

Letter

Competitive Meta-Learning

Boxi Weng, Jian Sun, Gao Huang, Fang Deng,
Gang Wang, and Jie Chen, Fellow, IEEE

 Dear Editor,

This letter is concerned with developing meta-learning models for
fast, stable, and effective few-shot learning across tasks over a few
training samples. Nowadays, deep and reinforcement learning (RL) is
widely used in autonomous intelligent systems (e.g., target recogni-
tion [1], path planning [2], and robot control [3], [4]). However, it is
still challenging to learn quickly with a small number of data to
obtain a workable model for a new task, also known as cross-task
few-shot learning. Humans only need a few samples to learn new
concepts or perform new tasks. In contrast, an autonomous system
equipped with the most advanced AI technologies can hardly match
the human rate of learning, and they generally call for significantly
more data to reach a similar level of performance [5]. Such a gap can
be bridged by e.g., effective transfer of learning experiences across
tasks and rapid formation of skills from few samples, which are key
ways to breaking the unmanned systems technology bottleneck.

Fortunately, meta-learning methods have been shown capable of
effectively addressing cross-task few-shot learning. The main idea of
meta-learning is to distill knowledge and experiences from historical
tasks to guide the learning process in new tasks, or to equip itself
with the ability of “learning to learn” through the past learning expe-
rience. The objective of meta-learning is to enhance the generaliza-
tion performance of meta-learners at the task level. This is in con-
trast to transfer learning, which only emphasizes the ability to trans-
fer from one task to another, and to pre-training, which concentrates
on the model's immediate performance in various tasks without con-
sidering their adaptivity to subsequent tasks. A variety of meta-learn-
ing methods have been proposed, which have focused on different
elements of “learning”, including initial parameters, network struc-
ture, and optimization methods, to name just a few [6], [7].

Model-agnostic meta-learning (MAML) [6] is one of the most
effective and widely used meta-learning methods thus far, which
aims to find optimal initial model parameters based on gradient
descent. This approach divides the update process into two stages:
the task-specific inner-loop update and the cross-task outer-loop
meta-update. Originally in [6], MAML is demonstrated via a first-
order approximation, sacrificing the second-order derivatives for

computational benefits. On this basis, Reptile [8] not only discards
the second-order information but goes a step further by moving the
initialized parameters of the meta-learner toward the temporary
parameters trained on tasks, thus improving the computational effi-
ciency. Meta-SGD [9], on the other hand, considers learning both the
initial parameters, the update direction, and the learning rate, which
endows the algorithm with strong ability for fast adaptation.

While MAML is now being widely used, it is not without flaws. It
has been reported in [10] that the MAML training is sensitive to ini-
tial parameters, which incurs a high level of uncertainty and hinders
its generalization. Further, MAML suffers from instability training
issues too [11], resulting in sluggish convergence [12]. To address
these challenges, we develop a competitive meta-learning (CML)
method by considering the use of multiple meta-learners and induc-
ing group (or collective) intelligence via a competition mechanism.
CML incorporates information interaction into the parameter updat-
ing process of each meta-learner, thus enabling an effective exchange
of the “best” learning experiences among meta-learners, and stimu-
lating and accelerating each individual’s learning process. This com-
petition mechanism consists of a learning-adaptive aggregation of
cross-task data information in the meta-learning process.

x ∈ X y ∈ Y
fθ

X→Y θ∗

fθ ℓ

Problem formulation: Before formalizing the CML method, we
first state the meta-learning setup, by describing a meta-learner in
standard MAML as a running case followed by a meta-learner for RL
later. Formally, let and denote the inputs and labels,
respectively, and define a model (e.g., a neural network) which is
uniquely characterized by parameters θ to define the mapping

. MAML aims to find optimal initial parameters that
achieve desired results on a new task with only a few updates. By
measuring the performance of the model in terms of some loss ,
the MAML’s training objective is to minimize the loss function

min
θ

∑
T j∼p(T)

ℓT j (θ) (1)

T j p(T)

