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   Dear Editor,

This letter deals with a solution for time-varying problems using an
intelligent computational (IC) algorithm driven by a novel decentral-
ized  machine  learning  approach  called  isomerism learning.  In  order
to meet the challenges of the model's privacy and security brought by
traditional  centralized  learning  models,  a  private  permissioned
blockchain is utilized to decentralize the model in order to achieve an
effective coordination, thereby ensuring the credibility of the overall
model without exposing the specific parameters and solution process.
Moreover,  nodes in the network are equipped with different  models
to meet many challenges caused by the model silos. Furthermore, an
integration scheme is introduced to efficiently obtain the global solu-
tions of time-varying problems. In this letter, the convergence of the
proposed model  is  theoretically  proven,  where  its  efficiency is  vali-
dated via experiments,  which shows that  it  outperforms many state-
of-the-art models using centralized processing.

Introduction: In  recent  years,  solving time-varying problems has
become a research hot spot, and many IC algorithms have been pro-
posed.  In  particular,  recurrent  neural  network  (RNN)  models  have
been greatly developed due to their outstanding performance in solv-
ing time-varying problems [1]–[3]. Many gradient-based models and
numerical algorithms, e.g., the gradient neural network (GNN) model
and the  Newton Raphson iterative  (NRI)  algorithm,  are  designed to
solve  static  problems,  which  may have  lagging  errors  when solving
time-varying  problems  due  to  the  lack  of  velocity  compensation  of
the  time-varying  parameters  [4],  [5].  To  solve  this  limitation,  the
zeroing neural network (ZNN) model is reported and can solve time-
varying problems without residual error as it utilizes the time-deriva-
tive  information  of  the  parameters.  In  recent  years,  many  brilliant
works  have  been  designed,  including  the  integration-implemented
NRI  (IINRI)  algorithm  [6],  distributed  RNN  model  [7],  and  finite-

time neural  dynamic  model  [8].  However,  limited  by the  traditional
centralized  processing,  these  IC  algorithms  are  greatly  affected  by
many  factors  such  as  model  scale,  parameter  size,  and  computing
power.  In  addition,  problems  such  as  isolation  and  lack  of  interac-
tions  among  centralized  models  can  create  model  silos,  which  can
lead to many challenges for transparency, efficiency, credibility and
so  on.  All  these  challenges  will  reduce  the  stability  of  centralized
models and become obstacles to the implementation of centralized IC
algorithms in  reality:  It  not  only has  higher  requirements  for  ethics,
privacy,  and  confidentiality,  but  also  needs  security  and  fault  toler-
ance in design.

Distributed  learning  represented  by  federated  learning  (FL)  is
developed and can solve these problems partially by using a parame-
ter  server  responsible  for  aggregation  and  distribution  to  update  the
local  models,  with  the  dynamic  aggregation  process  also  accurately
grasping  the  dynamic  changes  of  the  parameters  in  time-varying
problems.  That  being said,  this  approach does not  take into account
the model heterogeneity, which is caused by differences among mod-
els with various structures. Besides this, there may be competition in
a  distributed  learning  framework  consisting  of  isomerous  models.
Influenced  by  some  works  such  as  the  Matthew  effect  discussed  in
[9],  the  validity  of  the  overall  model  may  be  controlled  by  several
models with high performance, resulting in multi-center occurrence.
This creates a challenge for security: the corruption of these models
will lead to the failure of the overall model.

