
IEEE/CAA JOURNAL OF AUTOMATICA SINICA 1

Point Cloud Classification Using Content-based
Transformer via Clustering in Feature Space

Yahui Liu, Bin Tian, Yisheng Lv, Lingxi Li, and Fei-Yue Wang

Abstract—Recently, there have been some attempts of Trans-
former in 3D point cloud classification. In order to reduce com-
putations, most existing methods focus on local spatial attention,
but ignore their content and fail to establish relationships between
distant but relevant points. To overcome the limitation of local
spatial attention, we propose a point content-based Transformer
architecture, called PointConT for short. It exploits the locality
of points in the feature space (content-based), which clusters the
sampled points with similar features into the same class and
computes the self-attention within each class, thus enabling an
effective trade-off between capturing long-range dependencies
and computational complexity. We further introduce an Inception
feature aggregator for point cloud classification, which uses par-
allel structures to aggregate high-frequency and low-frequency
information in each branch separately. Extensive experiments
show that our PointConT model achieves a remarkable per-
formance on point cloud shape classification. Especially, our
method exhibits 90.3% Top-1 accuracy on the hardest setting
of ScanObjectNN. Source code of this paper is available at
https://github.com/yahuiliu99/PointConT.

Index Terms—point cloud classification, local attention,
content-based Transformer, feature aggregator, deep learning.

I. INTRODUCTION

3D point cloud analysis has gained tremendous popularity
in many fields, including scene understanding [1]–[3],

robotics and self-driving vehicles [4]–[6]. Compared with 2D
images, 3D point clouds can provide sufficient spatial and geo-
metric information, but they are not arranged in any particular
order. Due to its irregular structure, the convolutional neural
networks cannot be directly applied to point cloud processing,
while Transformer [7] architecture is inherently permutation-
invariant and natural-suited for point cloud learning.

Recently, some explorations have been made on the Trans-
former architecture in point cloud analysis [8]–[14]. However,
a common downside of these models, the high computational
cost, has caught the attention of researchers and motivated
them to consider the trade-off between accuracy and inference
speed. The two main approaches to reduce the computational
complexity are downsampling points and local self-attention
[8], [11]–[13]. Points downsampling algorithms, such as far-
thest point sampling (FPS) [15], provide uniform coverage
of the entire point cloud. Local self-attention computes the
relationship within a subset of points (patch or cubic window)

Y. H. Liu, B. Tian, Y. S. Lv and F.-Y. Wang are with the Institute
of Automation, Chinese Academy of Sciences, Beijing, China. (e-
mail: liuyahui2021@ia.ac.cn; bin.tian@ia.ac.cn; yisheng.lv@ia.ac.cn;
feiyue@ieee.org).

L. X. Li is with the Purdue School of Engineering and Technology, Indiana
University-Purdue University Indianapolis (IUPUI), Indianapolis, USA. (e-
mail: LL7@iupui.edu).

(a) KNN in 3D space (b) Cluster in feature space (visualize
in 3D space)

Fig. 1. Comparison between 3D space locality and content-based locality.
The red point denotes the sampled center point, and the blue points denote
neighborhood or cluster. In content-based attention, points will be clustered
into multiple clusters based on their feature similarity.

that is partitioned in 3D space. Although local spatial attention
significantly improves efficiency, it still faces difficulty in
capturing interactions among distant but similar points.

Therefore, we propose a simple yet powerful architecture for
point cloud classification, named point content-based Trans-
former (PointConT), which exploits local self-attention in
the feature space (content-based) instead of the 3D space,
as visualized in Fig. 1. Starting from the content of the point
cloud, we cluster the sampled points into classes based on
their similarity, and compute the self-attention within each
class, which preserves the ability of the global self-attention
mechanism to capture long-range feature dependencies, while
significantly reducing computational complexity. Specifically,
it dynamically divides all queries into multiple clusters ac-
cording to their contents (i.e., features) in each block, and
selects the corresponding keys and values to compute local
self-attention. The clustering varies accordingly at each stage
and each head in the Transformer, adequately reflecting the
content dynamics. Note that unlike the k-nearest neighborhood
(kNN), the clusters are non-overlapping, which further reduces
the computational complexity.

ar
X

iv
:2

30
3.

04
59

9v
1

 [
cs

.C
V

]
 8

 M
ar

 2
02

3

https://github.com/yahuiliu99/PointConT

2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

Moreover, we complement the point cloud feature ag-
gregation from a frequency standpoint. Recent studies [16],
[17] found that max-pooling amplifies high-frequency features
while average pooling and Transformer reduce high-frequency
components, which also accords with the observations in our
ablation experiments. In order to aggregate high-frequency
and low-frequency features, we design an Inception feature
aggregator composed of two branches, where the name of
“Inception” is derived from the Inception module [18], [19].
The high-frequency aggregation branch consists of a max-
pooling operation and a residual MLP module, while the low-
frequency aggregation branch is implemented by an average
pooling operation and the content-based Transformer block.

