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   Dear Editor,

This letter is concerned with developing meta-learning models for
fast,  stable,  and  effective  few-shot  learning  across  tasks  over  a  few
training samples. Nowadays, deep and reinforcement learning (RL) is
widely  used in  autonomous intelligent  systems (e.g.,  target  recogni-
tion [1], path planning [2], and robot control [3], [4]). However, it is
still  challenging  to  learn  quickly  with  a  small  number  of  data  to
obtain  a  workable  model  for  a  new  task,  also  known  as  cross-task
few-shot  learning.  Humans  only  need  a  few  samples  to  learn  new
concepts  or  perform  new  tasks.  In  contrast,  an  autonomous  system
equipped with the most advanced AI technologies can hardly match
the  human rate  of  learning,  and  they  generally  call  for  significantly
more data to reach a similar level of performance [5]. Such a gap can
be  bridged  by  e.g.,  effective  transfer  of  learning  experiences  across
tasks and rapid formation of skills from few samples, which are key
ways to breaking the unmanned systems technology bottleneck.

Fortunately,  meta-learning  methods  have  been  shown  capable  of
effectively addressing cross-task few-shot learning. The main idea of
meta-learning is to distill knowledge and experiences from historical
tasks  to  guide  the  learning  process  in  new  tasks,  or  to  equip  itself
with the ability of “learning to learn” through the past learning expe-
rience.  The  objective  of  meta-learning  is  to  enhance  the  generaliza-
tion  performance  of  meta-learners  at  the  task  level.  This  is  in  con-
trast to transfer learning, which only emphasizes the ability to trans-
fer from one task to another, and to pre-training, which concentrates
on the model's immediate performance in various tasks without con-
sidering their adaptivity to subsequent tasks. A variety of meta-learn-
ing  methods  have  been  proposed,  which  have  focused  on  different
elements  of “learning”,  including  initial  parameters,  network  struc-
ture, and optimization methods, to name just a few [6], [7].

Model-agnostic  meta-learning  (MAML)  [6]  is  one  of  the  most
effective  and  widely  used  meta-learning  methods  thus  far,  which
aims  to  find  optimal  initial  model  parameters  based  on  gradient
descent.  This  approach  divides  the  update  process  into  two  stages:
the  task-specific  inner-loop  update  and  the  cross-task  outer-loop
meta-update.  Originally  in  [6],  MAML  is  demonstrated  via  a  first-
order  approximation,  sacrificing  the  second-order  derivatives  for

computational  benefits.  On  this  basis,  Reptile  [8]  not  only  discards
the  second-order  information  but  goes  a  step  further  by  moving the
initialized  parameters  of  the  meta-learner  toward  the  temporary
parameters  trained  on  tasks,  thus  improving  the  computational  effi-
ciency. Meta-SGD [9], on the other hand, considers learning both the
initial  parameters,  the update direction,  and the learning rate,  which
endows the algorithm with strong ability for fast adaptation.

While MAML is now being widely used, it is not without flaws. It
has been reported in [10] that the MAML training is sensitive to ini-
tial parameters, which incurs a high level of uncertainty and hinders
its  generalization.  Further,  MAML  suffers  from  instability  training
issues  too  [11],  resulting  in  sluggish  convergence  [12].  To  address
these  challenges,  we  develop  a  competitive  meta-learning  (CML)
method by considering the use of multiple meta-learners and induc-
ing  group  (or  collective)  intelligence  via  a  competition  mechanism.
CML incorporates  information interaction into  the  parameter  updat-
ing process of each meta-learner, thus enabling an effective exchange
of  the “best” learning  experiences  among  meta-learners,  and  stimu-
lating and accelerating each individual’s learning process. This com-
petition  mechanism  consists  of  a  learning-adaptive  aggregation  of
cross-task data information in the meta-learning process.

x ∈ X y ∈ Y
fθ

X→Y θ∗

fθ ℓ

Problem  formulation: Before  formalizing  the  CML  method,  we
first  state  the  meta-learning  setup,  by  describing  a  meta-learner  in
standard MAML as a running case followed by a meta-learner for RL
later.  Formally,  let  and  denote  the  inputs  and  labels,
respectively, and define a model  (e.g., a neural network) which is
uniquely  characterized  by  parameters θ to  define  the  mapping