Motivated  by  these  issues,  we  introduce  isomerism  learning  (IL),
which  combines  various  distributed  machine  learning  models  and
decentralized  hardware  infrastructures  with  a  private  permissioned
blockchain.  IL  can  be  divided  into  three  layers  as Fig. 1 shows.
Time-varying  problems  such  as  the  dynamic  Stein  equation  can  be
processed by an Isomerism Learning model based on various IC (IL-
IC) algorithms that meet the challenges caused by model heterogene-
ity  and  model  silos.  The  contributions  of  this  letter  can  be  summa-
rized as follows: 1) We propose a novel distributed machine learning
method to realize effective collaboration between isomerous models.
2)  The  proposed  method  solves  a  problem  through  cooperation
between  different  nodes  equipped  with  heterogeneous  models.  All
models  are  involved  to  ensure  the  decentralization.  3)  A distributed
integration algorithm is designed to implement dynamic aggregation
of  the  parameters  and  obtain  the  global  solution  for  time-varying
problems.  4)  Extensive  experiments  demonstrate  that  the  proposed
method outperforms many centralized state-of-the-art models.
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Fig. 1. Architecture of IL.
 

Architecture  of  IL-IC: IL-IC provides  security  measures  to  sup-
port  confidentiality  and  sovereignty  enabled  by  a  private  permis-
sioned  blockchain,  which  consists  of  one  permissioned  node  and
multiple  permissionless  nodes  like  [10].  Therefore,  it  can  perfectly
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cater  to  the  master-worker  architecture  of  traditional  FL  [11].  Each
node  is  clearly  defined,  and  only  pre-authorized  nodes  can  partici-
pate  in  the  overall  calculation  process.  The  enrollment  process  of
new nodes is dynamic, and a new node needs to use a smart contract
to be involved. Also, the dedicated server can be dispensed because
the  permissioned  node  can  be  elected  dynamically.  Permissionless
nodes equipped with the IC algorithms can work together to solve the
overall problem with the help of a permissioned node. Here, the rele-
vant information generated by each iteration process is also recorded
in a shared ledger for all parties to review. Through this, the system
can increase trust  between unfamiliar  anonymous nodes without the
involvement of a third party. Also, security is improved because the
recorded  information  only  contains  the  results  of  each  iteration  and
does not disclose specific parameters of the local models. The over-
all process can be divided into several steps:

First,  the  permissionless  nodes  initialize  their  local  models  before
computing the result locally and sending it to the permissioned node.
Second, after the permissioned node receives all the results from the
permissionless  nodes,  it  performs  the  result  aggregation  operation.
Afterwards,  the permissioned node sends the aggregated result  back
to  the  permissionless  nodes,  which  will  update  the  local  model  for
the  next  iteration  process  after  that  (refer  to  Step  4  in Fig. 2).  The
whole  process  is  shown  in Fig. 2 and  continues  until  reaching  the
maximum number of iterations.
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Fig. 2. Implementation process of IL-IC.
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Methodology: 1)  Distributed  aggregation:  We  propose  a  dis-
tributed integration algorithm (DIA) based on the private blockchain
network.  DIA is  applicable  to  the  finite  sum of  the  update  step  and
the  residual  error  of  different  IC  algorithms.  In  this  letter,  DIA  is
exploited  to  solve  the  time-varying  Stein  equation  [12]  which  is
expressed as
 

P(t)X(t)Q(t)+X(t) = O(t) (1)
X(t) ∈ Rn×m P(t) ∈ Rn×n

Q(t) ∈ Rm×m O(t) ∈ Rn×m
where  denotes  the  unknown  matrix, ,

,  and  are  time-varying  parameter  matrices.
For simplification, (1) can be rewritten as
 

A(t)x(t) = b(t) (2)
A(t) = QT (t)⊗P(t)+ Im×m ⊗ In×n T

⊗ x(t)
b(t) X(t) O(t)

where ,  represents the transpose of
the matrix or vector,  and  denotes the Kronecker product.  and

 denote  the  vectorial  form  of  and ,  respectively  [12].
DIA  achieves  model  updating  through  results  aggregation,  and  the
solution is updated as
 

xk+1 = xk +δIL−IC,k (3)
δIL−IC,k

G δIL−IC,k

where  is  a  linear  combination of  the  update  steps  of  differ-
ent  IC  algorithms  (e.g.,  the  total  number  is ).  Moreover, 
can be expressed as
 