The main contributions of this paper are summarized as
follows.
• We propose the point content-based Transformer (Point-

ConT) to cluster points according to their content and
compute self-attention within each cluster, establishing
long-range feature dependencies while significantly re-
ducing computations.

• We design an Inception feature aggregator for point cloud
classification, using parallel structures to aggregate high-
frequency and low-frequency information in each branch
separately.

• Experiments show the competitiveness of our model on
ModelNet40 [20] and ScanObjectNN [21] datasets. Ex-
tensive ablation studies verify benefits of each component
in the PointConT design.

II. RELATED WORK

A. Point Cloud Processing

There are mainly two branches of methods for processing
the point clouds. One is to convert point clouds into a regular
grid structure that can be directly consumed by convolutional
neural networks, such as volumetric representation [22]–[24]
(through voxelization) or images [25], [26] (through projection
or rendering). The other is point-based modeling, where the
raw point clouds are directly fed into deep networks without
any conversion. This paper focuses on point-based methods.

PointNet is a pioneering work that successfully applies
deep architecture on raw point sets [27]. It is constructed
as a symmetric function using shared multi-layer perceptrons
(MLP) and max-pooling, which guarantees its permutation-
invariance. However, PointNet only learns either single-point
or global features, and thus is limited in capturing interactions
among points. PointNet++ is built on top of the PointNet,
which learns hierarchical point cloud features and is able
to aggregate features in local geometric neighbors using set
abstraction [15] .

Following them, some works have extended the point-
based methods to various local aggregation operators. The
explorations of local aggregation operators can be categorized
into three groups: convolution-based [28]–[35], graph-based
[36]–[39], and attention-based [8], [9], [40]–[42] methods.

Convolution-based methods: [31] and [32] learn the
kernel within a local region through predefined geometric
priors. Another type of point convolutions, KPConv [34],

relates the weight matrices with predefined kernel points in 3D
space. However, the fixed kernel points may not be optimal
for modeling the complicated 3D position variations. PAConv
constructs a position adaptive convolution operator with a
dynamic kernel [35], which assembles basic weight matrices
in Weight Bank. The assembling coefficients are learned from
relative point positions by MLPs.

Graph-based methods: The rise of the graph-based meth-
ods began with DGCNN [37], which learns on graphs dy-
namically updated at each layer. It proposes a local feature
aggregation operator, named EdgeConv, which generates edge
features that describe the semantic relationships between key
points and their neighbors in the feature space. Besides,
CurveNet explores geometric information by taking guided
walks to group contiguous segments of points as curves [39].

Attention-based methods: Point Cloud Transformer de-
signs offset attention for extracting global features and uses
a neighbor embedding strategy to augment local feature
representation [9]. Point Transformer proposes a modified
Transformer architecture that aggregates local features with
vector attention and relative position encoding [8]. Stratified
Transformer [12], inspired by Swin Transformer [43], parti-
tions the 3D space into non-overlapping cubic windows, and
proposes a stratified strategy for sampling keys.

In addition, PointASNL [44] leverages non-local network
[45] and adaptive sample module to enhance the long-
dependency correlation learning. Recently, PointNeXt [46]
explores more advanced training and data augmentation strate-
gies with the PointNet++ backbone to further improve the
accuracy and efficiency.

B. Vision Transformer

In recent years, compared to familiar convolutional net-
works, Transformer architectures have shown great success
in 2D images understanding. Vision Transformer(ViT) [47] is
the first paper that successfully applies a Transformer encoder
on images. It divides an image into non-overlapping patches
(tokens), which are then linearly embedded. Further, Pyramid
ViT (PVT) [48], [49] proposes a hierarchical structure into
Transformer framework. Transformer in Transformer (TNT)
[50] extends the ViT baseline with sub-patch-wise attention
within patches. More recently, Methods of [43], [51]–[53]
compute attentions within local windows. Swin [43] is a
representative approach, which employs two key concepts to
improve the original ViT — hierarchical feature maps and
shifted window attention. Beyond image-space hand-crafted
window, DGT [54] and BOAT [55] exploit feature-space
locality. DGT [54] dynamically divides queries into multiple
groups and selects the most relevant keys/values for each
group to compute the attention. BOAT [55] supplements the
existing window-based local attention with the feature space
local attention module, which enables the modeling ability for
long-range feature dependencies to be significantly improved.