.  MAML  aims  to  find  optimal  initial  parameters  that
achieve  desired  results  on  a  new  task  with  only  a  few  updates.  By
measuring the performance of the model  in terms of some loss ,
the MAML’s training objective is to minimize the loss function
 

min
θ

∑
T j∼p(T )

ℓT j (θ) (1)

T j p(T )

D
D′ DT j Dtrain

T j

Dtest
T j
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T j
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where  represents the j-th task drawn from some distribution .
Specifically, the parameter update in MAML consists of two stages:
an  inner-loop  update  and  an  outer-loop  update.  The  data  for  cross-
task  learning  can  be  split  into  meta-training  set  and  meta-testing
set .  Each sampled task  data  consists  of  a  support  set 
and a query set . Furthermore, the support set  is used for
training the model to adapt to a new task in the inner loop. Taking the
one-step gradient update as an example, the inner-loop update in task

 is obtained as follows:
 

θ j← θ−α∇θLT j (θ) (2)
θ j

LT j (θ)
T j

Dtest
T j

where  is the adapted parameters in the j-th sampled task, θ is the
initial  parameters  or  the  original  parameters, α is  the  adaptation
learning  rate,  and  denotes  the  loss  function  of θ in  the j-th
task. Based on the adapted parameters,  the meta-gradient in task 
can be found using the corresponding query set  as follows:
 

gmeta
T j
= ∇θLT j (θ j). (3)

After  obtaining  the  meta-gradients  corresponding  to  a  batch  of
tasks, the parameters θ are updated in the outer loop as follows:
 

θ← θ−β
∑

T j∼p(T )

gmeta
T j

(4)

DT j D

θ∗

where β is the meta step size. In short, a learning epoch consists of an
inner-loop  update  and  an  outer-loop  meta-update.  The  meta-learner
continuously  samples  tasks  from  the  meta-training  set ,  and
updates  its  parameters  until  reaching  the  optimal  initial  parameters

. Concretely, the meta-learning objective is rewritten as follows: 
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min
θ

∑
T j∼p(T )

ℓT j (θ) =
∑

T j∼p(T )

LT j (θ−α∇θLT j (θ)). (5)

T j (S,A,λ,r, p0,P) S
A

r : S×A→ R p0
P(st+1|st,at) st

st+1 at
fθ : S→A

LT j (θ) T j

For  RL,  each  task  contains  a  tuple ,  where 
the  state  space,  the  action  space, λ the  discount  factor,

 the  reward  function,  the  initial  state  distribution,
and  the  transition  probability  distribution  from  state 
to  after taking action . Hence, we model each task as a Markov
decision  process  (MDP).  A  neural  network  policy  is  a
mapping from a state to an action. The loss  for task  corre-
sponds to the negative expected reward
 

LT j (θ) = −Est ,at∼ fθ ,p0T j ,PT j

[H−1∑
t=0

λtr j(st,at)
]

(6)

T j
fθ

Dtrain
T j

fθ j
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T j
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where H is the horizon. Specifically, for a sampled task , we gen-
erate several MDP trajectories using policy  to form the support set

. Next, the policy is updated to an adapted model  by means
of  (2).  We  sample  new  trajectories  to  construct  the  query  set 
according to .  After obtaining the support and query sets,  we can
train the RL meta-learner as in the supervised learning setting.

Competitive  meta-learning: Inspired  by  swarm  intelligence  or
more  specifically  competitive  swarm  optimization  [13],  [14],  we
deploy  multiple  meta-learners  and  introduce  a  novel  competition
mechanism for their meta-training.

θ(1), θ(2), . . . , θ(m) D
D(1),D(2), . . . ,D(m)

|D| = |D(1)| = · · · = |D(m)|

In  CML,  we  refer  to  the  set  of  meta-learners  as  a  meta-learning
swarm, and consider each meta-learner as a standard meta-learner in
MAML.  Suppose  there  are m meta-learners  in  a  swarm,  and  the
parameters  of  those  meta-learners  are  randomly  initialized  as

. The training tasks in  are randomly reshuffled to
generate  the  different  meta-training  sets ,  which
are assigned to different meta-learners, respectively. It is important to
mention  that  the  meta-training  data  for  each  meta-learner  is  of  the
same size, that is, .