D
D′ DT j Dtrain

T j

Dtest
T j

Dtrain
T j

T j

where represents the j-th task drawn from some distribution .
Specifically, the parameter update in MAML consists of two stages:
an inner-loop update and an outer-loop update. The data for cross-
task learning can be split into meta-training set and meta-testing
set . Each sampled task data consists of a support set
and a query set . Furthermore, the support set is used for
training the model to adapt to a new task in the inner loop. Taking the
one-step gradient update as an example, the inner-loop update in task

 is obtained as follows:

θ j← θ−α∇θLT j (θ) (2)
θ j

LT j (θ)
T j

Dtest
T j

where is the adapted parameters in the j-th sampled task, θ is the
initial parameters or the original parameters, α is the adaptation
learning rate, and denotes the loss function of θ in the j-th
task. Based on the adapted parameters, the meta-gradient in task
can be found using the corresponding query set as follows:

gmeta
T j
= ∇θLT j (θ j). (3)

After obtaining the meta-gradients corresponding to a batch of
tasks, the parameters θ are updated in the outer loop as follows:

θ← θ−β
∑

T j∼p(T)

gmeta
T j

(4)

DT j D

θ∗

where β is the meta step size. In short, a learning epoch consists of an
inner-loop update and an outer-loop meta-update. The meta-learner
continuously samples tasks from the meta-training set , and
updates its parameters until reaching the optimal initial parameters

. Concretely, the meta-learning objective is rewritten as follows:

Corresponding author: Gang Wang.
Citation: B. X. Weng, J. Sun, G. Huang, F. Deng, G. Wang, and J. Chen,

“Competitive meta-learning,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp.
1902–1904, Sept. 2023.

B. X. Weng, J. Sun, F. Deng, and G. Wang are with the National Key
Laboratory of Autonomous Intelligent Unmanned Systems, Beijing Institute
of Technology, Beijing 100081, and also with the Beijing Institute of
Technology Chongqing Innovation Center, Chongqing 401120, China (e-
mail: wengboxi@bit.edu.cn; sunjian@bit.edu.cn; dengfang@bit.edu.cn; gang
wang@bit.edu.cn).

G. Huang is with the School of Automation, Tsinghua University, Beijing
100084, China (e-mail: gaohuang@tsinghua.edu.cn).

J. Chen is with Department of Control Science and Engineering, Tongji
University, Shanghai 201804, and also with the National Key Laboratory of
Autonomous Intelligent Unmanned Systems, Beijing Institute of Technology,
Beijing 100081, China (e-mail: chenjie@bit.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2023.123354

1902 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 9, SEPTEMBER 2023

min
θ

∑
T j∼p(T)

ℓT j (θ) =
∑

T j∼p(T)

LT j (θ−α∇θLT j (θ)). (5)

T j (S,A,λ,r, p0,P) S
A

r : S×A→ R p0
P(st+1|st,at) st

st+1 at
fθ : S→A

LT j (θ) T j

For RL, each task contains a tuple , where
the state space, the action space, λ the discount factor,

 the reward function, the initial state distribution,
and the transition probability distribution from state
to after taking action . Hence, we model each task as a Markov
decision process (MDP). A neural network policy is a
mapping from a state to an action. The loss for task corre-
sponds to the negative expected reward

LT j (θ) = −Est ,at∼ fθ ,p0T j ,PT j

[H−1∑
t=0

λtr j(st,at)
]

(6)

T j
fθ

Dtrain
T j

fθ j

Dtest
T j

fθ j

where H is the horizon. Specifically, for a sampled task , we gen-
erate several MDP trajectories using policy to form the support set

. Next, the policy is updated to an adapted model by means
of (2). We sample new trajectories to construct the query set
according to . After obtaining the support and query sets, we can
train the RL meta-learner as in the supervised learning setting.

Competitive meta-learning: Inspired by swarm intelligence or
more specifically competitive swarm optimization [13], [14], we
deploy multiple meta-learners and introduce a novel competition
mechanism for their meta-training.

