In summay, the main contribu-
tions of this paper are as follows:

• The comparison among the problem settings of different
few/zero-shot visual segmentation tasks and a summary
of technical solutions are provided.

• The advancements of few/zero-shot visual semantic seg-
mentation are reviewed and the dissimilarities of technical
solutions in different segmentation tasks are specified.

• The open challenges that involve data, algorithms, and ap-
plications for few/zero-shot visual semantic segmentation
are discussed to provide the enlightenment to follow-up
researchers.

The rest of this paper is organized as follows. Section II
provides the comparison on the problem settings and typical
datasets of different few/zero-shot visual segmentation tasks
and gives a summary of technical solutions. Section III,
Section IV and Section V concentrate on the advancements
of ISS, VOS and 3DS in both few-shot and zero-shot circum-
stances, respectively, and illustrate the technical settlements in
diverse segmentation scenarios. Section VI analyzes the open
challenges and applications for few/zero-shot visual semantic
segmentation.

II. PRELIMINARIES

Few-shot learning expects to learn unseen categories from
a few labeled training samples [129], [131], [137]. When
the annotated samples are unavailable, the few-shot learning
problem turns into a zero-shot learning problem [129], [137].
Therefore, zero-shot learning is the boundary case of few-shot
learning [129], [138], [139]. This section attempts to provide
detailed definitions, typical datasets, and technical remedies
for few/zero-shot visual semantic segmentation.
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Fig. 3. The conventional settings of different few/zero-shot visual segmentation tasks. The ISS samples are selected from the PASCAL VOC [13], the VOS
samples are picked from DAVIS 2016 [57], and the 3DS exemplars are sampled from ShapeNet Part [104]. The Word2Vec [135], [136] is the operation to
map a class label as a feature vector, which is called word embedding [130] and represents the semantic attributes of the corresponding category.

A. Problem Definition

As shown in Table I, few/zero-shot ISS methods [16], [17],
[55] strive to learn a powerful segmentation model that can
estimate pixel-wise labels for unseen objects, even though they
have only been exposed to a small number of labeled, or even
unlabeled, images. When learning a specific unseen category
with a few or zero annotated images, there is no constraint
on the identities of the objects in training and reasoning
samples. Few/zero-shot VOS [58], [102], [103], which aims at
segmenting foreground objects under the guidance of a limited
number of labeled frames, can be regarded as a particular
case of ISS [16], [17], [55], as the images segmented here
are continuous in time steps, and the target objects generally
have the same identities but different appearances in sequential
frames. Few/zero-shot 3DS [106], [107], [117] conducts seg-
mentation in 3D space rather than 2D space, where the inputs
are disordered 3D samples, such as point clouds and meshes,
rather than regular 2D images. The settings and relationship
of them are illustrated in Fig. 2 and Fig. 3, respectively.

In this section, we provide a problem definition of visual se-
mantic segmentation in both few-shot and zero-shot scenarios.
In each circumstance, we take ISS as an instance and deliver
a detailed definition. In addition, we discuss the differences
among the settings of few-shot ISS, few-shot VOS, and few-
shot 3DS, and extend these problem settings into zero-shot
scenarios. The nomenclature of the symbolism involved in this
paper is listed in Table II.

1) Few-shot Visual Segmentation: The problem definition
of few-shot ISS is firstly discussed, which will be further
extended to few-shot VOS and few-shot 3DS. Few-shot ISS
aims to learn a segmentation model from a few labeled
images for target categories, as illustrated in Table I. A
few-shot ISS task T attempts to learn a powerful segmen-
tation model that is capable of predicting the pixel-wise
semantic category from Dsupport for images in Dquery. The
Dsupport = {(xi,mi)}

Isupport

i=1 called the support set denotes a

TABLE II
THE NOMENCLATURE OF THE SYMBOLISM INVOLVED IN THIS PAPER

Symbolism Meaning
T Few-shot/zero-shot task
x Visual samples
m Annotations
w Category description
e Word embeddings
n Noise
ω Weights of the prediction layer
m̂ Prediction of x
ẑ Prediction of e
XT Input space of unseen classes
MT Label space of unseen classes
XS Input space of base classes
MS Label space of base classes

Dsupport Support set
Dquery Query set
Dsource Dataset of base classes

Dauxiliary Auxiliary dataset
Isupport Number of samples in Dsupport

Iquery Number of samples in Dquery

Isource Number of samples in Dsource

dataset containing Isupport images x with their corresponding
labels m, and Dquery = {(xk)}

Iquery
k=1 termed the query set

represents a dataset composed of Iquery unlabeled images.
The images from both Dsupport and Dquery have the same
marginal distribution PXT

of the input space XT and the same
label space MT . Typically, the Isupport is set to CK, where
the Isupport samples consists of C classes, and each class
provides K samples (generally K is set to 1 or 5 [43]). In
these circumstances, the task T is allowed to be termed as a
C-way K-shot task. Fig. 3(a) indicates an example of a few-
shot ISS task, where the category of both Dsupport and Dquery

is “sheep”.
Whereas, directly adopting the conventional supervised
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learning to reap a satisfactory segmentation model from in-
sufficient data Dsupport is an exceptionally ambitious and
challenging attempt. As a consequence, most of few-shot
ISS approaches resort to the assistance of prior knowledge,
which is distilled from an accessible dataset Dsource =
{(xj ,mj)}Isource

j=1 (if any) and is conducive to dealing with the
target T . The source dataset Dsource contains Isource labeled
samples for base classes (Isource � Isupport) and shares the
same input space XS = XT but distinct label space MS with
Dsupport and Dquery. By combining the available supervision
information of T with the learned prior knowledge, obtaining
a high-quality model becomes more feasible and reasonable
[129].

The settings of few-shot VOS and few-shot 3DS follow
that of few-shot ISS, but also preserve their own distinct
identities. The samples to be processed in few-shot VOS are
sequential frames. Given only the first frame of a video with
annotations, few-shot VOS strives to predict pixel-wise labels
for the specific objects in the remaining frames. Few-shot VOS
is a sequential learning problem that segments moving objects
with shared identities frame by frame. Since the appearance of
the objects changes dramatically between different frames, the
Dsupport in few-shot VOS are allowed to be comprised of the
first frame with given labels and/or the historical frames with
self-predicted masks to capture reliable object characteristics.
For few-shot 3DS, it can be observed in Fig. 3(c) that the type
of inputs is generally constructed by 3D exemplars. Take few-
shot point cloud part segmentation for example. The Dsupport

is made of point cloud samples whose subparts are annotated
by unseen categories, and the Dquery is composed of the ones
with subparts of the same categories as the Dsupport.

2) Zero-shot Visual Segmentation: When ISS encounters
zero-shot scenarios, the task T will become more complex to
address. In this circumstance, the Dsupport fails to access any
images with supervision signals, which hinders the learning
on the target T . To address this issue, zero-shot ISS ordinarily
attempts to transfer some supervision information from other
modalities, denoting as the auxiliary dataset Dauxiliary, to
enable the learning practicable, as depicted in Fig. 1. Specif-
ically, auxiliary information [130] from semantic embeddings
is applied to tackle the zero-shot ISS task T , as shown in
Fig. 3(d). The dataset Dauxiliary = {(wj , ej)}Nj=1 contains N
categories, where wj and ej represent the category description
and the word embedding corresponding to the j-th specific
class, respectively. Thanks to Dauxiliary, it is hopeful for zero-
label unseen objects to be separated effectively.

As a special case of few-shot VOS, the primary target
object in the video sequence is demanded to be segmented
without accessible annotations in zero-shot VOS. Since there is
abundant temporal information that is hidden in the sequential
frames or optical flows, zero-shot VOS often exploits appear-
ance and motion cues to provide adequate supervision signals
for task T . Moreover, language expressions can also supervise
the model to segment objects of interest, as illustrated in Fig.
3(d). It can be seen in Fig. 3(f) that zero-shot 3DS follows the
scheme of zero-shot ISS, which also uses word embeddings
as crucial sources of auxiliary supervision signals. However,
the target samples in zero-shot 3DS are 3D visual data rather

than 2D images, which is distinguished from zero-shot ISS.

