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P ROFESSOR Yitang  Zhang,  a  number  theorist  at  the  Uni-
versity  of  California,  Santa  Barbara,  USA,  has  posted  a
paper on arXiv [1] that hints at the possibility that he may
have  solved  the  Landau-Siegel  zeros  conjecture.  He  has

claimed that he has disproved a weaker version of the Landau-Siegel
zeroes  conjecture,  an  important  problem  related  to  the  hypothesis.
The conjecture is that there are solutions to the zeta function that do
not assume the form prescribed by the Riemann hypothesis. Inspired
by his work, in this Perspective ,  we would like to discuss about the
distribution  of  zeros  of  quasi-polynomials  for  linear  time-invariant
(LTI) systems with time delays.

The  stability  and  dynamic  performance  of  an  LTI  system depend
on its eigenvalue location, i.e., the location of zeros of its characteris-
tic function. An LTI system is asymptotically stable if and only if all
its  eigenvalues  are  located  in  the  open  left-half  complex  plane.
Therefore, analysis of the performance of an LTI system via determi-
nation of the eigenvalue location is an important way by applying a
frequency-domain method. Moreover, one can design an LTI control
system  via  assigning  the  zeros  of  its  characteristic  function  to  the
desired positions, which is known as eigenvalue assignment [2].

For  an  LTI  system,  one  usually  considers  the  eigenvalues  in  the
open right-half  complex  plane  due  to  the  fact  that  such  eigenvalues
have a direct influence on the stability of the system. The characteris-
tic  function  of  an  LTI  system  without  time  delay  is  a  polynomial.
One can analyze the distribution of zeros of a polynomial by apply-
ing  some  mathematic  tools  including  the  Routh-Hurwitz  criterion,
Nyquist  plot,  root  locus,  and  so  forth  [2].  These  tools  can  not  only
judge the stability of such an LTI system but also determine the num-
ber of zeros of the characteristic function in the open right-half com-
plex  plane.  In  addition,  one  can  obtain  the  location  of  the  zeros  by
numerical computation because the number of zeros of a polynomial
is finite.

A  time-delay  system  is  also  called  a  system  with  after-effect  or
dead-time [3]. Time-delay systems have received considerable atten-
tion due to the fact that time delays exist in a wide range of practical
applications,  including  networked  control  systems,  vehicular  traffic
flow, and biology [4]–[6]. Time-delay systems are a class of infinite
dimensional  systems,  which  have  complicated  dynamic  properties
compared with delay-free systems. For an LTI time-delay system, the
location of zeros of the characteristic function plays a significant role
in analysis and synthesis of the system [7]–[9]. However, it should be
pointed out that determination of the distribution of zeros of the char-
acteristic function has always been a difficult issue [10].

The  characteristic  functions  of  LTI  time-delay  systems  can  be

described by a class of quasi-polynomials [11]. Over the last decade,
we have conducted research on the distribution of zeros of the quasi-
polynomials for LTI time-delay systems and derived some results on
revealing information about the distribution of zeros of quasi-polyno-
mials with real coefficients and the design of PID type controllers via
dominant  eigenvalue  assignment  for  LTI  systems  with  single  delay
[12], [13]. Based on our own experience and results in the literature
over the past decades, we would like to present some problems on the
distribution  of  zeros  of  quasi-polynomials  for  LTI  time-delay  sys-
tems.

A large class of models of LTI systems with lumped delays can be
described by a differential difference equation in the form of
 

q∑
k=0

Ckẋ(t−τk) =
q∑

k=0

Akx(t−τk), (1)

x n Ak,Ck k = 0,
1, . . . ,q n×n
0 = τ0 < τ1 < · · · < τq q ≥ 1

where  is  the -dimensional  state  variable,  with  
 are  given  real  (or  complex)  constant  matrices,

 are time delays, and , or in the form of
 

m∑
k=0

n∑
j=0

ak, jx( j)(t−τk) = 0, (2)

x ak, j j = 0,1, . . . ,n k = 0,1, . . . ,m
0 = τ0 < τ1 < · · · < τm

where  is  a  system  variable, , , ,
are real (or complex) constant numbers, and 
are  time  delays.  The  characteristic  function  of  (1)  or  (2)  can  be
described by a quasi-polynomial as
 

δ(s) =
m∑

k=0

n∑
j=0

αk, js je−τk s, (3)

s αk, j j = 0,1, . . . ,n k = 0,1, . . . ,m
m = qn

where  is a complex variable, , , ,
are real (or complex) constant numbers, and .