δIL−IC =

G∑
g=1

wg,kδg,k (4)

wg,k δg,k
g

ϵg,k

where  and  are the update step and the corresponding weight
of  the th  algorithm,  correspondingly.  Furthermore,  the  weight  of
various  IC  algorithms  are  determined  by  their  residual  error  in
the last update step, it can be calculated as
 

wg,k =
1/||ϵg,k ||2∑G

g=1 1/||ϵg,k ||2
. (5)

The proposed model sends the result of the permissionless nodes to
the permissioned node for aggregation after each iteration (the over-
all  process  is  shown in  Algorithm 1).  According  to  (5),  the  smaller
the residual error the IC algorithm has, the higher its weight is when
calculating the update step of the IL-IC model.  In addition, the sum
of the weight among IC algorithms equals one.

Algorithm 1 Distributed Integration Algorithm

N j1: Permissioned nodes  executes:
1,2, . . . ,2: for each model computation round r =  do

N j sr3:　　  determines the set  of permissionless nodes
g ∈ sr4:　　for  in parallel do

δg wg5:　　　　PermissionlessNodesUPDATE( , )
6:　　end for

N j7:　　  executes (4)
N j δIL−IC,r sr8:　　  sends  back to  for the model update of the next iteration

9: end for
δIL−IC10: Obtain the final the  of global solution

11: PermissionlessNodes UPDATE
Mg,(g=1,2,...,G) N j

x1

12:  Initialize  the  local  model  provided  by  and  randomly
generate 

k K13: for each iteration =1,2,...,  do
Pk Qk14:　　Samples  and 

δg,k ϵg,k xk+115:　　Obtain the generation result , , and 
16: end for

δg,k ϵg,k N j17: Send ( , ) to the permissioned node 

2)  Convergence  analysis:  Without  loss  of  generality,  the  IL-IC
model exploited two prevalent types of models (the ZNN-type mod-
els  and  NRI-type  models),  there  are  investigated  and  the  following
theorem is provided and proven.

Theorem 1: When using the IL-IC model to solve the time-varying
Stein equation, the estimated solution globally converges to the theo-
retical one.

,Proof: According to (3)  we have
 

xk+1 −xk =

δ1,k· · ·
δg,k

 [w1,k · · · wg,k] (6)

which can be treated as a linear combination of IC models. Accord-
ing to the definition of the representative models [6] and [8], (6) can
be reformulated as
 

ϵ̇IL−IC,k = −(µ1,k f1(ϵIL−ICk )+ · · ·+µg,k fg(ϵIL−ICk )) (7)
ϵIL−IC,k

µ1,k, . . . ,µg,k f1(·), f2(·), . . . , fg(·)

V = ϵTIL−IC,kϵIL−IC,k

where  denotes  the  residual  error  of  the  IL-IC  model.
 are positive parameters and  are acti-

vation functions,  which are  related  to  the  corresponding IC models.
Moreover,  defining  a  Lyapunov  candidate ,  its
time derivative can be expressed as
 

V̇ = ϵTIL−IC,k ϵ̇IL−IC,k = −(µ1,kϵ
T
IL−IC,k f1(ϵIL−IC,k)

+ · · ·+µg,kϵ
T
IL−IC,k fg(ϵIL−IC,k)). . (8)

V V̇Since  is  positive  definite  and  is  negative  definite,  the  IL-IC
model  globally  converges  to  the  theoretical  solution  based  on  Lya-
punov stability theory [13]. ■

Experimental results and analysis: In this section, we evaluated
the  performance  of  the  IL-IC  model.  The  experiment  was  run  on
MATLAB  2019b  with  16  G  memory,  an  Intel(R)  Core(TM)  i3-
3110M CPU, and NVIDIA 1080Ti. Also, the test network consisted
of  a  permissioned  node  and  5  permissionless  nodes.  What  is  more,
the sampling time interval for all models is set to 0.039 s. In order to
reduce the influence caused by the computation time for the different
models, the communication time is set to 0.051 s. Based on this, we
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ran the IL-IC model and observed the gap between the model’s gen-
eration results and the theoretical value in [0 s, 10 s]. The time-vary-
ing Stein equation is defined with
 