B. Typical Datasets

In this section, two typical datasets of each visual semantic
segmentation scenario are selected to be discussed. The picked
datasets are displayed in Table I.

PASCAL-5i [14] is a popular benchmark designed for few-
shot ISS, which is created by PASCAL VOC 2012 [13] with
additional annotations from SDS dataset [140]. There are 20
categories, split into 4 subsets with 5 classes per subset.

COCO-20i [15] is the largest dataset for few-shot ISS,
which is built from MS COCO benchmark [141]. It covers
80 common categories, which are divided into 4 folds with 20
categories per fold.

PASCAL VOC [13] can be adopted for image classification,
object detection, and object semantic segmentation. For seg-
mentation tasks, there are 1464 available samples for training
and 1449 samples for validation with 20 categories in total.

PASCAL Context [45] is proposed for scene parsing, which
covers both indoor and outdoor scenarios. It contains 4998
training and 5105 validation samples with 59 classes.

Youtube-VOS [56] is presented for VOS tasks, which has
94 classes in total. It consists of 3471 videos with 65 seen
categories for training, 507 videos with 65 seen and 26 unseen
categories for validation, and 541 videos with 65 seen and 29
unseen categories for testing.

DAVIS 2016 [57] is designed for segmenting fore- and
background objects in videos, where only binary annotations
are provided. There are 30 videos for training and 20 videos
for validation.

ShapeNet Part [104] is applied for 3D fine-grained point
cloud segmentation. It comprises 16881 3D shape instances
of 16 classes. Each instance is further labeled by 2-5 part
annotations, leading to 50 part categories.

ScanNet [105] is a 3D point cloud dataset captured by RGB-
D cameras, which contains 1513 diverse indoor scenarios
(1201 for training and 312 for testing) with 20 classes.

S3DIS [115] is a dataset for 3D semantic segmentation,
which includes RGB-D data and 3D point clouds. The 3D
point clouds are scanned from 271 indoor environments with
13 categories.

C. Technical Solutions

Given a query image xk, the existing few/zero-shot visual
segmentation approaches strive to estimate the posterior prob-
ability of classes the pixels in xk belong to. For convenience,
we describe this as follows:

m̂k = argmaxP (mk|xk). (1)

We further consider the Bayesian rule, then the above equation
can be expressed as:

m̂k = argmaxP (xk|mk)P (mk), (2)

where P (xk|mk) is the the conditional distribution of xk given
the mask mk, and P (mk) is the prior distribution of mk.
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Based on Eq. 1 and Eq. 2, we can summarize the few/zero-
shot visual segmentation approaches into discriminative ap-
proaches and generative approaches, where the discrimina-
tive approaches attempt to build their frameworks to maxi-
mize P (m|x) and the generative approaches strive to model
P (x|m)P (m). Thus, discriminative methods expect to con-
struct a powerful segmentation model so that it can maximize
the posterior probability of classes on query samples. Discrimi-
native methods tend to capture a more effective mask predictor,
grasp an optimization algorithm with fast convergence, or
enhance the representations of objects, leading to four sub-
categories: metric learning-based, parameter prediction-based,
fine-tune-based, and memory-based methods. The conven-
tional frameworks of the above four technical solutions are
exhibited in Fig. 4(a)-(d). As for the generative approaches, a
generator is frequently built to fit the distribution of x or its
features conditioned on classes in m, where P (m) is generally
supposed to be a uniform distribution, as shown in Fig. 4(e).
In the rest of this section, we will describe these five types of
technical solutions in detail.

1) Metric Learning-based Methods: Metric learning-based
approaches attempt to learn a general distance function so
that it can provide higher affinity scores to more similar
features and lower scores to more distinct features for any
category. The distance functions can be any algorithms or
networks so long as they can calculate the distance between
two representations. Since metric learning-based methods
achieve segmentation through calculating pairwise similarity,
the structures of few/zero-shot tasks, such as the number of
categories, would not be strictly required [142], making them
more flexible. Nevertheless, the high correlation between the
source and target tasks is a potential condition for metric

learning-based methods to be well-implemented [129].
2) Parameter Prediction-based Methods: Different from

metric learning-based approaches focusing on learning a pow-
erful predictor transferable cross tasks, parameter prediction-
based methods target designing a unique predictor for each
task. To this end, a parameter generator is devised to predict
the neural weights of the prediction layer. In this instance,
the parameters of the predictor are updated through a simple
forward propagation so that fast cross-class adaptation can be
achieved. However, it is difficult for the generator to estimate
large-scale model parameters [43].

3) Fine-tune-based Methods: Fine-tune-based methods in-
tend to develop an optimization algorithm, so that the seg-
mentation model can fast converge to model the posterior
probability for a given few-shot (or zero-shot) task. Fine-
tune-based methods have a powerful adaptation ability even
if the unseen classes obey the different distribution from seen
ones [143]. However, fine-tune-based methods involve some
hyperparameters (i.e., the iteration steps), which are significant
for model performance on target tasks. Moreover, due to the
gradient calculation in backpropagation, a longer adaptation
period is demanded to update parameters.

4) Memory-based Methods: Memory-based approaches
aim to cooperate with the encoder to enhance the repre-
sentations of objects. Specifically, memory-based approaches
take advantage of some tools, such as RNNs and memory
networks, to store previously seen information for assisting
the representations of target classes. Thanks to the ability
of these tools in capturing temporal information, memory-
based approaches play a crucial role in few/zero-shot sequen-
tial learning problems. Nevertheless, memory-based methods
generally contribute to high computational costs.
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TABLE III
A SUMMARY ON COMMON ADVANTAGES AND DISADVANTAGES OF THE FIVE FEW-SHOT SOLUTIONS.

Type of Methods Characteristics
Method performance

Training complexity Adaptation period Computational costs
Simple Difficult Short Long Low High

Discriminative

Metric learn a similarity metric applicable cross
tasks

√ √ √

Parameter Learn a task-specific predictor by a param-
eter generator

√ √ √

Fine-tune Learn a task-specific model by an optimiza-
tion algorithm

√ √ √

Memory Cache previously seen information to en-
hance the features with encoders

√ √ √

Generative Synthesize labeled instances to enable dis-
criminative solutions

√ √ √

1 Each technical solution is represented by its first word.

5) Generative Model-based Methods: Generative model-
based methods tend to build a generator, which is learned
from base classes to obtain an ability to fit P (x|m) for a
given task. The generator aims to synthesize labeled instances
of unseen classes (i.e., visual features), which assists in mod-
eling the class-specific distribution and enabling the parameter
adjustment on segmentation models. Moreover, synthesized
instances of both base and unseen classes are sometimes al-
lowed to train the classifier together to alleviate the prediction
bias towards base classes [144]. Whereas, the distribution of
generated instances fails to obey the real distribution in most
cases, and the training difficulties and inference costs are
intractable in few/zero-shot problems.

6) Summary: Apart from the distinctive pros and cons of
the five technical solutions mentioned above, the comparison
of training complexity, adaptation period, and computational
costs are further illustrated in Table III. In terms of training
complexity, since the generator in generative model-based
methods needs to be trained alone, the training step is more
difficult than other methods. In respect of the adaptation
period, owing to multiple forward and backward propagations,
the time costs of fine-tune-based and generative model-based
methods are higher than other solutions. Referring to compu-
tational costs, thanks to the single forward propagation and
similarity calculation between a few features, metric learning-
based and parameter prediction-based approaches have lower
computational overhead. Besides, as for applicable scenarios,
due to the access to the distribution of unseen classes via
Dsupport, few-shot circumstances incline to adopt discrimi-
native solutions, while zero-shot cases have a preference for
generative model-based methods as their unavailability on
the distribution of target unseen classes. Furthermore, thanks
to the high flexibility of metric learning-based methods and
the excellent ability of memory-based ones in storing valu-
able information, metric learning-based and memory-based
approaches have made outstanding contributions in both few-
shot and zero-shot scenarios.