Although Transformer is highly capable of establishing
long-range dependencies, recent studies present intuitive visual
explanations that Transformer lacks the ability to capture
high frequencies that predominantly convey local information

LIU et al.: POINT CLOUD CLASSIFICATION USING CONTENT-BASED TRANSFORMER VIA CLUSTERING IN FEATURE SPACE 3

Inception
Feature

Aggregator

Inception
Feature

Aggregator

Inception
Feature

Aggregator

Inception
Feature

Aggregator

Inception
Feature

Aggregator

G
lo

ba
l M

ax
Po

ol
C

ls
H

ea
d

ai
rp

la
ne

N/2×64 N/4×128 N/8×256 N/16×512 N/32×1024

Stage1 Stage2 Stage3 Stage4 Stage5

N×3

Fig. 2. Overall Architecture of Point Content-based Transformer (PointConT). The network is composed of a stack of Inception Feature Aggregator blocks.

[16], [17]. In other words, Transformer is a low-pass filter.
To address this issue, Inception Transformer (iFormer) [17]
designs a channel splitting mechanism to adopt parallel con-
volution path and self-attention path as high-frequency and
low-frequency mixers.

Inspired by the concepts of feature space local attention
and features in different frequencies, we adopt content-based
Transformer and Inception feature aggregator for 3D point
cloud classification.

III. METHODOLOGY

A. Overall Architecture

An overview of the proposed PointConT architecture is
shown in Fig. 2. The backbone structure consists of five
hierarchical stages of Inception feature aggregator blocks.

Given an input point cloud p ∈ RN×3, containing N
points in 3-dimensional space. The “Stage 1” Inception feature
aggregator block partitions the point cloud into overlapping
patches and then embeds the input coordinates into a new
feature space (dimension denoted as C). It halves the number
of points and doubles the number of feature dimensions stage
by stage. Consequently, the output contains N

2m points and
2m−1C feature dimensions at the m-th stage. For classifica-
tion, the final classifier head is a global max-pooling followed
by two linear layers.

B. Inception Feature Aggregator

As shown in Fig. 3, take the m-th (m > 1) stage as an
example. Given the point coordinates p ∈ R

N

2m−1×3 and point
features f ∈ R

N

2m−1×2
m−2C from the last stage, the Inception

feature aggregator block first downsamples center points at 2
rates from p via FPS, then the kNN algorithm is performed
to group local patches. We regard i as the center point and
{j : (i, j) ∈ N} as a patch surrounding it. We further use
an EdgeConv designed in DGCNN [37] shown as Eq. (1),
which extracts the relationship between center point feature
fi ∈ R N

2m×2
m−2C and its neighbors fj ∈ R N

2m×k×2
m−2C (k

denotes the number of neighbors) within each patch.

fg = MLP(‖fi, fj − fi‖), fg ∈ R
N
2m×k×2

m−1C (1)

Where fj−fi denotes that fj minus fi to obtain the neighbor-
ing features relative to the centroid i, ‖ ·‖ is the concatenation

Content-
based

Attention

Linear

Conv1d

LeakyReLU

BatchNorm

MaxPool AvgPool

Conv1d

LeakyReLU
BatchNorm

×2

Conv2d

ReLU
BatchNorm

×2

𝒇𝒇𝒊𝒊, 𝒇𝒇𝒋𝒋 − 𝒇𝒇𝒊𝒊

FPSkNN

𝒑𝒑𝒇𝒇

𝒑𝒑 ′𝒇𝒇 ′

𝒊𝒊

𝒋𝒋 ∈ 𝓝𝓝(𝒊𝒊)

𝒊𝒊, 𝒋𝒋

𝒇𝒇𝒈𝒈 𝒇𝒇𝒈𝒈

𝒇𝒇𝒉𝒉 𝒇𝒇𝒍𝒍

Fig. 3. The details of the Inception feature aggregator.

operation and MLP is a simple network that includes a point-
wise convolutional layer, a batch normalization layer, and an
activation function. Note that unlike DGCNN, which defines
its kNN in the feature space, we adopt neighbor search in the
3D space.

Next, we propose a mix pooling strategy to aggregate the
features of local patches. In most previous works, max-pooling
has been verified as effective in aggregating the local features,
for the reason that it can capture high frequencies that predom-
inantly convey local information. Instead of directly combining
max-pooling and Transformer block in a serial manner, in
our PointConT, we use a parallel structure composed of a
high-frequency aggregation branch and a low-frequency ag-
gregation branch. The max-pooling operation aggregates high-

4 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

·

···

···
···

···

···
···

···

··· ···

Q

K

V

···
Cluster

Share
index

Share
index

X

Y

Fig. 4. Illustration of content-based attention. It can dynamically cluster all
queries into multiple groups and compute the self-attention within each group.

frequency signals, while the average pooling operation filters
low-frequency representations.

High-frequency aggregation branch: This branch can be
defined as

fh = ResMLP(MaxPool(fg)), fh ∈ R
N
2m×2

m−1C (2)

where MaxPool and ResMLP denote max-pooling operation
and residual MLP block, respectively.