θ(1), θ(2), . . . , θ(m) D
D(1),D(2), . . . ,D(m)

|D| = |D(1)| = · · · = |D(m)|

In CML, we refer to the set of meta-learners as a meta-learning
swarm, and consider each meta-learner as a standard meta-learner in
MAML. Suppose there are m meta-learners in a swarm, and the
parameters of those meta-learners are randomly initialized as

. The training tasks in are randomly reshuffled to
generate the different meta-training sets , which
are assigned to different meta-learners, respectively. It is important to
mention that the meta-training data for each meta-learner is of the
same size, that is, .

θ(i)

D(i)

In our competitive meta-training, a competition step is added to the
standard meta-update at every meta-learning epoch. First, each meta-
learner in the meta-learning swarm performs a meta-update indepen-
dently. For the i-th meta-learner, the original parameter is up-
dated using a batch of tasks data sampled from the corresponding
meta-training set as follows:

θ(i)← θ(i) −β∇θ(i)
∑

T j∼p(T)

LT j (θ
(i)
j). (7)

winner
losers

θw

θl θw

After each learner finishes a meta-update, the performances of all
meta-learners are compared using a preset metric (e.g., testing accu-
racy, training accuracy or loss, etc.). In this epoch, the best meta-
learner is labeled as , while the rest in the swarm are all
labeled as . We believe that a winner has a better learning effect
in this meta-training epoch, which motivates us to leave the parame-
ters unchanged as a reward for winning this round of competition.
Since the loser loses this competition, it should learn from the win-
ner by updating toward . The i-th meta-learner in a round of
competition updates its parameters as follows:

Winner : θ(i)w ← θ(i)w (8)

Loser : θ(i)l ← θ
(i)
l +γ(θ

(i)
w − θ(i)l) (9)

L(θ)
O(d2)

O(md2) d >> m

where γ is the competitive learning rate. Exact implementation of
MAML requires the second-order information of the loss function

, so the computational complexity of MAML per iteration is
, where d is the problem dimension. Therefore, the computa-

tional complexity of CML is . In general, we have ,
where m is the number of meta learners in CML, and oftentimes a
constant number of swarm learners yields an affordable increase in
computational complexity relative to MAML. A pictorial description
of our proposed CML method is given in Fig. 1, with the algorithm
tabulated in Algorithm 1.

Algorithm 1 Competitive Meta-Learning (CML)

D1: Require: Cross-task dataset
α, β, γ2: Require: Step size hyperparameters

θ(1), θ(2), . . . , θ(m)3: Randomly initialize
D D(1),D(2), . . . ,D(m)4: Randomly shuffle tasks in to generate

5: while not done do
θ(i)6:　　 for all do

T (i)
j ∼ p(T) D(i)

T j
D(i)

Dtrain(i)
T j

Dtest(i)
T j

7:　　Sample batch of tasks , each task data in con-

 tains some and

T (i)
j ∇θ(i)LT j

(i) (θ(i)) Dtrain(i)
T j

8:　　　　 for all do Evaluate using

θ(i)j ← θ
(i) −α∇θ(i)LT j

(i) (θ(i))
9:　 　 　 　 Compute adapted parameters by gradient descent via

gmeta(i)
T j

= ∇θ(i)LT j
(i) (θ(i)j) Dtest(i)

T j
10:　　　　　 Evaluate using
11:　　　　 end for

θ(i)← θ(i) −β∑T j
(i)∼p(T) gmeta(i)

T j
12:　　　　Update parameters
13:　　 end for

θ(i) winner
loser

14:　　Mark with highest preset competition metric as , and the
 rest as

θ(i)15:　　 for all do
θ(i) winner16:　　　　 if is then
θ(i)w ← θ(i)w17:　　　　　　

18:　　　　 else
θ(i)l ← θ

(i)
l +γ(θ

(i)
w − θ(i)l)19:　　　　　　

20: end while
θ(i)21: Return

θ(1), θ(2), . . . ,
θ(m)

D
α, β

Experiment results: Since our CML can adopt general meta-
learning algorithms as base learners to form a swarm, we evaluate the
performance of MAML-based CML over diverse tasks, including
classification and RL. To demonstrate the efficacy of the competi-
tion mechanism in CML, we consider a CML swarm of m learners
against m independent MAML learners (referred to as a MAML
swarm yet without any mutual communication and interaction).
Specifically, we randomly generate initial parameters

, assigned to the m meta-learners in both CML and MAML
swarms. We next utilize CML and standard MAML algorithms to
train the two meta-learning swarms in the same environment, which
comprises the meta-training task data , randomly initialized param-
eters θ, and hyper-parameters . The only difference between the
CML and MAML swarms is that the latter uses MAML to update the
parameters directly, whereas the former performs a competition after
each meta-update. Through substantial tests, we observe that CML
with a competition mechanism can effectively boost the learning
(e.g., stability, cross-task generalization) performance.