III. IMAGE SEMANTIC SEGMENTATION

In this section, we review recently proposed ISS studies
that are exposed to only a few or zero annotated training

samples and group them into few-shot ISS methods and zero-
shot ISS methods, according to whether the annotated samples
are accessible or not.

A. Few-shot Image Semantic Segmentation

Learning a pixel-wise classifier for unseen categories from
a small number of labeled samples has attracted more and
more attention. In recent years, several few-shot ISS meth-
ods [16]–[18] have been proposed. Since the methods based
on generative models require higher training difficulties and
inference costs to generate pseudo-labeled samples, few-shot
ISS generally tends to discriminative solutions, which will be
demonstrated as follows.

1) Metric Learning-based Methods: Metric learning plays
a vital role in tackling few-shot ISS, where the approaches
[16]–[22] based on prototype networks [145] are in a domi-
nant position. Different from the conventional learning-based
approaches [146]–[150], where the learned prototype of a
class is an approximate estimate of the optimal prototype,
these few-shot approaches [16]–[22] aim to obtain a class-
specific prototype, which may not be an approximation of the
optimal prototype, as long as it can provide the information
of objects and enable higher similarity scores for the query
features that have the same semantic classes as the prototype.
However, it is insufficient to describe a category only by a
vectorial prototype, which inspires some methods [27], [28],
[30] aiming at generating multiple prototypes for each class.
In addition, directly performing element-level dense matching
between support and query features [32]–[34] is also a feasible
way to break through this obstacle. The relevant approaches
are depicted as follows.

Early approaches [16]–[18] attempt to conduct feature
matching with a single class descriptor. Prototype networks
were first exploited for segmentation on unseen objects with
the assistance of a few labeled samples in [16]. Specifically, a
two-branch network was designed to estimate segmentation
maps for query images. The first branch took the support
set as the input and output a global class descriptor, while
the second branch leveraged the generated prototype as the
guidance to tune the segmentation results of the query set.
The work in [16] inspired the follow-up research in [17],
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where binary segmentation was directly completed based on
the cosine distance calculated between the feature vectors
located on query features and the class-specific prototype
[17]. To make full use of the support information, the query
samples and their predicted masks were further regarded as
a new support set to guide the segmentation of the original
support samples. Unlike the work mentioned above [17] which
applies a fixed distance function, other approaches [18]–[22]
utilize a learnable neural network to predict the segmentation
maps, which can be regarded as a learnable distance metric to
implicitly measure the similarity between support and query
features. These approaches fuse support cues of target classes
with query features and decode the fused features to output
final segmentation results. A common fusion strategy is to
concatenate query features with the tiled prototypes [18], [19]
or support feature maps [20] along the channel dimension,
where multi-scale features [21] and multi-class label infor-
mation [22] are considered to enhance the representations of
query samples. Apart from concatenating directly along the
channel dimension [18]–[22], other methods, such as element-
level addition [23], re-weighted by attention map [24], and
similarity guidance [25], [26], are also some feasible ways to
conduct the integration between support and query features.

Though these methods mentioned above have made unde-
niable contributions to few-shot ISS, some of them [19], [21],
[22] apply the masked average pooling operation to generate
a holistic descriptor for each semantic category, giving rise to
some issues. Firstly, the insufficiency of annotated category-
specific samples makes the prototype learner fail to output
a robust class representation. Secondly, due to the appearance
variations between support and query samples, it is challenging
to capture rich and fine-grained semantic information only by a
global feature vector. To deal with this dilemma, some follow-
up approaches attempt to generate multiple prototypes for each
semantic category [27], [28], [30] or conduct dense matching
between support and query images [32]–[34].

From the perspective of generating multiple prototypes for
each class, the similarity measurement is conducted between
each generated prototype and query features. A common way
is to divide the object into different parts according to a par-
ticular mechanism and generate a corresponding prototype for
each part. Object semantics were decomposed to assist in the
generation of multiple prototypes [27]. To change the number
of prototypes adaptively, similar support feature vectors with
different spatial positions were grouped to generate a specific
prototype in [28]. In order to obtain more fine-grained feature
representations, multiple part-aware prototypes were further
refined with the help of unlabeled samples in [29]. In addition,
three different descriptors were designed from multiple aspects
for a specific object, which would be employed to conduct
feature matching with query features [30]. Instead of obtaining
deterministic prototypes, the distribution of generated proto-
types was estimated to simulate the uncertainty caused by
limited training images and object variations, which improved
the robustness of the segmentation model [31].

From the perspective of dense matching, a pyramid graph
network was presented to capture the dense correspondences
between support and query features at different scales [32].

A democratic attention network was proposed to focus more
on pixels where the object was located, building a robust
correspondence between support and query images [33]. A
harmonic feature activation strategy was proposed, which
jointly exploited exclusive support features for pixel-level se-
mantic matching [34]. A novel cross-attention mechanism was
proposed for aggregating more relevant pixel-wise features in
support images into query ones [35]. A bipartite graph was
built and a graph attention mechanism as well as weight ad-
justment strategy were applied to promote more target-object
pixels to participate in the segmentation on query images
[36]. The dense correlations of foreground and background
were explored, which alleviated the information loss caused
by prototype learning and dense matching of a foreground
feature pair [37].

2) Parameter Prediction-based Methods: In few-shot ISS,
parameter prediction-based methods are frequently employed
to modify the weights of the classifier for cross-class adap-
tation, as demonstrated in Fig. 4(b). By employing this, the
segmentation network trained on base classes can quickly
enhance the segmentation ability on unseen classes.

A two-branch network, consisted of a conditional branch
and a segmentation branch, was proposed to tackle cross-
category segmentation in [14]. The conditional branch input a
class-specific image with its mask and predicted the weights
of the logistic regression layer for adapting to a target ob-
ject. Unlike the conditional branch, the predominant duty of
the segmentation branch was to extract high-level semantic
features from query images. Through the logistic regression
layer with replaced parameters, the pixel-wise semantic labels
could be generated from the extracted query features. Instead
of leveraging support samples merely, query images were
also employed to the generation of classifier weights [38].
In contrast to replacing the classifier parameters directly, the
weights of the classifier were added dynamically so that the
model can master both base and unseen categories in [39].

3) Fine-tune-based Methods: The fine-tune-based few-shot
ISS aims to adopt an optimization algorithm to refine the
parameters of the pre-trained segmentation network for learn-
ing unseen categories. The segmentation network was refined
iteratively by minimizing the error calculated from support
predictions and their corresponding masks in [40]. With the
help of parameter refinement, the performance degradation
resulting from the inter-class gap between the offline and
online stages was alleviated. An embedding network and a
differentiable linear classification model were proposed so
that the parameters of the linear classification model could
be updated more efficiently while the embedding network
generalizing among diverse classes in [41]. Different from the
approaches [40], [41] adopting episode training in the offline
stage, a transductive inference strategy based on standard
supervised learning was resorted to obtain a feature extractor
on base classes [42]. In the inference phase, a linear classifier
was refined by means of minimizing a loss function based on
labeled support images and the statistical characteristics of un-
labeled query ones. Apart from the cross-category adaptation,
the shift caused by distribution diversity between training and
inference data was also concerned, making it more desirable
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Fig. 5. Implementation process of zero-shot ISS and zero-shot 3DS ap-
proaches based on generative model (adapted from [52], [116])

for real applications.
4) Memory-based Methods: In the memory-based few-

shot ISS, the previously seen information is reserved to
help the segmentation on query samples. Common attributes
and prior information of diverse categories with noticeable
visual differences were stored into an external memory, which
was manipulated to transfer labels for unseen classes [43].
However, the computational loads of the model increased with
the growth of memory size [43]. The features of target classes
with different resolutions were memorized, which reduced the
computational consumption [44]. The stored features were
then extracted to obtain more cross-resolution information and
accurate segmentation results.

