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   Dear Editor,

This letter focuses on the node localization problem in underwater
acoustic sensor networks (UWASNs) with the time-dependent prop-
erty  and  various  noise  disturbances.  A  range-based  localization
scheme aided with an integral-feedback-based neurodynamics (IND)
model is proposed and referred to as IND-RS, which has the stability
against the internal perturbations encountered during the solving pro-
cess. Considering the complexity of the underwater environment, the
Kalman filter (KF) algorithm is smoothly integrated into IND-RS to
well eliminate environmental noises to improve the localization accu-
racy. Besides, the convergence analyses and robustness proofs on the
proposed IND model  are  furnished.  Extensive  simulations  in  differ-
ent localization scenarios are conducted to substantiate the superior-
ity of IND-RS in terms of high accuracy and strong stability.

In  UWASNs  [1],  [2],  localization  is  a  fundamental  and  critical
technology. Range-based schemes from the time difference of arrival
(TDoA)  measurement  provide  a  high  localization  precision  and
become  the  preferred  option  for  UWASNs.  For  instance,  in  [3],  by
utilizing  TDoA  measurements,  a  non-convex  and  partially  observ-
able  solution  is  presented  for  underwater  vehicle  localization.
Besides,  Sun et  al. [4]  construct  a  second-order  TDoA algorithm to
address the problem of signal drift. In [5], a TDoA-based prediction
localization  algorithm  is  designed  to  achieve  high  accuracy  and
energy efficiency.

Although  extensive  achievements  have  been  gained  by  the  above
researches, the schemes therein still have limitations. First, due to the
complexity of the underwater environment [6], TDoA measurements
obtained from the natural world are mingled with bias, which grossly
decreases the localization accuracy, but was not raised in these stud-
ies. In addition, given that the node may move passively or in a con-
trolled  manner,  the  localization  problem  in  UWASN  is  essentially
time-dependent, which indicates that static schemes would introduce
lagging  errors  due  to  the  lack  of  time  derivative  information  of
dynamic parameters.

It  has  been  verified  that  the  zeroing  neurodynamics  methodology
which  is  originated  from  the  recurrent  neural  network  (RNN),  is
qualified for dealing with a variety of mathematical and engineering
problems [7], [8]. Therefore, owing to the efficient real-time compu-
tation ability, an IND model is proposed for the node localization in
this letter. Furthermore, given the fact of the inevitable perturbations
during the solving process and inspired by the noise-tolerance mech-
anism in  cybernetics,  an  integral-feedback  term is  incorporated  into
the proposed IND model  to effectively offset  the perturbation error.

In addition, the KF algorithm is introduced to weaken the impact of
environmental  noises  and  improve  the  accuracy  of  TDoA  measure-
ments [4]. Hence, the motivation of this letter is to construct a range-
based  node  localization  scheme  in  UWASNs  from  TDoA  measure-
ments with the capabilities of real-time computation and resistance to
both environmental and internal noises and disturbances.

n ≥ 4
n ≥ 5

Problem formulation: Consider an underwater scenario in which
a target moves along a trajectory and n neighboring anchors are ran-
domly deployed and fixed, of which  for the 2-dimensional (2D)
case and  for the 3-dimensional (3D) case. For the 3D case, the
coordinates of n anchors and the target are defined as
 

Apoi =

x1 x2 . . . xn
y1 y2 . . . yn
z1 z2 . . . zn

 ∈ R3×n, Tpoi =

x(t)
y(t)
z(t)

 ∈ R3.

According to the meaning of TDoA, we have the following equa-
tions:
 

ri(t) =
√

(xi − x(t))2 + (yi − y(t))2 + (zi − z(t))2,

ri1(t) = ri(t)− r1(t) = v∆Ti1(t), ∆Ti1(t) = Ti(t)−T1(t)
i ∈ {1,2, . . . ,n} ri(t)

ri1(t)
Ti(t)

∆Ti1(t)

where ;  represents the distance between the target
and the ith anchor;  denotes the distance difference from the tar-
get to the ith and first anchors;  stands for the time of the signal
traveling from the target to the ith anchor; v is the propagation speed
of acoustic signals;  signifies the time difference of the signal
traveling  from  the  target  to  the ith  and  first  anchors  separately.  By
several  derivations,  the node localization problem from TDoA mea-
surements in the 3D scenario is expressed as
 

x21 y21 z21 r21(t)
x31 y31 z31 r31(t)
...

...
...

...
xn1 yn1 zn1 rn1(t)




x(t)
y(t)
z(t)
r1(t)

 =

(Λ21 − r2

21(t))/2

(Λ31 − r2
31(t))/2
...