Low-frequency aggregation branch: We simply utilize
an average pooling layer (AvgPool) before the content-based
Transformer (ConT), and this design allows the content-based
Transformer to focus on embedding low-frequency informa-
tion. This branch can be defined as

fl = ConT(AvgPool(fg)), fl ∈ R
N
2m×2

m−1C (3)

In the end, we concatenate the features from the high-
frequency aggregation branch and the low-frequency aggre-
gation branch, and then feed them to an MLP block as the
Inception aggregator output features f ′.

f ′ = MLP(‖fh, fl‖), f ′ ∈ R
N
2m×2

m−1C (4)

C. Content-based Transformer

Differently from Point Transformer [8], which computes
self-attention among local spatial neighbors, we propose a
content-based attention, as visualized in Fig. 4. It dynamically
divides all queries into multiple clusters according to their con-
tent (i.e., features) at each block, and selects the corresponding
keys and values to compute local self-attention.

Let X ∈ RS×d (d is the feature space dimension, S denotes
the length of features) be a set of feature vectors. Furthermore,
we get embeddings Q = XWQ, K = XWK and V = XWV

to represent the queries, keys and values, respectively.
Then we use the clustering algorithm so that the queries are

scattered in different clusters. K-means clustering algorithm is
a classic method for clustering problems. However, K-means
clustering generally enables each cluster to contain varying
numbers of queries, and therefore this algorithm cannot be
implemented in a parallel way by using GPUs. To address
this issue, we refer to the balanced binary clustering algorithm
proposed in BOAT [55], which equally divides a set of queries
into two clusters hierarchically.

(a) Head 1 (b) Head 2

(c) Head 3 (d) Head 4

Fig. 5. Visualization of points clustering in different heads.

Through clustering, the queries Q are grouped into L
subsets {Qi}Li=1, where each subset has equal size |Qi| =
S
L . Subsequently, keys K and values V are separated into
{Ki}Li=1 and {Vi}Li=1 by the same index. The self-attention
(SA) in each subset is formulated as

Yi = SA(Qi,Ki, Vi) (5)

where Yi is the output of each subset. Lastly, all subsets
{Yi}Li=1 are merged into the output Y ∈ RS×d in keeping
with their original order.

Multi-head configuration is a standard practice in Trans-
former, we expand multiple heads and each head performs
query/key/value embeddings and clustering independently.
This setting brings clustering diversity to a great extent, as
visualized in Fig. 5.

Hierarchical binary clustering: Similarly to K-means
clustering that the cluster assignment relies on the distance
between all cluster centroids and each sample, our binary clus-
tering starts with a random division of queries Q = {qi}Si=1

into two clusters and then calculates the two cluster centroids,
denoted as c1 and c2, respectively. After that, we compute
the distance ratio to perform the hard assignment. Above
operations can be summarized as

c1 =

∑
{qi}

S
2
i=1

S
2

, c2 =

∑
{qi}Si=S

2 +1

S
2

ri =
dist (qi, c1)

dist (qi, c2)
,∀i ∈ [1, S]

[i1, · · · , iS] = argsort({ri}Si=1)

C1 = {qij}
S
2
j=1, C2 = {qij}Sj=S

2 +1

(6)

where dist means the Euclidean distance in feature space, C1
and C2 represent the two equal size clusters through balanced
binary clustering. After performing n iterations (n = log2 L)
of binary clustering, we obtain L subsets with the same size.

LIU et al.: POINT CLOUD CLASSIFICATION USING CONTENT-BASED TRANSFORMER VIA CLUSTERING IN FEATURE SPACE 5

Choice of SA: In Point Transformer, the choice of the
self-attention has a crucial influence on the properties of
Transformer block. One choice of SA is the standard scalar
attention as

SA = Softmax(
QKT

√
d

)V (7)

Another choice of SA is the vector attention [8], [56] that
we adopt in this paper

SA = Softmax(
Q−K√

d
)� V (8)

Complexity Analysis: Given a set of feature vectors with
a size S × d, for standard multi-head self-attention (MSA),
the computational complexity of a local MSA module is
Ω(S × (4kd2 + 2k2d)) = 4Skd2 + 2Sk2d, where k is the
number of points in a local neighborhood. Unlike scalar
attention, vector attention further reduces the complexity to
Ω(4Skd2 + 2Skd). In our PointConT, hierarchical binary
clustering algorithm divides the feature vectors in a non-
overlapping manner, dramatically reducing the complexity to
Ω(4Sd2 + 2Sd).

Ω(MSALocal) = 4Skd2 + 2Sk2d

Ω(MSAPointTrans.) = 4Skd2 + 2Skd

Ω(MSAPointConT) = 4Sd2 + 2Sd

(9)

IV. EXPERIMENTS

In this section, we show experimental results of the pro-
posed model on the shape classification task. All the experi-
ments are performed on one Tesla V100 GPU.
Implementation details. We implement the PointConT in
PyTorch framework and train the network using the SGD
optimizer (momentum and weight decay set to 0.9 and 0.0001,
respectively), cosine learning rate schedule starting at 0.001
(warm up steps set to 10), and cross-entropy with label
smoothing. We fix the random seed in all experiments to
eliminate the influence of randomness.