B. Zero-shot Image Semantic Segmentation

Zero-shot ISS focuses on performing segmentation for
zero-label categories unavailable in the training process. At-
tributable to the absence of supervision signals on class-
specific visual samples, it is tricky for zero-shot ISS to
modify the model weights directly. Consequently, flexible
metric learning-based settlements and generative model-based
methods capable of generating pseudo labeled data are adopted
by zero-shot ISS for learning new categories.

1) Metric Learning-based Methods: In zero-shot ISS, the
features encoded from query samples are in a latent visual
space while the word embeddings are in a semantic space. Due
to the inconsistency between the two embedding spaces, it is
unreasonable to carry out feature matching directly. Therefore,
the metric learning-based approaches endeavor to map the
visual and/or semantic features into a shared space, which can
be the semantic space [46]–[48], the visual space [50] and the
shared latent space [51], so that the distance measurement can
be conducted.

The majority of these approaches [46]–[48] take the seman-
tic space as the common embedding space. Thus, the function
projecting visual features into the semantic space should be
devised in advance. Zero-annotation ISS on novel categories
was conducted by two steps [46]. Firstly, a visual-semantic

embedding module was devised to project the class-specific vi-
sual information into the semantic space, where every mapped
embedding vector could be regarded as the representation of
a particular pixel of the query sample. Secondly, a mask
was predicted based on the similarity between the semantic
and pixel embeddings. Despite that achievements have been
made in [46], the prediction bias towards observed classes
arises when transferring the knowledge from the observed
classes to unseen categories. To cope with this issue, the
studies in [47], [48] endeavor to train the model on observed
categories together with the information from unseen ones.
Image captions rather than word embeddings were adopted
to dig out supervision signals for unseen classes, where the
position cues of unseen classes could be provided by base
ones [47]. Target-class semantic embeddings were utilized in
training to reduce the prediction bias, which aimed to learn
the shareable information concealed in the source and target
semantic embeddings [48]. Specifically, a saliency detection
strategy was proposed to effectively distinguish the area where
the source objects were located so that the pixel-level label as-
signment for both source and target classes could be conducted
in their respective areas. Nevertheless, these methods [46],
[48] do not pay attention to the unfavorable impact resulting
from noisy and outlying samples, which contributes to biased
estimation of target classes [49]. Based on this, Bayesian
uncertainty estimation [151] was introduced to aggregate more
discriminative samples on seen classes to carry out pixel-wise
label prediction [49]. However, extra parameters were involved
in estimating the uncertainty of input images.

There are also some approaches [50], [51] conducting zero-
shot ISS in other embedding spaces. Distinct from classifying
pixels in the semantic space [46]–[48], the segmentation of
unseen classes was also allowed to be conducted in the visual
space [50]. The potential distribution of semantic embeddings
was constructed, where the embeddings were then decoded
with visual features to measure the pair-wise similarity. A
joint embedding space was opted to train a visual encoder
and a semantic encoder in [51]. Moreover, two complementary
loss functions were presented to learn more representative
embeddings and a decision boundary modification scheme was
proposed for the prediction bias.

2) Generative Model-based Methods: It can be seen in
Fig. 4(e) that the generative model-based methods strive to
estimate labeled instances to enable the weight modification
on the classifier. As one of the representative methods, the
encoder was trained firstly on seen categories to estimate real
visual features in [52]. The encoded features and semantic
embeddings of seen classes were then exploited to learn a
generator, which could take semantic embeddings as input
and output the fake visual features for unseen categories.
The generated features of never-seen categories (and real
features of seen categories) were finally applied to refine the
classifier weights at inference time, as illustrated in Fig. 5.
The research in [52] spawns some variants [53]–[55], where
contextual information [53], [54] and inter-class structural
relationship [55] were considered to synthesize higher-quality
visual features.
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TABLE IV
A SUMMARY OF FEW/ZERO-SHOT ISS METHODS INVOLVED IN THIS SURVEY.

Methods Years
Scenarios Technical Solutions

Main contributions
Few-shot Zero-shot

Discriminative
Generative

Metric Parameter Fine-tune Memory
Shaban et al. [14] 2017

√ √
Two-branched architecture

Dong et al. [16] 2018
√ √

Prototype learning
Rakelly et al. [20] 2018

√ √
FCNs

Wang et al. [17] 2019
√ √

Parametric classification
Zhang et al. [18] 2019

√ √
Mask refinement

Hu et al. [23] 2019
√ √

Multi-scale feature fusion
Zhang et al. [32] 2019

√ √
GNN, attention mechanism

Tian et al. [21] 2020
√ √

Prior information
Yang et al. [24] 2020

√ √
Transformation module

Zhang et al. [25] 2020
√ √

Feature representation
Liu et al. [29] 2020

√ √
Multi-prototype representation

Wang et al. [33] 2020
√ √

Attention mechanism
Liu et al. [39] 2020

√ √
Attention mechanism

Yang et al. [40] 2020
√ √

Online refinement strategy
Tian et al. [41] 2020

√ √
Linear classifier

Liu et al. [34] 2021
√ √

Harmonic feature activation
Li et al. [28] 2021

√ √
Multi-prototype representation

Yang et al. [27] 2021
√ √

Multi-prototype representation
Zhang et al. [30] 2021

√ √
Multi-prototype representation

Wang et al. [31] 2021
√ √

Probabilistic framework
Zhang et al. [35] 2021

√ √
Transformer

Zhuge et al. [38] 2021
√ √

Feature fusion
Boudiaf et al. [42] 2021

√ √
Transductive inference

Wu et al. [43] 2021
√ √

Memory network
Xie et al. [44] 2021

√ √
Memory network

Chen et al. [22] 2022
√ √

Multi-class guidance
Lang et al. [19] 2022

√ √
Base-class prediction

Shi et al. [37] 2022
√ √

Feature fusion
Liu et al. [26] 2022

√ √
Weight-sparsification

Gao et al. [36] 2022
√ √

Attention mechanism
Xian et al. [46] 2019

√ √
Projection function

Kato et al. [50] 2019
√ √

Projection function
Bucher et al. [52] 2019

√ √
Zero-shot framework

Tian et al. [47] 2020
√ √

Image captions
Gu et al. [53] 2020

√ √
Feature generator

Li et al. [55] 2020
√ √

Feature generator
Hu et al. [49] 2020

√ √
Uncertainty estimation

Lu et al. [48] 2021
√ √

Feature enhancement
Baek et al. [51] 2021

√ √
Loss function

Gu et al. [54] 2022
√ √

Feature generator
1 Each technical solution is represented by its first word.

C. Summary

To elaborate this section intelligibly, we further describe
the involved few/zero-shot ISS approaches in Table IV. It can
be seen that the methods based on metric learning occupy a
crucial position in few-shot ISS, where the diversity of feature
representation, distance fuctions and feature matching strate-
gies give researchers inexhaustible motivation for innovations.
Due to the characteristics of zero annotation in zero-shot ISS,
it is challenging to directly leverage semantic embeddings
to optimize visual segmentation models. Therefore, easy-to-
implement metric learning-based approaches are preferred by
zero-shot ISS. Moreover, adopting generative model-based
approaches to convert zero-shot ISS into few-shot problems
is also popular in breakthrough these limitations.