(Λn1 − r2
n1(t))/2


(1)

xi1 = xi − x1 yi1 = yi − y1 zi1 = zi − z1 Λn1 = Λn −Λ1
Λi = x2

i + y2
i + z2

i

where ,  and ;  with
.  From (1),  it  can be  seen that  the  node localization

problem using TDoA measurements in UWASNs is formulated as a
dynamic matrix equation and concisely described as
 

A(t)u(t) = h(t) (2)
A(t) ∈ R(n−1)×a n,a ∈ Z

h(t) ∈ Rn−1 u(t) ∈ Ra

a = 3 a = 4

where ,  a  known  coefficient  matrix  with ,
involves TDoA measurements as well as the coordinates of anchors;

 is  a  known  vector; ,  an  unknown  vector  with
 or ,  is  associated  with  the  coordinate  of  the  target  to  be

determined.
Design  of  IND-RS: Firstly,  IND-RS  adopts  the  KF  algorithm  to

filter  TDoA  measurements  to  compensate  for  the  measured  bias
which can be deemed as an additive Gaussian white noise. Then, the
filtered  results  would  be  the  input  of  the  proposed  IND  model  to
solve the node localization problem (2) and determine the position of
the target.
Filtering of TDoA measurements: With the biased TDoA measure-
ments, the core procedures of the KF algorithm are described as fol-
lows:
 

x̂ς,ς−1 = Ax̂ς−1,ς−1

pς,ς−1 = Apς−1,ς−1AT +Q

Kς = pς,ς−1HT (H pς,ς−1HT +R)−1

x̂ς,ς = x̂ς,ς−1 +Kς(zς −H x̂ς,ς−1)
pς,ς = (I−KςH)pς,ς−1

T ς ∈ {1,2, . . . ,M}
x̂

z
I, K, A, Q, R p

where  superscript  denotes  the  transpose  operator; 
is  the  iteration  index  of  the  KF;  represents  the  estimate  of  TDoA
measurements;  symbolizes  the  biased  TDoA  measurements;  the
definitions  of  and  are  regular,  thus  omitted.  After-
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x̂M,Mwards,  is used as the input to the following IND model.
IND  model: IND  model  is  proposed  for  solving  the  node  localiza-
tion problem (2) with high effectiveness and high accuracy.

First of all, a dynamic error function of (2) is defined as
 

e(t) = A(t)u(t)− h(t). (3)
e(t) u(t)

u∗(t) e(t)
When  approaches  zero,  the  obtained solution  approaches

the  theoretical  solution .  To  this  end,  the  evolution  for  is
designed as
 

ė(t) = −k1e(t)− k2

w t

0
e(τ)dτ (4)

k1,k2 > 0
ė(t) e(t)

where  parameters  aiming  at  regulating  the  convergence
rate of  which denotes the derivative of . Further, by expand-
ing (4), the proposed IND model is obtained
 

u̇(t) = −A†(t)
(
k1(A(t)u(t)− h(t))+ Ȧ(t)u(t)− ḣ(t)

+ k2

w t

0
(A(τ)u(τ)− h(τ))dτ

)
(5)

A†(t) A(t)where  denotes the pseudoinverse of matrix .
Theoretical analyses:

Convergence  analyses: Theorem  1  provides  the  proof  on  the  con-
vergence of IND model (5) without perturbations.

u(0)
u(t)

u∗(t)

Theorem  1:  Starting  from  a  random  and  less  exact  position ,
the  estimate  position  of  the  target,  which  is  generated  by  IND
model (5), globally converges to the theoretical position .

ė(t) = −k1e(t)−
k2

r t
0 e(τ)dτ

Proof:  IND  model  (5)  is  generalized  from 
 with the ith subsystem expressing as

 

ėi(t) = −k1ei(t)− k2

w t

0
ei(τ)dτ (6)

∀i ∈ 1, . . . ,n−1
ėi(t)

for .  Then,  we define  a  Lyapunov function  candidate
for 
 

V(t) = e2
i (t)+ k2

(w t

0
ei(τ)dτ

)2
. (7)

V(t) V̇(t) = −2k1e2
i (t)

V(t) ≥ 0 V̇(t) ≤ 0
ei(t)

u∗(t)

The  time  derivative  of  is  obtained  as .  We
have  and .  Based  on  the  Lyapunov  Theory,  it  can
be concluded that  globally converges to zero. That is to say, the
estimate position of the target, which is generated by IND model (5),
globally converges to the theoretical position . ■
Robustness analyses: Theorems 2 and 3 are provided to investigate
the robustness of IND model (5) against constant and random pertur-
bations, respectively, during the solving process of the node localiza-
tion. To lay a basis for further investigation, the disturbed IND model
is generated as follows:
 

u̇(t) = A†(t)
(
− k1(A(t)u(t)− h(t))− Ȧ(t)u(t)+ ḣ(t)

− k2

w t

0
(A(τ)u(τ)− h(τ))dτ+ϱ(t)

)
(8)

ϱ(t) ∈ Rn−1where  denotes  the  unknown  perturbation  encountered
during  the  solving  process,  such  as  the  constant  implementation
error, the random perturbations, or their superposition.