θ(i)

D(i)

In our competitive meta-training, a competition step is added to the
standard meta-update at every meta-learning epoch. First, each meta-
learner in the meta-learning swarm performs a meta-update indepen-
dently.  For  the i-th  meta-learner,  the  original  parameter  is  up-
dated  using  a  batch  of  tasks  data  sampled  from  the  corresponding
meta-training set  as follows:
 

θ(i)← θ(i) −β∇θ(i)
∑

T j∼p(T )

LT j (θ
(i)
j ). (7)

winner
losers

θw

θl θw

After  each learner finishes a meta-update,  the performances of  all
meta-learners are compared using a preset metric (e.g., testing accu-
racy,  training  accuracy  or  loss,  etc.).  In  this  epoch,  the  best  meta-
learner  is  labeled  as ,  while  the  rest  in  the  swarm  are  all
labeled as . We believe that a winner has a better learning effect
in this meta-training epoch, which motivates us to leave the parame-
ters  unchanged as a reward for winning this round of competition.
Since the loser  loses  this  competition,  it  should learn from the win-
ner  by  updating  toward .  The i-th  meta-learner  in  a  round  of
competition updates its parameters as follows:
 

Winner : θ(i)w ← θ(i)w (8)
 

Loser : θ(i)l ← θ
(i)
l +γ(θ

(i)
w − θ(i)l ) (9)

L(θ)
O(d2)

O(md2) d >> m

where γ is  the  competitive  learning  rate.  Exact  implementation  of
MAML  requires  the  second-order  information  of  the  loss  function

,  so  the  computational  complexity  of  MAML  per  iteration  is
,  where d is  the  problem  dimension.  Therefore,  the  computa-

tional  complexity  of  CML  is .  In  general,  we  have ,
where m is  the  number  of  meta  learners  in  CML,  and  oftentimes  a
constant  number  of  swarm learners  yields  an  affordable  increase  in
computational complexity relative to MAML. A pictorial description
of our proposed CML method is  given in Fig. 1,  with the algorithm
tabulated in Algorithm 1.

Algorithm 1 Competitive Meta-Learning (CML)

D1: Require: Cross-task dataset 
α, β, γ2: Require: Step size hyperparameters 

θ(1), θ(2), . . . , θ(m)3: Randomly initialize 
D D(1),D(2), . . . ,D(m)4: Randomly shuffle tasks in  to generate 

5: while not done do
θ(i)6:　　 for all  do

T (i)
j ∼ p(T ) D(i)

T j
D(i)

Dtrain(i)
T j

Dtest(i)
T j

7:　　Sample batch of tasks , each task data  in  con-

               tains some  and 

T (i)
j ∇θ(i)LT j

(i) (θ(i)) Dtrain(i)
T j

8:　　　　 for all  do Evaluate  using 

θ(i)j ← θ
(i) −α∇θ(i)LT j

(i) (θ(i))
9:　 　 　 　 Compute  adapted  parameters  by  gradient  descent  via

                              

gmeta(i)
T j

= ∇θ(i)LT j
(i) (θ(i)j ) Dtest(i)

T j
10:　　　　　 Evaluate  using 
11:　　　　 end for

θ(i)← θ(i) −β∑T j
(i)∼p(T ) gmeta(i)

T j
12:　　　　Update parameters 
13:　　 end for

θ(i) winner
loser

14:　　Mark  with highest preset competition metric as , and the
                 rest as 

θ(i)15:　　 for all  do
θ(i) winner16:　　　　 if  is  then
θ(i)w ← θ(i)w17:　　　　　　

18:　　　　 else
θ(i)l ← θ

(i)
l +γ(θ

(i)
w − θ(i)l )19:　　　　　　

20: end while
θ(i)21: Return 

θ(1), θ(2), . . . ,
θ(m)

D
α, β

Experiment  results: Since  our  CML  can  adopt  general  meta-
learning algorithms as base learners to form a swarm, we evaluate the
performance  of  MAML-based  CML  over  diverse  tasks,  including
classification  and  RL.  To  demonstrate  the  efficacy  of  the  competi-
tion  mechanism in  CML,  we  consider  a  CML swarm of m learners
against m independent  MAML  learners  (referred  to  as  a  MAML
swarm  yet  without  any  mutual  communication  and  interaction).
Specifically,  we  randomly  generate  initial  parameters 