IV. VIDEO OBJECT SEGMENTATION

Few/zero-shot VOS is the extension of few/zero-shot ISS in
temporal dimension. When the objects in a task have the same
identities and support and query images are continuous on time
stamps, a few/zero-shot ISS problem becomes a few/zero-shot
VOS challenge. Compared with few/zero-shot ISS, few/zero-
shot VOS has no requirement on manual construction of
few/zero-shot tasks, where a video of an unseen class can be
naturally regarded as a target task. The common VOS settings
of the support set are demonstrated in Fig. 6. The previous
frame with the predicted mask and/or the first frame with given
annotations can be adopted to guide the segmentation of the
current frame, and the intermediate frames spanning from the
first to previous frames are also allowed to be leveraged. More-
over, compared with ISS, few/zero-shot VOS burdens fewer
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(a) The support set consists of the previous frame 

(b) The support set consists of the first frame 

(c) The support set consists of the first and the previous frames 

(d) The support set consists of the selected historical frames 

Fig. 6. The settings of the support set in few-shot VOS (adapted from [73]),
where the mask of the first frame is the ground truth and the masks of
intermediate and previous ones are self-estimated masks. These constructions
are also commonly-used in zero-shot VOS, where the mask of the first frame
is unavailable.

appearance variations and enjoys richer temporal information,
where appearance and temporal cues in support samples can
be applied to enhance the representation of query samples,
leading to memory-based methods preferred in this case.

A. Few-shot Video Object Segmentation

Due to the inter-frame similarity of the object appearance
in a video, it is reasonable to adopt metric learning-based
approaches to separate the area similar to the given object from
the current frame. In addition, for a given video, the previously
seen historical frames play a considerable role in enhancing the
representations of objects in the current frame, leading to the
prosperity of memory-based approaches. Different from few-
shot ISS, few-shot VOS has higher requirements on the speed
of model adaptation, which is desired to be larger than the
frame rate. However, owing to the problem of time-consuming,
fine-tune-based approaches are facing a decline. In this section,
we will describe these solutions separately.

1) Metric Learning-based Methods: Compared with few-
shot ISS, only the first frame is labeled in few-shot VOS. It
is challenging to construct a reliable class descriptor merely
based on a single frame. Thus, few-shot VOS usually carries
out dense matching between the features generated by current
and reference frames. In this section, we categorize and review
each method according to the different selection of reference
frames.

The first frame [58], [59] or the previous frame [60] (or
both [61]–[63]) is to be given preference by earlier studies for
comprising support sets, as depicted in Fig. 6(a)-(c). Object
tracking was combined with VOS to estimate masks as well

as rotated bounding boxes simultaneously, with the assistance
of the pairwise similarity between the features mapped from
the current frame and the initial template [58]. Taking the
low efficiency caused by pixel-wise dense matching and the
curse of dimension in the Euclidean space [152] into account,
a hypersphere embedding space was built, where the cosine
distance was replaced with a convolution layer to accelerate
the similarity measurement [59]. As an alternative to the initial
frame, the previous frame adjacent to the current frame was
employed to provide appearance information of the target
object in [60]. By measuring the distance between the features
generated from the previous and current frames, a coarse
segmentation map of the current frame could be obtained,
which would be further refined for more accurate prediction.
For obtaining global and local correlations, a novel pixel-
level matching mechanism was presented, where the current
frame was employed to calculate correlations with both first
and historcal frames in [61]. To alleviate mismatching on
similar objects in the background, foreground and background
areas were addressed identically in [62]. Taking the appearance
and structure information on the target objects into account,
a structure modeling branch was constructed to encode the
information of the complete object and its components in [63].

Nevertheless, these approaches [58]–[63] only leverage the
initial frame and/or the adjacent frame, making it tricky to deal
with the challenge of object deformation, occlusion, and model
shift. Therefore, other metric learning-based approaches [64]–
[66] aim to explore a reasonable intermediate frame sampling
mechanism, as illustrated in Fig. 6(d), to capture richer tempo-
ral information and tackle the shift caused by sparse matching.
To explain the appearance variations of the target objects, more
recent and less long-distance frames were selected in [64].
An observed video was clipped into different snippets, from
each of which a frame was selected to build a support set
together with the labeled first frame, and the final segmentation
map was obtained by averaging the predictions conducted on
the target frame and each support frame in [65]. Different
from the manually designed sampling strategy [64], [65], an
adaptive selection mechanism was presented based on the
similarity in object appearance and the accuracy on predicted
masks in [66]. Despite the utilization of intermediate frames
can bring about performance gains, redundant computational
consumption exists when the appearance variations of target
objects are slight cross different frames. On that account, a
new segmentation network was proposed to dynamically adjust
the processing strategy according to the appearance changes
across frames, which reduced the unnecessary computational
occupation [67].

2) Fine-tune-based Methods: The fine-tune-based methods
endeavor to optimize the model for each video sequence
based on the first labeled frame (and the subsequent frames
with their self-predicted masks), where over-fitting risks, time-
consuming problems and handcrafted hyperparameters hinder
their development. To alleviate over-fitting and generalize
to new video objects more flexibly, a novel architecture
consisting of a segmentation sub-network and a lightweight
appearance sub-network was proposed, where only the appear-
ance one was updated online [69]. In response to the chal-
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Fig. 7. Data flows in memory-based VOS methods, in which the masks of historical frames are only leveraged in few-shot scenarios. Memory networks and
GNNs are adopted to cache the valuable information explicitly, while RNNs and 3D CNNs, which are leveraged as some subparts of the segmentation model,
are employ to store the knowledge implicitly. The squares with different colors represent diverse features.

lenges of time-consuming and handcrafted hyperparameters,
optimization-based meta-learning [153] was integrated into
online adaptation for efficient VOS [70]. In the offline stage,
the common knowledge between different objects was mined
by training on multiple similar segmentation tasks, and the
optimal model initialization as well as parameter-level learning
rates were provided. In the online adaptation, the first and
previous frames were leveraged to fine-tuned the initialized
segmentation model with provided learning rates, reaping the
characteristics of unseen objects and adapting to annoying
appearance variations. Whereas, providing learning rates for
each parameter places restrictions on large-scale segmentation
networks. To address this issue, neuron-level learning rates
were explored, which considerably eased the requirements
on the number of learning rates in [71]. Moreover, VOS
could be decomposed into object detection and local-mask
prediction, so that the fine-tuning operation could be carried
out with the assistance of bounding box propagations. Despite
higher efficiency can be reached, these methods [70], [71]
conducted optimization with fixed learning rates, making them
challenging to adaptively deal with target objects with diverse
appearances [72]. To handle this, an evaluation criterion was
proposed for the meta learner and the learning rates were
automatically modified for the upcoming frames [72].

3) Memory-based Methods: To cache previously seen in-
formation, memory networks [73]–[75], GNNs [83] and RNNs
[83], [84] are leveraged in memory-based methods, as shown
in Fig. 7.

As one of representative approaches, a space-time memory
network was devised, which could store helpful information
from observed frames [73], [74]. Peculiarly, when the es-
timation was performed on the current frame, a pixel-wise
matching on key maps was conducted to read out the beneficial
value maps for enhancing the representations of the current
frame. Furthermore, to attenuate the adverse effects resulting
from the appearance deformation, the features stored in the
memory were updated dynamically with the segmentation of
video frames, as demonstrated in Fig. 7(a). However, these
methods [73], [74] conduct global-to-global dense matching
strategies between query and memory features, leading to
erroneous segmentation on background objects that are similar
to the target ones. To cope with the mismatching, some studies

[75]–[81] attempt to build non-global relationships between
features. A memory network based on the Gaussian kernel
was developed to compel features focusing on a single object,
which reduced the occurrence of mismatching [75], [76].
A local-to-local matching between the regions of memory
and query frames was performed [77], which mitigated the
mismatching on similar objects and brought about lower com-
putational consumption than global-to-global methods [73],
[74]. Whereas, these methods [73], [74], [77] only perform
matching at coarse scales, which makes them challenging
to capture fine-grained information [78]. Considering this, a
novel reading mechanism was proposed to set up multi-scale
correspondences, where coarse correlations of dense matching
were employed to guide sparse matching at finer scales [78].