For shape classification training, we only use 1024 uni-
formly sampled points as network inputs. Moreover, we use
RSMix [57] in addition to random scaling and translation as
data augmentation. We train PointConT on ModelNet40 and
ScanObjectNN with a batch size of 32 and 64 for 300 and
400 epochs, respectively. For testing, batch size is set to 16
and 32 on ModelNet40 and ScanObjectNN, respectively.

A. Classification on ModelNet40

We evaluate the model on the ModelNet40 [20] shape clas-
sification benchmark. There are 12,308 computer-aided design
(CAD) models of point clouds from 40 common categories.
The dataset is divided as 9840 models for training and 2468
models for testing.

The results are presented in Table I. The overall accuracy
of PointConT on ModelNet40 is 93.5%, which is a com-
petitive result in attention-based models. Besides, our Point-
ConT presents a high inference speed (166 samples/second in
training and 279 samples/second in testing), which is 3.5×
faster than the original PointMLP [58] paper and 1.4× faster

than the lightweight version PointMLP-elite. We visualize the
clustering results at each stage in Fig. 6. The clusters are able
to cover long-range dependencies.

TABLE I
SHAPE CLASSIFICATION RESULTS ON THE MODELNET40 DATASET.

OA: OVERALL ACCURACY.

Method Model Input OA(%)

MLP

PointNet [27] 1K points+normal 89.2
PointNet++ [15] 1K points 90.7
PointNet++ [15] 5K points+normal 91.9
PointMLP [58] 1K points 94.1

Conv

PointCNN [28] 1K points 92.5
PointWeb [30] 1K points+normal 92.3
PointConv [29] 1K points+normal 92.5
RS-CNN [31] 1K points 92.9
KPConv [34] 1K points 92.9
PosPool [32] 5K points 93.2
PAConv [35] 1K points 93.6

Graph DGCNN [37] 1K points 92.9
CurveNet [39] 1K points 93.8

Non-Local PointASNL [44] 1K points 92.9

Attention

GDANet [40] 1K points 93.4
PCT [9] 1K points 93.2
Point Trans. [8] 1K points 93.7
PointConT(ours) 1K points 93.5

B. Classification on ScanObjectNN

We furthermore perform experiments on a recent real-
world point cloud classification dataset — ScanObjectNN
[21], which consists of 15k objects from 15 categories. We
only report the heavy permutations from rigid transformations
PB T50 RS dataset. Unlike sampled virtual point clouds in
ModelNet40, objects in ScanObjectNN are obtained from real-
world scans. Therefore, the point clouds in ScanObjectNN are
noisy (background, occlusions) and not axis-aligned, which
brings a significant challenge to existing point cloud analysis
methods.

Table II shows the classification results on ScanObjectNN.
PointConT outperforms prior models with 88.0% overall ac-
curacy without voting [31] and reaches Top-1 90.3% when
averages 10 prediction votes. This suggests that the PointConT
is effective in real world point clouds.

C. Ablation Study

We perform ablation studies for the key designs of our
methods on the shape classification task. All experiments are
conducted under the same training settings.

Component ablation study: Table III reports the classi-
fication results of removing each component in PointConT.
Comparing Exp.III and Exp.IV, we notice that with the
content-based Transformer, the model improves with 0.6% on
ModelNet40 and 1.7% on ScanObjectNN. This demonstrates
that the content Transformer can enhance the representation
power of point clouds. Remarkably, the result of Exp.V drops
a lot. In the absence of the average pooling, Exp.V means
that the content-based Transformer follows after max-pooling

6 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

Stage1 Stage2 Stage3 Stage4 Stage5

Fig. 6. Visualizations of clustering results at each stage. The points of the same cluster are plotted with the same color. Different clusters are distinguished
by random colors.

TABLE II
SHAPE CLASSIFICATION RESULTS ON THE SCANOBJECTNN DATASET.

∗ DENOTES METHOD EVALUATED WITH VOTING STRATEGY [31].
MACC: MEAN CLASS ACCURACY; OA: OVERALL ACCURACY.

Model mAcc(%) OA(%)

PointNet [27] 63.4 68.2
SpiderCNN [33] 69.8 73.7
PointNet++ [15] 75.4 77.9
PointCNN [28] 75.1 78.5
DGCNN [37] 73.6 78.1
GBNet [59] 77.8 80.5
SimpleView [26] - 80.5
PRANet [60] 79.1 82.1
Point-BERT [61] - 83.1
Point-MAE [62] - 85.2
PointMLP [58] 84.4 85.7
PointNeXt [46] 86.8 88.2

PointConT(ours) 86.0 88.0
PointConT(ours)* 88.5 90.3

and residual MLP in a serial manner, which indicates that the
mix pooling strategy plays an important role in PointConT.
Observably, by combining all these components, we obtain the
best results on ModelNet40 and ScanObjectNN, which implies
the effectiveness of content-based Transformer and Inception
feature aggregator in point cloud classification.