3×3
2×2

To examine the cross-task few-shot classification performance of
CML, we call for the benchmark datasets MiniImagenet. Adopting
the models in [6], we use a CNN architecture consisting of 4 mod-
ules with convolutions, followed by batch normalization, ReLU
nonlinearity, and max-pooling. Our experiments focus on the N-
way K-shot classification task; that is, we sample N classes from the
meta-training set, train the model with K images from each of the N
classes, then test the model by classifying new images from the N
classes. Specifically, during training, we draw a batch of tasks for

Competition

Winner

Loser
Loser

(m = 3)

Meta-learner 1

Meta-learner 2

Meta-learner 3
θ(3) θ(3)Inner-loop

 update θ(3)Inner-loop
 update

Dtrain DtestDtrain

Batch 1

Batch1
Task1
Task2
Task5

θ

Inner

Batch1
Task2
Task4
Task6

Batch1
Task1
Task4
Task7θ

θ

θ

θ
θ

θ

θ

Inner

Inner-loop update
Loser

Winner

Loser

Batch1
Task1
Task2
Task5

θ(1)

Inner-loop update

Batch1
Task2
Task4
Task6

Batch1
Task1
Task4
Task7θ(1)

θ(1)

θ(2)

θ(2)
θ(3)

θ(3)

θ(3)

Inner-loop update

Inner-loop update
Loser

Winner

Loser

Inner loop

Outer loop

Meta-update

M
et

a-
up

da
te

Meta-update

Competitiveupdate
Competitive

update

A meta-learning swarm

Fig. 1. A pictorial description of CML.

WENG et al.: COMPETITIVE META-LEARNING 1903

one outer-loop update. Each task consists of N classes, with K images
as the support data and 15 new images as query data. And we take
the testing accuracy as the competition metric.

m = 3

The MiniImagenet dataset [15] contains 60 000 color images from
100 categories. For MiniImagenet, we consider 5-way 1-shot classifi-
cation tasks. We set for both two methods, and the batch size is
4 for 5000 epochs. The results are shown in Fig. 2. Compared with
MAML, CML exhibits significantly improved performance. It is
worth mentioning that the testing accuracy of CML at epoch 1000 is
already close to that of MAML at epoch 3000. This illustrates the
efficiency of CML at the early stage, and can, to a certain extent, dis-
pel the doubts about the low utilization of computational resources of
the method.

0 1000 2000 3000 4000 5000
Epoch

0.3

0.4

0.5

0.6

Training accuracy
MAML-1
MAML-2
MAML-3

CML-1
CML-2
CML-3

1000 2000 3000 4000 5000
Epoch

0.300
0.325
0.350
0.375
0.400
0.425
0.450

Testing accuracy

MAML-1
MAML-2
MAML-3

CML-1
CML-2
CML-3

±1Fig. 2. Average accuracy on MiniImagenet. Error bars represent standard

deviation.

m = 2

In the RL experiment, we evaluate our CML method on the stan-
dardized continuous control task HalfCheetah-Dir. Our experimental
environments are implemented in OpenAI Gym [16] with the
MuJoCo [17] physics simulator. Following the models used in [6],
we consider a neural network policy having two hidden layers both
of size 100 along with the ReLU activation function. The only
change made relative to [6] is that the meta-optimizer employed in
our experiments is the proximal policy optimization (PPO) algorithm
[18]. We set for both two methods, and the batch size is 20.
Furthermore, for all RL experiments, We take the training reward
after inner-loop updates to be the competition metric.