Nevertheless, these methods [73], [74], [78] only conduct
memorization on the latest information without abandoning
the antiquated or useless one, resulting in the increasing
computational costs and memory occupation with the progress
of the segmentation. Consequently, a considerable number
of approaches [79]–[81] have been presented to manage the
memory features efficiently. A global representation with a
fixed size was learned from all support frames, which de-
coupled the computational consumption with the length of
the given video sequence [79]. A feature bank was embed-
ded into the memory network to aggregate useful features
and forget worthless ones dynamically [80]. Without storing
the key and value maps for each instance individually, the
correlation between query and memory frames was delved to
retrieve the value map encoded from multiple instances, where
a voting mechanism was employed for feature aggregation
[81]. Aside from CNN-based memory networks utilized by
these mentioned approaches [73]–[81], graph-based memory
networks are also employed [82]. In [82], a novel graph
memory network was designed to store the information of the
support frames with their masks. To quickly adapt to the visual
variations on different timestamps, a learnable controller was
added to update features and store more abundant information
dynamically on the premise of maintaining a fixed memory
size.

Furthermore, GNNs and RNNs also play a crucial role in
few-shot VOS, as shown in Fig. 7(b) and Fig. 7(c). GNNs
and GRUs were jointly adopted to model short-term and long-
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term temporal information, respectively, where the short-term
information was cached in nodes of GNNs while the long-term
one is stored in the GRU modules [83]. The GRU modules
were also embeded into the segmentation model to propagate
features for proposal generation [84].

B. Zero-shot Video Object Segmentation

Zero-shot VOS targets separating primary moving objects
without labeled samples available. As seen in Fig. 3(d), distinct
from zero-shot ISS and zero-shot 3DS extracting supervision
signals from semantic embeddings, the auxiliary information
in zero-shot VOS is allowed to be appearance cues (i.e.,
unlabeled historical frames), motion cues (i.e., optical flow),
or semantic cues (i.e., language descriptions). The identity of
the object in zero-shot VOS, whose appearance has strong
correlations between adjacent frames, is the same among
diverse frames. Therefore, it is reasonable and intuitive to
adopt memory-based methods instead of more complex gen-
erative model-based approaches for this task, leading to some
principal solutions in zero-shot VOS: metric learning-based,
fine-tune-based and memory-based settlements.

1) Metric Learning-based Methods: Due to the differences
in auxiliary samples, the pairwise similarity can be calculated
between appearance features of historical and current frames,
motion and appearance features of the current frame, and
semantic features of language expressions and appearance
features of frames.

From the standpoint of the similarity captured from inter-
frame appearance embeddings, the dominant challenges lie
in reference frame selection and feature matching mecha-
nisms. A feasible way is to conduct pixel-level non-local
matching between initial and current frames, where inter-
frame information [85] and intra-frame information [86] are
leveraged. However, non-local matching may lead to unex-
pected computational expenditure. Targeting at this issue, local
matching was carried out only on object locations [87]. To
make full utilization of the global information of a given
video, the correlation between two order-independent frames
was grasped in [88], which helped to determine the area where
required to be segmented.

When it comes to the similarity calculated by the current
frame and the optical flow, a well-designed fusion strategy
is contrived to implicitly align motion features to appearance
ones. Given a current frame, a pixel-level interaction between
the prominent motion map and object proposals was per-
formed, which eliminated the obstacles derived from moving
background and unchanging objects [89]. To encourage the
appearance features generated by distinct convolution stages,
a multi-level interaction operation was proposed to interplay
with the motion ones, so that the representations of objects
could be decoded into more accurate segmentation masks [90].
To suppress the misleading knowledge caused by noisy optical
flows, the methods of completing the discontinuous edges of
optical flows [91], dynamically adjusting the effects of motion
and appearance cues on spatio-temporal representations [92],
and promoting consistent features and suppressing incompat-
ible ones [93] were presented. Moreover, depth maps and

static saliency were integrated, where the representations of
foreground objects were enlarged and purified in [94].

The similarity also can be calculated between semantic
features of language expressions and appearance features of
frames. Two attention modules were carefully designed to
encourage temporal consistency and prevent model shift in
[95]. Trivial and non-trivial linguistic phrases were encoded
into language features to identify referents more accurately in
[96]. To encode semantic and spatial information of objects at
multiple levels, visual features of different scales interacted
with linguistic features in the encoder [97]. A multimodal
transformer was presented in [98] to conduct cross-modal
interaction between semantic and appearance features.

2) Fine-tune-based Methods: Since language features gen-
erally carry unrelated information of objects, fusing language
features with visual ones may lead to inferior segmentation
accuracy. To address this issue, a learning-to-learn pattern was
proposed, where target-specific cues can be obtained by fine-
tuning the parameters of the transfer function [99].

3) Memory-based Methods: The memory tools shown in
Fig. 7 are also applied to zero-shot scenarios. RNNs were
employed to perpetrate implicit memory in both spatial and
temporal dimensions [100]. In the spatial dimension, RNNs
were exploited to explore other objects at different locations
within the given frame. In the temporal dimension, the role
of RNNs was to maintain the relationships across different
frames. Assisted by these settings, the representations of
multiple instances could be enhanced simultaneously by only
a single forward propagation. Moreover, GRUs [101] and 3D
CNNs [102] were embedded into the architecture to extract
spatio-temporal information from video sequences. A fully
connected graph was established to mine the interrelationship
between any two frames in [103], where video frames were
encoded as nodes and their correlations were modeled as
edges. When separating the object of interest frame by frame,
the information stored in the graph was dynamically updated
to obtain comprehensive knowledge and precise segmentation
masks.

C. Summary

In the discussions of this section, it can be found that
compared with ISS, few/zero-shot solutions face a great deal
of new challenges and opportunities when addressing VOS
problems. The extreme inadequacy of labeled data is the
first challenge, which leads to prototype networks that thrive
in ISS are not suitable for VOS. Secondly, the utilization
of intermediate frames may cause cumulative errors on the
current frame, where a selection mechanism to pick up high-
quality reference frames needs to cooperate with few/zero-
shot solutions. Thirdly, the requirements on the real-time
performance of VOS are much higher than that of ISS, which
requires additional consideration when designing frameworks.
Concerning opportunities, it is worth mentioning that VOS
can access richer information, such as the correlations among
support frames and query ones, which leads to generous
variants of technical solutions. In addition, due to the similarity
among ISS and VOS tasks, some ideas proposed in ISS can
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TABLE V
A SUMMARY OF FEW/ZERO-SHOT VOS METHODS.

Methods Years Scenarios Technical Solutions Flow Main contributions
Few-shot Zero-shot Metric Fine-tune Memory