P(t) =
[2+ cos(2t) 2sin(2t)

sin(2t) 2− cos(2t)

]
∈ R2×2

Q(t) =


cos(2t)+2 sin(2t) 0

sin(2t) 1 cos(2t)
cos(2t) sin(2t) 2

 ∈ R3×3

O(t) =
[cos(2t)−2 sin(2t)+1 cos(2t)

sin(2t) −2sin(2t) cos(2t)+1

]
∈ R2×3. (9)

ϵMAE
ϵMAE =

1
b+1
∑a+b

i=a ||ϵg,i||2
ϵRMSE ϵRMSE =

√
1

b+1
∑a+b

i=a (ϵg,i)2

t = aτ

ϵMAE ϵRMSE

As can be seen from the Fig. 3,  the  curve of  the  theoretical  value
and the curve of the generation results fit well. Moreover, two differ-
ent  metrics,  i.e.,  the  mean  absolute  error  (MAE)  and  the  root  mean
square  error  (RMSE),  are  introduced  to  better  evaluate  the  perfor-
mance of these different models. The MAE of the residual error 
can  be  defined  as ,  while  the  RMSE  of  the
residual error  can be expressed as ,
where  the  residual  error  becomes  steady  at .  Based  on  these,
the  relevant  values  can  be  shown  in Table 1.  As  illustrated  in  this
table,  the  proposed  model  can  outperform  many  models  like  NRI,
IINRI,  GNN,  and  bounded  ZNN  (BZNN)  because  it  has  a  lower
value  in  terms  of  and .  Moreover,  the  IL-IC  model  is
effective without exposing the specific solutions and model parame-
ters, thereby protecting privacy and security. However, there is still a
slight gap compared to CZNN In the future, higher-accuracy models
for integration and more weight assigned schemes can be designed to
narrow the gap,  such that  the overall  model performance is  close to
the highest-precision model.

Conclusions: In  this  letter,  we  proposed  a  distributed  intelligent
computing model, which aims to solve the problems like model silos,
achieving  effective  collaboration  between  different  models.  For  the
current  model  security  and  trust  issues,  we  use  a  private  permis-
sioned blockchain to achieve trusted interactions between unfamiliar
nodes. The validity of the calculation results is guaranteed by the col-
laboration  of  different  intelligent  computing  algorithms.  Extensive
experiments  demonstrate  that  the  proposed  model's  performance  is
not  only  close  to  the  highest  precision  model,  but  also  significantly
outperforms  most  of  the  state-of-the-art  models  applying  a  central-
ized  framework.  In  the  future,  we  will  introduce  other  blockchain
platforms  and  try  more  state-of-the-art  IC  models  and  integration
strategies  to  achieve  swarm  intelligence.  In  addition,  this  work  can

also provide a distributed scheme for the current development of arti-
ficial intelligence driven by big models and centralized ways. It pro-
vides  a  feasible  opportunity  for  the  implementation  of  efficient  and
trusted distributed artificial general intelligence.  
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Table 1.  Comparison Between Our Method (IL-IC) and Various Centralized
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Models ϵMAE ϵRMSE

NRI [6] ×10−13.7 ×10−13.8 
IINRI [6] ×10−12.5 ×10−12.5 
GNN [4] ×10−01.9 ×10−02.0 

CZNN [8] ×10−22.6 ×10−22.7 
BZNN [1] ×10−01.1 ×10−01.1 

IL-IC ×10−28.6 ×10−29.2 
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Fig. 3. The  solution  estimated  by  the  IL-IC  model  (blue-dotted  line)  com-
pared with its theoretical value (red-dash line).
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