This Perspective  is  concerned  with  the  following  questions: 1)
How  can  one  determine  whether  or  not  all  the  zeros  of  the  quasi-
polynomial (3) are located in the open left-half complex plane? and
2)  If  there  exist  some zeros  of  the  quasi-polynomial (3)  in  the  open
right-half  complex  plane,  how  can  one  determine  the  number  of
zeros?

Determining  the  distribution  of  zeros  of  the  quasi-polynomial  (3)
by direct calculation is difficult because the inclusion of delays leads
to  an  infinite-dimensional  function  which  has an  infinite  number  of
zeros. Over the past decades, several mathematical methods and tech-
niques for analyzing the distribution of zeros of different types of the
quasi-polynomial  (3)  have  been  developed.  It  is  necessary  for  us  to
introduce some types of the quasi-polynomial (3).

(i) Commensurate and Incommensurate Delays
τk

k = 0,1, . . . ,m
τ

For  the  delay  parameters  in  the  quasi-polynomial  (3), ,
,  they are  called commensurate  if  there  exists  a  posi-

tive real number  which leads to
 

τk = ϕkτ, k = 0,1, . . . ,m, (4)
ϕkwhere  is a nonnegative integer number. Otherwise, the delays are
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called incommensurate.
(ii) Retarded Type and Neutral Type

α0,n , 0 α1,n =α2,n = · · · = αm,n = 0
α0,n , 0

αk,n , 0 k = 1,2, . . . ,m

For (3), if  and   , it reduces to
a  quasi-polynomial  of  retarded  type.  Otherwise,  if  and  at
least one of , , the corresponding characteris-
tic function is a quasi-polynomial of neutral type.
τk k = 0,1, . . . ,mIf ,  in  (3)  are  commensurate,  the  quasi-polyno-

mial can be written as
 

H(λ) = δ
(
λ

τ

)
=

M∑
k=0

N∑
j=0

βk, jλ
je−kλ, (5)

s = λτ δ(s) λ βk, j
j = 0,1, . . . ,N k = 0,1, . . . ,M

M = ϕm N = n δ(s) H(λ)

τ H(λ)
eMλ H(λ)

by substituting  into , where  is a complex variable, ,
, , are real (or complex) constant num-

bers,  and  .  Note  that  and   have  the  same
number  of  zeros  in  the  open  left-half  complex  plane,  in  the  open
right-half  complex  plane,  and  on  the  imaginary  axis,  respectively,
because  is  a  positive  real  number.  Then,  multiplying  by

, we have a function  in the form of
 

H(λ) = eMλH(λ) =
M∑

k=0

N∑
j=0

γk, jλ
jekλ, (6)

γk, j j = 0,1, . . . ,N k = 0,1, . . . ,M
H(λ)

H(λ) H(λ) eMλ , 0

H(λ)

where , , ,  are  real  (or  complex)
constant  numbers.  Here,  is  also  a  quasi-polynomial  [11].  It
should be pointed out that the location of zeros of the quasi-polyno-
mial  is the same as that of  since the term  in the
whole complex plane. Therefore, one can exactly analyze the stabil-
ity  and  instability  of  an  LTI  system  with  commensurate  delays
through  the  location  of  zeros  of  the  quasi-polynomial  in  (6),
which  is  the  work  by  Pontryagin  in  1942  [14].  The  main  results
derived by Pontryagin are listed as follows.

H(λ)
γNM , 0

Theorem 1: Let   be a  quasi-polynomial  in  the form (6)  with
. Write

 

H(iω) = Hr(ω)+ iHi(ω), (7)
ω Hr(ω) Hi(ω)

H(iω) H(λ)
Hr Hi

ω

where  is a real number, and  and  present the real part
and  the  imaginary  part  of ,  respectively.  If  is  Hurwitz
stable,  then the zeros of the functions  and  are real,  alternate,
and for each ,
 

H′i (ω)Hr(ω)−H′r(ω)Hi(ω) > 0. (8)
H(λ)Each  of  the  conditions  given  below  is  sufficient  for  being

Hurwitz stable:
Hr(ω) Hi(ω)

ω
(i) All the zeros of the functions  and  are real, alter-

nate, and (8) holds at some ;
Hr(ω)

ω0 H′r(ω0)Hi(ω0) < 0
(ii) All the zeros of the functions  are real and at each zero
 (8) holds, i.e., ;

Hi(ω)
ω0 H′i (ω0)Hr(ω0) > 0

(iii) All the zeros of the functions  are real and at each zero
 (8) holds, i.e., .