Wang et al. [58] 2019
√ √

Multi-task
Voigtlaender et al. [61] 2019

√ √
Feature embedding, matching mechanism

Khoreva et al. [68] 2019
√ √ √

Data augmentation
Xiao et al. [70] 2019

√ √
Meta learner

Oh et al. [73] 2019
√ √

Memory network, matching mechanism
Lyu et al. [84] 2019

√ √
Conv-GRU module, multi-task

Hu et al. [60] 2020
√ √ √

Refinement network, attention mechanism
Yang et al. [62] 2020

√ √
Feature embedding

Zhang et al. [64] 2020
√ √

Transductive inference
Liu et al. [65] 2020

√ √
Reference frame selection

Robinson et al. [69] 2020
√ √

Optimization technique
Meinhardt et al. [71] 2020

√ √
Optimization technique

Seong et al. [75] 2020
√ √

Memory network
Li et al. [79] 2020

√ √
Feature embedding

Liang et al. [80] 2020
√ √

Memory network, loss function
Lu et al. [82] 2020

√ √
Memory network

Zhang et al. [83] 2020
√ √

Memory network
Yin et al. [59] 2021

√ √
Matching mechanism, feature embedding

Park et al. [67] 2021
√ √

Dynamic network
Xu et al. [72] 2021

√ √ √
Optimization technique, loss function

Xie et al. [77] 2021
√ √ √

Memory network
Seong et al. [78] 2021

√ √
Memory network, matching mechanism

Cheng et al. [81] 2021
√ √

Memory matching mechanism
Zhu et al. [63] 2022

√ √
Structure modeling

Hong et al. [66] 2022
√ √

Reference frame selection
Oh et al. [74] 2022

√ √
Memory network

Seong et al. [76] 2022
√ √

Memory network
Yang et al. [85] 2019

√ √
Aggregation technique

Zhuo et al. [89] 2019
√ √ √

Feature fusion
Wang et al. [103] 2019

√ √
GNN

Ventura et al. [100] 2019
√ √

ConvLSTM decoder
Tokmakov et al. [101] 2019

√ √ √
ConvGRU module

Gu et al. [87] 2020
√ √

Self-attention mechanism
Zhou et al. [90] 2020

√ √ √
Attention mechanism

Seo et al. [95] 2020
√ √

Attention mechanism
Bellver et al. [96] 2020

√ √
Non-trivial referring expressions

Mahadevan et al. [102] 2020
√ √

3D CNN decoder
Liu et al. [86] 2021

√ √
Feature fusion, matching mechanism

Zhou et al. [91] 2021
√ √ √

Feature refinement
Yang et al. [92] 2021

√ √ √
Attention mechanism, feature fusion

Ji et al. [93] 2021
√ √ √

Attention mechanism, feature refinement
Zhao et al. [94] 2021

√ √ √
Multi-source fusion

Yang et al. [97] 2021
√ √ √

Feature fusion
Lu et al. [88] 2022

√ √
Siamese network, attention mechanism

Botach et al. [98] 2022
√ √

Transformer framework
Li et al. [99] 2022

√ √
Feature fusion, optimization technique

1 Each method is represented by its first word.
2 “Flow” represents the methods involving optical flows.

be transferred into few/zero-shot VOS scenarios. Table V
summarizes the few/zero-shot VOS methods introduced in this
paper.

V. 3D SEGMENTATION

Few/zero-shot 3DS can alleviate the requirements for ex-
pensive annotations of unseen classes and address cross-class
adaptation as ISS and VOS problems. However, since the
data is disordered and nonstructural 3D samples rather than
regular RGB images, as can be seen from Fig. 3(e) and Fig.

3(f), few/zero-shot 3DS is more challenging than 2D cases,
where architectures designed for 2D samples generally fail
to be employed into 3D circumstances. Consequently, the
existing few/zero-shot 3DS methods draw lessens from the
2D approaches and develop applicable protocols for 3D data
structures. In this section, we laconically review the existing
few/zero-shot 3DS approaches.
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TABLE VI
A SUMMARY OF FEW/ZERO-SHOT 3DS METHODS.

Methods Years
Scenarios Technical Solutions

Point Main contributions
Few-shot Zero-shot

Discriminative
Generative

Metric Parameter Fine-tune
Sharma et al. [112] 2019

√ √ √
Embedding network

Chen et al. [114] 2019
√ √

Autoencoder
Sharma et al. [113] 2020

√ √ √
Self-supervised pre-training

Chen et al. [106] 2020
√ √ √

Prototype network
Yuan et al. [108] 2020

√ √
Descriptor generator

Wang et al. [109] 2020
√ √ √

Shape morphing
Zhao et al. [107] 2021

√ √ √
Multi-prototype representation

Hao et al. [110] 2021
√ √ √

Meta learner
Huang et al. [111] 2021

√ √ √
Meta learner

Michele et al. [116] 2019
√ √ √

Zero-shot framework, dataset
Liu et al. [117] 2022

√ √ √
Dataset, embedding network

1 Each method is represented by its first word.
2 “Point” indicates that the sample type is point clouds.

Shape
Deformation

Exemplar

Input

Morphed Exemplar

towards

Deformation

Label
Prediction

Exemplar Input

Output

Deformation

Exemplar InputMorphed Exemplar

vs

Deformation

Exemplar InputMorphed Exemplar

vs

(a) Shape morphing of point clouds

(b) Shape morphing of 3D meshes

Fig. 8. The operation of shape morphing in few-shot 3DS based on metric
learning (adapted from [109]). The samples are selected from [108], [109].

A. Few-shot 3D Segmentation

The majority of available few-shot 3DS methods counting
on the metric learning paradigm have been relatively deeply
researched, while a small proportion of them resorting to other
tools, such as fine-tune-based or parameter prediction-based
strategies, have been studied rarely. This section focuses on the
existing few-shot 3DS methods and discusses them as follows.

1) Metric Learning-based methods: The methods based
on metric learning generally transfer the labels from the
given 3D exemplars to the input ones by calculating the
similarity or proximity in a shared space. Dissimilar to few-
shot 2D segmentation allocating labels in an embedding space
regularly, the approaches related to 3DS also have a propensity
to conduct labels assignment in the input space.

From the perspective of taking the embedding space as the
public metric space, prototype networks are also integrated
into 3DS for grappling with limited training samples. The
complicated point clouds in the support set were mapped as
multiple prototypes of diverse shapes, which were then applied
to measure the similarity with query embeddings in [106].
Multiple prototypes were estimated to propagate labels based
on correlations between prototypes and query points [107].

Regarding 3D shape space as the common metric space,
a conventional completion paradigm is to alter the given
3D exemplar into the same shape as the input and then to

transfer labels from the deformed exemplar to the input for
segmentation, as indicated in Fig. 8. In [108], labeled meshes
were first morphed to reap shapes that were the same as
inputs. Then, a label migration was conducted according to the
distance between points sampled from the deformed and input
3D meshes. The 3D template was transformed towards the
input shape, which facilitated the subsequent label alignment
operation [109]. Moreover, instead of calculating the spatial
distance between two points directly, a probability distribution
function was learned to assist the predictions on part-specific
labels.

2) Parameter Prediction-based Methods: Parameter
prediction-based methods were also applied to tackle few-
shot 3DS. A potential space associated with diverse 3DS
functions was learned from a significant number of tasks,
where the limited training data about unseen shapes was
leveraged to dynamically generate a task-specific function for
rapid generalization on target shapes in [110].

3) Fine-tune-based Methods: There are also some ap-
proaches that have recourse to fine-tune policies to cope
with few-shot 3DS. In addition to meta-learning [111], pre-
training paradigms constructed on self-supervised [112], [113]
or unsupervised learning [114] are also integrated into few-
shot 3DS.

Under the support of contrastive learning and meta-learning,
pre-training offline was conducted to represent more discrim-
inative features on shapes and estimate the optimal model
initialization in [111]. Based on the initialized parameters, the
model could effectively adjust itself and converge quickly on
new tasks with a handful of training samples. A self-supervised
loss function was developed in [112] to assist in the estimation
on dimension-fixed feature vectors of 3D points. When a small
amount of training data was provided, the segmentation model
initialized by the pre-trained embedding network could be
further fine-tuned for performance gains. A self-supervised
strategy was adopted in [113] to heuristically represent a point
cloud exemplar in a metric space ahead of schedule. The
learned point embedding network was then employed to learn
the segmentation network under a few samples. In [114], an
novel autoencoder was designed, where the encoder aimed
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to represent 3D shape in a feature space, and the branched
decoder endeavored to learn a compact representation for each
frequently occurring shape. Under this setting, the model pre-
trained in an unsupervised way could quickly acclimate to
the segmentation of new 3D shapes by an uncomplicated
adjustment with the guidance of only one or a few labeled
training data.