ϱ(t) =
ϱ ∈ Rn−1

||e(t)||2

Theorem  2:  When  undergoing  the  constant  perturbation 
 during the practical solving process of the node localization

problem (2),  the disturbed IND model (8)  globally converges to the
theoretical position of the target, i.e., the residual error  of the
disturbed IND model (8) globally converges to zero.

Proof:  By  Laplace  transform,  the ith  subsystem  of  the  disturbed
IND model (8) is deduced
 

sei(s)− ei(0) = −k1ei(s)− k2

s
ei(s)+ϱi(s) (9)

then,
 

ei(s) =
s(ei(0)+ϱi(s))
s2 + sk1 + k2

(10)

s/(s2 + sk1 + k2)

s1 = (−k1 +
√

k2
1 −4k2)/2 s2 = (−k1 −

√
k2

1 −4k2)/2 k1, k2 >

0 s1 s2

with  the  transfer  function ,  of  which  the  poles  are
 and . For 

, it can be concluded that both  and  locate on the left-half plane
of s,  which  implies  this  system is  stable  theoretically.  The  constant

ϱi(s) = ϱ̄i/s
noise  amounts  to  a  step  signal  disturbance  input  term  with  the
Laplace transform . Therefore, using the final value theo-
rem, it can be acquired that
 

lim
t→∞

ei(t) = lim
s→0

sei(s) = lim
s→0

s2(ei(0)+ ϱ̄i/s)
s2 + sk1 + k2

= 0. (11)

limt→∞ ||e(t)||2 = 0Thus,  it  can  be  concluded  that  under  the  con-
stant perturbation. ■
ϱ(t) ∈ Rn−1

||e(t)||2

Theorem  3:  When  undergoing  a  bounded  random  perturbation
 during the practical solving process of the node localiza-

tion problem (2), the disturbed IND model (8) globally converges to
the theoretical position with a bounded residual error .

ė(t) =
−k1e(t)− k2

r t
0 e(τ)dτ+ϱ(t)

Proof:  The  disturbed  IND  model  (8)  is  generalized  from 
 with the ith subsystem expressing as

 

ėi(t) = −k1ei(t)− k2

w t

0
ei(τ)dτ+ϱi(t) (12)

∀i = 1, . . . ,n−1for .
k1 k2Depending on the values of  and ,  we continue the discussion

from the following three situations:
k2

1 > 4k21) For , the solution to (12) is
 

ei(t) =
ei(0)(βexp(βt)− θexp(θt))

β− θ +

(w t

0

(
βexp(β(t−τ))

− θexp(θ(t−τ))
)
ϱi(τ)dτ

) 1
β− θ (13)

β = (−k1 +
√

k2
1 −4k2)/2 θ = (−k1 −

√
k2

1 −4k2)/2where , .  Subse-
quently, in terms of the triangle inequality, the above equation can be
turned into
 

|ei(t)| ≤
(
|ei(0)(βexp(βt)− θexp(θt))|

+
w t

0
|βexp(β(t−τ))||ϱi(τ)|dτ

+
w t

0
|θexp(θ(t−τ))||ϱi(τ)|dτ

) 1
β− θ .

We further have
 

|ei(t)| ≤
(
ei(0)(βexp(βt)− θexp(θt))+2 max

0≤τ≤t
|ϱi(τ)|

) 1
√
β− θ

.

As a result, it can be derived that
 

sup
t→∞
||e(t)||2 ≤ 2ϱ̄

√
n−1√

k2
1−4k2

n ≥ 4 ϱ̄ =max0≤τ≤t{max3≤i≤n−1|ϱi(τ)|}of which , .
k2

1 < 4k22) For , similar derivations can deduce that
 

sup
t→∞
||e(t)||2 ≤ 4k2ϱ̄

√
n−1

k1

√
k2

1−4k2

.

k2
1 = 4k23) For , similarly, we have

 

sup
t→∞
||e(t)||2 ≤

(
ι
ω −

1
β

)
ϱ̄
√

n−1

ι, ωwith  being positive values. ■
Experiments: In this part, the true path of the target node is signi-

fied  by  TP,  and  the  estimated  path  is  signified  by  estimated  path
(EP).