The number of stages: In Table IV, we ablate differ-
ent number of stages in PointConT. We gradually increase
the depth of PointConT on ModelNet40 and ScanObjectNN
datasets to test the effectiveness of greater depth. We find that
the stage number of 5 is sufficient for full exploitation. A
deeper model will bring redundant information and perfor-
mance decline.

TABLE III
ABLATION STUDY. MP: MAX-POOLING; RES: RESIDUAL MLP; AP:

AVERAGE POOLING; CONT: CONTENT-BASED TRANSFORMER.
METRIC: OA(%).

ID MP Res AP ConT ModelNet40 ScanObjectNN

I X 93.2 86.5
II X X 93.1 87.3
III X X X 92.9 86.3
IV X X X X 93.5 88.0

V X X X 92.8 87.2
VI X X X 92.8 87.2
VII X X 93.0 81.0

TABLE IV
ABLATION STUDY: THE NUMBER OF STAGES.

The number of stages ModelNet40 ScanObjectNN

3 91.9 84.9
4 92.7 86.8
5 93.5 88.0
6 92.8 86.3

Local cluster size: We investigate the setting of the
local cluster size and show the result in Table V. The best
performance is achieved when the local cluster size is set to
16.

TABLE V
ABLATION STUDY: LOCAL CLUSTER SIZE.

Local cluster size ModelNet40 ScanObjectNN

8 92.9 87.7
16 93.5 88.0
32 92.8 87.7

LIU et al.: POINT CLOUD CLASSIFICATION USING CONTENT-BASED TRANSFORMER VIA CLUSTERING IN FEATURE SPACE 7

Similarity metric: We compare two important measures
of similarity for clustering: the cosine similarity and the
Euclidean distance. The cosine similarity is proportional to
the dot product of two vectors. Hence, vectors with a high
cosine similarity lied in the close direction from the origin,
while the Euclidean distance corresponds to the L2-norm of
a difference between vectors. Vectors with a small Euclidean
distance are located in the close region of a vector space. The
result in Table VI shows that clustering according to Euclidean
distance is better than cosine similarity in the classification
task.

TABLE VI
ABLATION STUDY: SIMILARITY METRIC.

Similarity metric ModelNet40 ScanObjectNN

cosine similarity 92.9 87.8
Euclidean distance 93.5 88.0

Attention type: Finally, we compare the scalar attention
and the vector attention introduced in Sec. III-C The results
are shown in Table VII. It is obvious that the attention module
is more effective than the no-attention, and vector attention
slightly outperforms scalar attention. As described in Point
Transformer, vector attention supports adaptive modulation of
individual feature channels, rather than just the entire feature
vector, which can be beneficial in 3D point cloud analysis.

TABLE VII
ABLATION STUDY: ATTENTION TYPE.

Attention type ModelNet40 ScanObjectNN

no attention 92.9 86.3
scalar attention 92.9 87.9

vector attention 93.5 88.0

V. CONCLUSION

In this paper, we propose Point Content-based Transformer
(PointConT), a simple yet powerful architecture, adopting
content-based Transformer, which clusters the sampled points
with similar features into the same class and computes the self-
attention within each class. Content-based Transformer can
establish long-range feature dependencies compared to local
spatial attention. Moreover, we design an Inception feature
aggregator to combine high-frequency and low-frequency in-
formation in a parallel manner. The max-pooling operation
aggregates high-frequency signals, while the average pooling
operation and Transformer filter low-frequency representa-
tions. We hope that this study will provide valuable insights
into the point cloud Transformer designs.

It is noticed that the balanced clustering algorithm generates
clusters with the same size, which limits generality and
flexibility of the proposed PointConT. Advanced clustering
approaches and CUDA can be used to implement cluster-wise
matrix multiplication in future work.

REFERENCES

[1] O. Schumann, J. Lombacher, M. Hahn, C. Wöhler, and J. Dickmann,
“Scene understanding with automotive radar,” IEEE Trans. Intell. Veh.,
vol. 5, no. 2, pp. 188–203, 2020.

[2] L. Li, M. Yang, L. Guo, C. Wang, and B. Wang, “Hierarchical
neighborhood based precise localization for intelligent vehicles in urban
environments,” IEEE Trans. Intell. Veh., vol. 1, no. 3, pp. 220–229, 2016.

[3] X. Sun, S. Shen, H. Cui, L. Hu, and Z. Hu, “Geographic, geometrical
and semantic reconstruction of urban scene from high resolution oblique
aerial images,” IEEE/CAA J. Autom. Sinica., vol. 6, no. 1, pp. 118–130,
2019.