Each task corresponds to moving forward or backward, consisting
of a total of 2 tasks. The directions are drawn from a Bernoulli distri-
bution with parameter 0.5 on {–1, 1}, where 1 and –1 represent the
forward and backward directions, respectively. The cheetah aims to
run in a particular direction in this experiment, and the reward is the
magnitude of the velocity in the goal direction. As shown in Fig. 3,
there is a meta-learner trained with MAML that shows very harsh
learning performance. However, the meta-learners trained with the
CML method yield (much) higher training and testing returns even
from the same initialization. This experiment demonstrates that CML
can effectively accelerate and enhance the stability of meta RL.

Conclusion: In this letter, we presented a novel method termed
CML for cross-task few-shot learning. CML penetrates the idea of
particle swarm optimization into meta-learning. By introducing a
competition mechanism among a swarm of meta-learners, CML fea-
tures improved stability, better generalization, and faster learning
speed. Convincing experiments were performed to demonstrate its
merits over both image classification as well as RL tasks.

Acknowledgments: The work was supported in part by the
National Key R&D Program of China (2021YFB1714800), the
National Natural Science Foundation of China (62173034,
61925303, 62025301, 62088101), and the CAAI-Huawei MindSpore
Open Fund.

References
 J. Yin, D. Zhou, L. Zhang, J. Fang, C.-Z. Xu, J. Shen, and W. Wang,
“ProposalContrast: Unsupervised pre-training for lidar-based 3D object
detection,” in Proc. Eur. Conf. Comput. Vision, 2022, pp. 17–33.

[1]

 M. Mazouchi, S. Nageshrao, and H. Modares, “Conflict-aware safe
reinforcement learning: A meta-cognitive learning framework,” IEEE/
CAA J. Autom. Sinica, vol. 9, no. 3, pp. 466–481, 2021.

[2]

 J. Chen, J. Sun, and G. Wang, “From unmanned systems to autonomous
intelligent systems,” Eng., vol. 12, pp. 16–19, 2022.

[3]

 Y. Li, X. Wang, J. Sun, G. Wang, and J. Chen, “Data-driven consensus
control of fully distributed event-triggered multi-agent systems,” Sci.
China Inf. Sci., vol. 66, no. 5, p. 152202, 2023.

[4]

 X. Wang, J. Sun, G. Wang, F. Allgöwer, and J. Chen, “Data-driven
control of distributed event-triggered network systems,” IEEE/CAA J.
Autom. Sinica, vol. 10, no. 1, pp. 1–14, 2023.

[5]

 C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[6]

 B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[7]

 A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv: 1803.02999, 2018.

[8]

 Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn
quickly for few-shot learning,” arXiv preprint arXiv: 1707.09835, 2017.

[9]

 A. Antoniou, A. Storkey, and H. Edwards, “How to train your MAML,”
in Proc. Int. Conf. Learn. Rep., 2019, pp. 1–11.

[10]

 H. Liu, R. Socher, and C. Xiong, “Taming MAML: Efficient unbiased
meta-reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 4061–4071.

[11]

 H. S. Behl, A. G. Baydin, and P. H. Torr, “Alpha MAML: Adaptive mo-
del-agnostic meta-learning,” arXiv preprint arXiv: 1905.07435, 2019.

[12]

 R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204, 2014.

[13]

 B. Xin, J. Chen, J. Zhang, H. Fang, and Z.-H. Peng, “Hybridizing
differential evolution and particle swarm optimization to design
powerful optimizers: A review and taxonomy,” IEEE Trans. Syst. Man
Cyb., Part C, vol. 42, no. 5, pp. 744–767, 2011.

[14]

 S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Rep., 2017, pp. 1–11.

[15]

 G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint arXiv:
1606.01540, 2016.

[16]

 E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
modelbased control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2012, pp. 5026–5033.

[17]

 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint arXiv:
1707.06347, 2017.

[18]

0 20 40 60 80 100
Epoch

0

100

200

300
Training return

MAML-1
MAML-2

CML-1
CML-2

0 20 40 60 80 100
Epoch

0

100

200

300
Testing return

MAML-1
MAML-2

CML-1
CML-2

±1Fig. 3. Average return on HalfCheetah-Dir. Error bars represent standard

deviation.

 1904 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 9, SEPTEMBER 2023