0.2 × 0.2

||e(t)||2
t = 2 10−1

ϱ(t) = [5]6×1 ϱ(t) ∈ [4,6]6×1

||e(t)||2

||e(t)||2
k1 = k2 = 5 k1 = k2 = 15

2D/3D:  It  can  be  seen  from Fig. 1(a)  that,  in  a  km   km
area, the target moves along a curved path from point A to point B,
and the estimated path generated by IND-RS well coincides with the
curve. Also, as visualized in Fig. 1(b), the residual error  con-
verges at  s with the order of  for both the constant perturba-
tion  and the random perturbation . More-
over,  the  convergence  of  the  residual  errors  with  four  initial
values  in  the  case  of  no  perturbation  is  presented  in Figs. 1(c)  and
1(d).  The  convergent  rate  of  the  residual  error  with

 shown in Fig. 1(c)  is  smaller  than that  with 
shown in Fig. 1(d).

0.2 × 0.2 × 60For  a  3D  scenario  with  the  range  of  km  km  m
shown in Fig. 2(a), IND-RS is capable of quickly locating the target
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[0.05;0;0] km
||e(t)||2

ϱ(t) = [5]6×1

ϱ(t) ∈ [4,6]6×1

from a rough and initial position  and tracking it accu-
rately.  As  depicted  in Fig. 2(b),  the  residual  error  converges
within 2 s for both the constant perturbation  and the ran-
dom perturbation .

Comparative results: For comparison,  the disturbed model  with-
out the integral term is given as follows:
 

u̇(t) =A†(t)(−k1(A(t)u(t)− h(t))− Ȧ(t)u(t)+ ḣ(t)+ϱ(t)). (14)

7

Obviously,  the  path  estimated  by  the  model  (14)  in Fig. 3(a)  is
deviated from the true path when compared with paths estimated by
IND mode  (8)  shown in Figs. 3(b)  and 3(c).  However,  as  shown in
Figs. 3(b) and 3(c), a few of fluctuations are observed in the process
of locating the target. As a further exploration, two anchors are added
into  the  scenario. Fig. 3(d)  shows  that  the  estimated  path  generated
by IND model (8) with the aid of  anchors is  perfectly completed.
From this result, it can be concluded that an appropriate distribution
of the anchors can contribute to the localization accuracy of the pro-
posed IND-RS scheme.

Conclusion: This  letter  has  investigated  the  node  localization
problem  in  UWASNs  from  a  dynamic  perspective.  Given  that  the
underwater  environment  is  fragile  and  complicated,  the  KF  algo-

rithm  and  IND  model  (5)  have  been  employed  to  establish  a  new
range-base scheme, i.e., IND-RS, with high accuracy and strong sta-
bility. Rigorous theoretical analyses and simulative experiments have
been  provided  to  verify  the  effectiveness  and  feasibility  of  IND-RS
for node localization in the presence of various kinds of noise or per-
turbations.
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Fig. 1. Validation results of the node localization using IND-RS under differ-
ent perturbation workspaces in the 2D scenario. (a) TP and EP; (b) Residual
error  with  and ;  (c)  Residual  error 
with  and  under  the  zero  perturbation  workspace;  (d)  Residual
error  with  and  under the zero perturbation workspace.
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Fig. 2. Validation results of the node localization using IND-RS under differ-
ent perturbation workspaces in the 3D scenario. (a) TP and EP; (b) Residual
error  with  and .
 

 

0.1−0.10
0.10

−0.05

0

0
0.05

0.05

0.10

−0.10 X (km)Y (km)

Z 
(k

m
)

Z 
(k

m
)

Z 
(k

m
)

(a)

0.1−0.10
0.10

−0.05

0

0

0.05

0.05
0.10

−0.10 X (km)Y (km)

Z 
(k

m
)

(b)

0.1−0.10
−0.05

0

0

0.05

0.05
0.10

−0.10 X (km)Y (km)
(c)

0.1−0.10
0.10

−0.05

0

0
0.05

0.05

0.10

−0.10 X (km)Y (km)
(d)

Anchor
TP
EP

Anchor
TP
EP

Anchor
TP
EP

Anchor
TP
EP

 

ϱ(t) = [5]4×1 n = 5
ϱ(t) = [5]4×1 n = 5

ϱ(t) ∈ [4,6]4×1 n = 5
ϱ(t) = [5]6×1 n = 7

Fig. 3. Comparative results of the node localization using model (14) and IND
model  (8)  to  aid  IND-RS under  different  perturbation workspaces  in  the  3D
scenario. (a) TP and EP of model (14) with  and ; (b) TP and
EP  of  IND  model  (8)  with  and ;  (c)  TP  and  EP  of  IND
model  (8)  with  and ;  (d)  TP  and  EP  of  IND  model  (8)
with  and .
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