[4] Z. Chen, J. Zhang, and D. Tao, “Progressive LiDAR adaptation for road
detection,” IEEE/CAA J. Autom. Sinica., vol. 6, no. 3, pp. 693–702,
2019.

[5] T.-H. Chen and T. S. Chang, “RangeSeg: Range-aware real time seg-
mentation of 3D LiDAR point clouds,” IEEE Trans. Intell. Veh., vol. 7,
no. 1, pp. 93–101, 2022.

[6] C. Zhao, C. Fu, J. M. Dolan, and J. Wang, “L-shape fitting-based vehicle
pose estimation and tracking using 3D-LiDAR,” IEEE Trans. Intell. Veh.,
vol. 6, no. 4, pp. 787–798, 2021.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Conf.
Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

[8] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,” in
Proc. IEEE Int. Conf. Computer Vision (ICCV), 12 2021, pp. 16 239–
16 248.

[9] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“PCT: Point cloud transformer,” Computational Visual Media, vol. 7,
pp. 187–199, 2021.

[10] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3D object detection
with Pointformer,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 7463–7472.

[11] C. Park, Y. Jeong, M. Cho, and J. Park, “Fast point transformer,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
12 2022, pp. 16 949–16 958.

[12] X. Lai, J. Liu, L. Jiang, L. Wang, H. Zhao, S. Liu, X. Qi, and J. Jia,
“Stratified transformer for 3D point cloud segmentation,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 3 2022, pp.
8500–8509.

[13] C. Zhang, H. Wan, X. Shen, and Z. Wu, “PVT: Point-voxel transformer
for point cloud learning,” arXiv preprint arXiv:2108.06076, 8 2021.

[14] Z. Yang, L. Jiang, Y. Sun, B. Schiele, and J. Jia, “A unified query-based
paradigm for point cloud understanding,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 8541–8551.

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Neural
Information Processing Systems (NeurIPS), 6 2017, pp. 5100–5109.

[16] N. Park and S. Kim, “How do vision transformers work?” in Proc. Int.
Conf. Learning Representations (ICLR), 2 2022.

[17] C. Si, W. Yu, P. Zhou, Y. Zhou, X. Wang, and S. Yan, “Incep-
tion transformer,” in Proc. Conf. Neural Information Processing Sys-
tems(NeurIPS), 2022.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
6 2015, pp. 1–9.

[19] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. AAAI Conf. Artificial Intelligence (AAAI), 2017, pp. 4278–4284.

[20] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A deep representation for volumetric shapes,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1912–1920.

[21] M. A. Uy, Q.-H. Pham, B.-S. Hua, D. T. Nguyen, and S.-K. Yeung,
“Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data,” in Proc. IEEE Int. Conf.
Computer Vision (ICCV), 2019, pp. 1588–1597.

[22] Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud
based 3D object detection,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 4490–4499.

[23] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2015, pp. 922–928.

8 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

[24] G. Riegler, A. O. Ulusoy, and A. Geiger, “OctNet: Learning deep 3d
representations at high resolutions,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 6620–6629.

[25] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in Proc. IEEE
Int. Conf. Computer Vision (ICCV), 2015, pp. 945–953.

[26] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point
cloud shape classification with a simple and effective baseline,” in Proc.
Int. Conf. Machine Learning (ICML), 2021, pp. 3809–3820.

[27] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR). Institute of
Electrical and Electronics Engineers Inc., 7 2017, pp. 652–660.

[28] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
Convolution on x-transformed points,” in Proc. Conf. Neural Information
Processing Systems(NeurIPS), S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran
Associates, Inc., 2018, pp. 828–838.

[29] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep convolutional networks
on 3D point clouds,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 9621–9630.

[30] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, “PointWeb: Enhancing local
neighborhood features for point cloud processing,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5565–
5573.

[31] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 8895–8904.

[32] Z. Liu, H. Hu, Y. Cao, Z. Zhang, and X. Tong, “A closer look at local
aggregation operators in point cloud analysis,” in Proc. European Conf.
Computer Vision (ECCV), 7 2020, pp. 326–342.

[33] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “SpiderCNN: Deep
learning on point sets with parameterized convolutional filters,” in Proc.
European Conf. Computer Vision (ECCV), 2018, pp. 90–105.

[34] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “KPConv: Flexible and deformable convolution for point
clouds,” in Proc. IEEE Int. Conf. Computer Vision (ICCV), 4 2019, pp.
6410–6419.

[35] M. Xu, R. Ding, H. Zhao, and X. Qi, “PAConv: Position adaptive
convolution with dynamic kernel assembling on point clouds,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 3172–3181.

[36] J. Li, B. M. Chen, and G. H. Lee, “SO-Net: Self-organizing network for
point cloud analysis,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), June 2018, pp. 9397–9406.