B. Zero-shot 3D Segmentation

Existing zero-shot 3DS approaches generally adopt genera-
tive models to cope with unseen 3D objects with zero labels,
which also follows the learning paradigm illustrated in Fig. 5.
Similar to generative model-based ISS methods [53], [55], a
generator was trained on the seen training data to generate
pseudo but semantically consistent features for the unseen
point cloud samples [116]. The generated pseudo represen-
tations were employed to fine-tune a classifier for overcoming
the challenges arising from the absence of unseen point cloud
categories and disequilibrium size between seen and unseen
samples. Analogous ideas were also adopted to tackle the zero-
shot 3D scene segmentation in [117], where a regularizer was
designed to assist the generation on semantically consistent
features of both seen and unseen classes. These synthesized
features were then leveraged to adjust the classifier for accurate
prediction on unseen objects.

C. Summary

Table VI sums up the few/zero-shot 3DS methods reviewed
in this paper. It can be discovered that compared with ISS and
VOS, the cooperation between few-shot learning (or zero-shot
learning) and 3DS is still in its infancy. Due to the disorder
and complexity of 3D samples, these technical solutions that
show great effectiveness in 2D space are tricky to be applied in
3D space directly, which limits the development of few/zero-
shot 3DS. How to deal with this challenge effectively with a
particular solution is still a promising topic in the future.

VI. DISCUSSION

In spite of the fact that few/zero-shot visual semantic
segmentation has achieved a considerable breakthrough and
effectively settled the issues caused by a few or even zero
annotated samples in both 2D and 3D space, there are still a
variety of obstacles to their applications in real scenes. This
section aims to discuss some open challenges and list some
applications of few/zero-shot visual semantic segmentation.

Cross-domain transferability: Transferability plays a cru-
cial role for the computer vision community [154]. For visual
semantic segmentation, the transferability is principally re-
flected in two aspects: crossing different domains and crossing
diverse categories, where the cross-category transferability has
received extensive attention in few/zero-shot visual semantic
segmentation. However, the existing methods are required to
follow a solid premise: the samples of unseen classes must
have the same distribution as base classes, which places re-
strictions on the serviceability in real scenarios [42]. Although
visual semantic segmentation methods based on domain adap-
tation can bridge the inter-domain gap, they fail to generalize

to unseen categories effectively. Therefore, integrating domain
adaptation with cross-category adaptation seamlessly (i.e.,
adopting adversarial training with few-shot learning [155]) can
be a promising way to significantly boost the performance of
few/zero-shot segmentation models in different domains.

Generalized few/zero-shot segmentation: Generalized
few/zero-shot visual segmentation requires the model to realize
the segmentation on both base and unseen classes. Most of
few/zero-shot visual segmentation algorithms tend to deal
with the segmentation of unseen categories while ignoring the
performance on base classes in inference. For example, the
methods based on parameter prediction adjust the classifier
weights only for a specified category, which may lead to per-
formance degradation on base classes. Furthermore, practical
applications also demand that the segmentation model should
be able to segment multiple categories of objects, including
seen and unseen categories. Therefore, pursuing generalized
few/zero-shot segmentation algorithms is one of the valuable
future topics.

Weakly-supervised few/zero-shot segmentation: Even
though the existing few/zero-shot visual segmentation ap-
proaches have greatly alleviated the requirements for anno-
tations of target objects, a large number of base-class samples
with labels are still indispensable [26], [77], [78] to learn to
separate unseen categories of interest. However, it is difficult
and challenging to collect such a great deal of labeled base-
class samples in practice. The strictness of practical applica-
tions entails that few/zero-shot visual semantic segmentation
methods are competent to precisely separate unseen categories
in a more efficient way. Consequently, combining weakly-
supervised learning, or even unsupervised learning [156],
with few/zero-shot visual semantic segmentation will be a
constructive subject in further development.

Multi-modal supervision: Most of few-shot visual seman-
tic segmentation approaches are inclined to rely on insufficient
supervision signals from a single-modal support set, which
makes them tricky and laborious to deal with the gap between
support and query samples effectively. For example, in few-
shot ISS, the type of support samples is all 2D images.
However, other modalities, such as language expressions, also
can be used as auxiliary supervision signals in addition to
images. The zero-shot visual semantic segmentation utilizes
the supervisory information from other modalities, such as
word embeddings and optical flows, which effectively fills
the vacancy in supervision information and conducts reliable
predictions for target categories. Therefore, it is promising
for few-shot visual semantic segmentation to turn to other
modalities to augment the supervision information. In addition,
the utilization of more modalities is also of great significance
to further promote the richness of supervision information for
zero-shot visual semantic segmentation.

Lightweight network: Nowadays, embedded devices play
a significant role in both civil and military fields, which puts
forward higher requirements on the computational overhead
and runtime costs. Whereas, the majority of few/zero-shot
visual semantic segmentation approaches resort to different
backbones, such as VGG16 [157], or more complicated struc-
ture for cross-class prediction, which requires higher com-



16 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X

putational costs and memory usage and is disadvantageous
for deployments. Moreover, althrough real-time performance
can be achieved by decreasing the model size, undesirable
performance degradation may be inevitably incurred [158].
Therefore, how to design a lightweight network with both real-
time performance and high-quality prediction is a direction
worthy of efforts for few/zero-shot visual semantic segmenta-
tion.

Cross-task collaboration: It is natural that the role of a
few/zero-shot visual semantic segmentation model is insuf-
ficient to contend with diverse challenges in real scenarios.
Therefore, combining visual semantic segmentation with other
computer vision tasks will be a promising direction to expand
the abilities of the visual semantic segmentation model in
some aspects. For instance, it is advantageous to leverage
few-shot object detection to provide more efficient annotations
for weakly-supervised few-shot visual semantic segmentation
[159]. Moreover, collaborating across diverse tasks will also
promote cooperation and information sharing between various
tasks, promising to maximize the value of limited samples.

Cross-task learning: As summarized above, the technical
solutions of ISS, VOS, and 3DS in both few-shot and zero-shot
scenarios have some commonalities and universalities, which
makes the solutions proposed in one segmentation field can
be referenced by another one. For example, on the one hand,
some methods [33], [34], which are proposed to solve the
appearance gap between support and query samples in few-
shot ISS, can be used to deal with long-time sequences in
few-shot VOS. On the other hand, some strategies [62], [75],
which are proposed to address mismatching of similar objects
in few-shot VOS, can also be considered in few-shot ISS.

Applications: Compared with conventional visual seman-
tic segmentation, few/zero-shot semantic segmentation algo-
rithms have more significant application advantages. Take
the petrochemical industry for example. Firstly, few/zero-
shot semantic segmentation methods can be applied in the
situations where labeled training data is scarce, such as oil and
gas pipeline leakage detection [160]. Secondly, few/zero-shot
visual-semantic segmentation provides a flexible solution for
fast cross-class adaptation, which plays an important role in
addressing diverse types of pipeline defects, such as deforma-
tion, corrosion, scaling and cracks [161]. Thirdly, combining
the limited number of cross-modal samples (i.e., infrared
images) and breaking through the barriers of multi-modal
few/zero-shot semantic segmentation methods can advance the
applications in all-weather scenarios, such as safety production
monitoring of petroleum and petrochemical products [162],
[163]. In a word, employing few/zero-shot semantic segmen-
tation in real scenarios, such as petrochemical industry, plays
a positive role in promoting the production and life to become
more intelligent and autonomous.

VII. CONCLUSION

This paper focuses on the applications of few-shot learning
on visual semantic segmentation. To this end, we perform an
exhaustive and systematic survey on related works of three typ-
ical few/zero-shot segmentation tasks, including few/zero-shot

ISS, few/zero-shot VOS, and few/zero-shot 3DS. Moreover,
we explore the commonnalities and discrepancies of few/zero-
shot settlements under different segmentation circumstances.
Besides, we analyze these existing few/zero-shot segmentation
methods and list some challenges and valuable directions for
follow-up researchers.
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