,  assigned  to  the m meta-learners  in  both  CML  and  MAML
swarms.  We  next  utilize  CML  and  standard  MAML  algorithms  to
train the two meta-learning swarms in the same environment, which
comprises the meta-training task data , randomly initialized param-
eters θ, and hyper-parameters . The only difference between the
CML and MAML swarms is that the latter uses MAML to update the
parameters directly, whereas the former performs a competition after
each  meta-update.  Through  substantial  tests,  we  observe  that  CML
with  a  competition  mechanism  can  effectively  boost  the  learning
(e.g., stability, cross-task generalization) performance.

3×3
2×2

To  examine  the  cross-task  few-shot  classification  performance  of
CML,  we  call  for  the  benchmark  datasets  MiniImagenet.  Adopting
the  models  in  [6],  we  use  a  CNN architecture  consisting  of  4  mod-
ules with  convolutions, followed by batch normalization, ReLU
nonlinearity, and  max-pooling. Our experiments focus on the N-
way K-shot classification task; that is, we sample N classes from the
meta-training set, train the model with K images from each of the N
classes,  then  test  the  model  by  classifying  new  images  from  the N
classes.  Specifically,  during  training,  we  draw  a  batch  of  tasks  for
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Fig. 1. A pictorial description of CML.
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one outer-loop update. Each task consists of N classes, with K images
as  the  support  data  and  15  new images  as  query  data.  And we take
the testing accuracy as the competition metric.

m = 3

The MiniImagenet dataset [15] contains 60 000 color images from
100 categories. For MiniImagenet, we consider 5-way 1-shot classifi-
cation tasks. We set  for both two methods, and the batch size is
4  for 5000 epochs.  The results  are  shown in Fig. 2.  Compared with
MAML,  CML  exhibits  significantly  improved  performance.  It  is
worth mentioning that the testing accuracy of CML at epoch 1000 is
already  close  to  that  of  MAML  at  epoch 3000.  This  illustrates  the
efficiency of CML at the early stage, and can, to a certain extent, dis-
pel the doubts about the low utilization of computational resources of
the method.
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±1Fig. 2. Average accuracy on MiniImagenet. Error bars represent  standard

deviation.
 

m = 2

In the RL experiment,  we evaluate our  CML method on the stan-
dardized continuous control task HalfCheetah-Dir. Our experimental
environments  are  implemented  in  OpenAI  Gym  [16]  with  the
MuJoCo  [17]  physics  simulator.  Following  the  models  used  in  [6],
we consider  a  neural  network policy having two hidden layers  both
of  size  100  along  with  the  ReLU  activation  function.  The  only
change  made  relative  to  [6]  is  that  the  meta-optimizer  employed  in
our experiments is the proximal policy optimization (PPO) algorithm
[18].  We set  for  both two methods,  and the batch size  is  20.
Furthermore,  for  all  RL  experiments,  We  take  the  training  reward
after inner-loop updates to be the competition metric.

Each task corresponds to moving forward or backward, consisting
of a total of 2 tasks. The directions are drawn from a Bernoulli distri-
bution with parameter 0.5 on {–1, 1},  where 1 and –1 represent the
forward  and backward  directions,  respectively.  The  cheetah  aims  to
run in a particular direction in this experiment, and the reward is the
magnitude of  the velocity in the goal  direction.  As shown in Fig. 3,
there  is  a  meta-learner  trained  with  MAML  that  shows  very  harsh
learning  performance.  However,  the  meta-learners  trained  with  the
CML  method  yield  (much)  higher  training  and  testing  returns  even
from the same initialization. This experiment demonstrates that CML
can effectively accelerate and enhance the stability of meta RL.

Conclusion: In  this  letter,  we  presented  a  novel  method  termed
CML  for  cross-task  few-shot  learning.  CML  penetrates  the  idea  of
particle  swarm  optimization  into  meta-learning.  By  introducing  a
competition mechanism among a swarm of meta-learners, CML fea-
tures  improved  stability,  better  generalization,  and  faster  learning
speed.  Convincing  experiments  were  performed  to  demonstrate  its
merits over both image classification as well as RL tasks.
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