[37] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Trans. Graphics, vol. 38, pp. 1–12, 10 2019.

[38] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolution
for point set feature learning,” in Proc. European Conf. Computer Vision
(ECCV), 9 2018, pp. 56–71.

[39] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud:
Learning curves for point clouds shape analysis,” in Proc. IEEE Int.
Conf. Computer Vision (ICCV), 5 2021, pp. 895–904.

[40] M. Xu, J. Zhang, Z. Zhou, M. Xu, X. Qi, and Y. Qiao, “Learning
geometry-disentangled representation for complementary understanding
of 3D object point cloud,” in Proc. AAAI Conf. Artificial Intelligence
(AAAI), 2021, pp. 3056–3064.

[41] H. Ran, W. Zhuo, J. Liu, and L. Lu, “Learning inner-group relations on
point clouds,” in Proc. IEEE Int. Conf. Computer Vision (ICCV), 2021,
pp. 15 457–15 467.

[42] S. Fan, Q. Dong, F. Zhu, Y. Lv, P. Ye, and F.-Y. Wang, “SCF-Net: Learn-
ing spatial contextual features for large-scale point cloud segmentation,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
2021, pp. 14 499–14 508.

[43] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin Transformer: Hierarchical vision transformer using shifted win-
dows,” in Proc. IEEE Int. Conf. Computer Vision (ICCV), 2021, pp.
10 012–10 022.

[44] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “PointASNL: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,” in Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion (CVPR), 3 2020, pp. 5588–5597.

[45] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 7794–7803.

[46] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny,
and B. Ghanem, “PointNeXt: Revisiting PointNet++ with improved
training and scaling strategies,” in Proc. Conf. Neural Information
Processing Systems(NeurIPS), 6 2022.

[47] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in Proc. Int. Conf. Learning
Representations (ICLR), 2021.

[48] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions,” in Proc. IEEE Int. Conf. Computer
Vision (ICCV), 2021, pp. 568–578.

[49] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “PVTv2: Improved baselines with pyramid vision transformer,”
Computational Visual Media, vol. 8, no. 3, pp. 1–10, 2022.

[50] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” in Proc. Conf. Neural Information Processing Systems
(NeurIPS), 2 2021, pp. 15 908–15 919.

[51] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and
B. Guo, “CSWin transformer: A general vision transformer backbone
with cross-shaped windows,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 12 124–12 134.

[52] A. Hassani, S. Walton, J. Li, S. Li, and H. Shi, “Neighborhood attention
transformer,” arXiv preprint arXiv:2204.07143, 2022.

[53] Z. Huang, Y. Ben, G. Luo, P. Cheng, G. Yu, and B. Fu, “Shuffle
transformer: Rethinking spatial shuffle for vision transformer,” arXiv
preprint arXiv:2106.03650, 2021.

[54] K. Liu, T. Wu, C. Liu, and G. Guo, “Dynamic group transformer: A
general vision transformer backbone with dynamic group attention,” in
Proc. Int. Joint Conf. Artificial Intelligence (IJCAI), 3 2022, pp. 1187–
1193.

[55] T. Yu, G. Zhao, P. Li, and Y. Yu, “BOAT: Bilateral local attention vision
transformer,” arXiv preprint arXiv:2201.13027, 2022.

[56] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recog-
nition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10 073–10 082.

[57] D. Lee, J. Lee, J. Lee, H. Lee, M. Lee, S. Woo, and S. Lee, “Regu-
larization strategy for point cloud via rigidly mixed sample,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, 2 2021, pp. 15 895–15 904.

[58] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design
and local geometry in point cloud: A simple residual MLP framework,”
in Proc. Int. Conf. Learning Representations (ICLR), 2 2022.

[59] S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network
for point cloud classification,” IEEE Trans. Multimedia, vol. 24, pp.
1943–1955, 2022.

[60] S. Cheng, X. Chen, X. He, Z. Liu, and X. Bai, “PRA-Net: Point
relation-aware network for 3d point cloud analysis,” IEEE Trans. Image
Processing, vol. 30, pp. 4436–4448, 2021.

[61] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-BERT:
Pre-training 3D point cloud transformers with masked point modeling,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
11 2022, pp. 19 313–19 322.

[62] Y. Pang, W. Wang, F. E. H. Tay, W. Liu, Y. Tian, and L. Yuan,
“Masked autoencoders for point cloud self-supervised learning,” in Proc.
European Conf. Computer Vision (ECCV), 2022.

	I Introduction
	II Related Work
	II-A Point Cloud Processing
	II-B Vision Transformer

	III Methodology
	III-A Overall Architecture
	III-B Inception Feature Aggregator
	III-C Content-based Transformer

	IV Experiments
	IV-A Classification on ModelNet40
	IV-B Classification on ScanObjectNN
	IV-C Ablation Study

	V Conclusion
	References