Hr(ω) Hi(ω)In Theorem 1, checking whether all the zeros of  or 
are  real  plays  a  crucial  role.  To  ascertain  such  a  property,  one  can
apply the following theorem due to Pontryagin [14], [15].

η
Hr(ω) Hi(ω)

ω = η Hr(ω) Hi(ω)
Hr(ω) Hi(ω) 4lM+N
[−2lπ+η,2lπ+η] l

Theorem 2: Let  be a real number such that the coefficient of the
term  of  the  highest  degree  in  or   does  not  vanish  at

.  Then,  or   has  only  real  zeros  if  and  only  if
 or   has  exactly  real  zeros  over  the  interval

, where  is a sufficiently large positive integer.

l

In theory, Protryagin’s Theorems can serve as stability criteria for
an LTI system with commensurate delays, whose characteristic func-
tion is a quasi-polynomial of retarded type or neutral type, where the
coefficients  are  real  or  complex.  However,  they  are  difficult  to  be
numerically  implemented in  practice  due  to  the  fact  that  there  is  no
effective  method  for  determining the sufficiently  large number  .
Thus, it is difficult to apply Pontryagin’s Theorems to judge whether
or  not  an  LTI  time-delay  system  is  asymptotically  stable.  Conse-
quently, there is no further development in the direction of Pontrya-
gin’s theorems for a long period.

τ

τ

τ

τ

Since 1969, a -decomposition method has been widely developed
in the analysis  of  the  location of  zeros  of  the  quasi-polynomials  for
LTI  time-delay  systems.  Such  a  method  involves  first  decomposing
the positive time delay  axis into many intervals over each of which
the  number  of  zeros  of  the  quasi-polynomial  in  the  open  right-half
plane never change, and then investigating the change of the number
of  zeros  in  the  open  right-half  plane  when  crossing  the  boundary
points of the intervals [16]. One can analyze the Hurwitz stability of
an LTI system with fixed time delays indirectly via the -decomposi-
tion method. Most of the existing results in the distribution analysis
of zeros of the quasi-polynomials for LTI time-delay systems in the
literature  are  based  on  the -decomposition  method,  see  e.g.,
[16]–[26], where references [16]–[19], [23], [25], [26] considered the
quasi-polynomials of retarded type for LTI systems with commensu-
rate delays, and reference [21] stressed the quasi-polynomial of neu-
tral  type  for  LTI  systems with  commensurate  delays.  Besides,  there
are other methods for the analysis of the distribution of zeros of the
quasi-polynomials  for  LTI  systems  with  commensurate  delays.  A
Lambert  W function  based  method  can  be  applied  to  calculation  of
zeros of the characteristic function of retarded type one by one from
right  to  left  in  the  complex  plane  for  the  LTI  systems  with  single
delay or commensurate delays [27]. Reference [28] is devoted to the
analytic  study  of  the  distribution  of  zeros  of  the  quasi-polynomial
with  respect  to  the  coefficient  variation  for  a  scaler  retarded  single
delay system with either real or complex coefficients. Reference [29]
describes  DDE-BIFTOOL, a  Matlab package for  numerical  bifurca-
tion  analysis  of  systems  of  delay  differential  equations  with  several
fixed,  discrete  delays.  For  more  information  about  time-delay  sys-
tems, one can see references [4], [30], [31].

τ

It should be pointed out that on the one hand, only a few studies in
the literature consider the distribution of zeros of quasi-polynomials
with complex coefficients. In fact, a quasi-polynomial with complex
coefficients also plays an important role in applications, such as con-
sensus of multi-agent systems with a directed network topology [32].
On  the  other  hand,  many  results  in  the  literature  focus  on  LTI  sys-
tems with commensurate  delays,  where  most  of  the  results  are  only
valid  for  the  quasi-polynomials  of  retarded  type  due  to  the  messy
property  of  the  quasi-polynomials  of  neutral  type  [31].  For  an  LTI
system with incommensurate  delays,  the  analysis  of  the  distribution
of  zeros  of  the  corresponding  quasi-polynomial  is  a  challenge  issue
[11]. Most of the previous studies on this issue are still based on a -
decomposition  method  with  respect  to  the  quasi-polynomials  with
real coefficients. The cluster treatment of characteristic zeros for LTI
systems with two delays of retarded type or neutral type was studied
in [20], [33]–[35]. Stability switching hypersurfaces of a class of LTI
systems with three or multiple time delays were extracted [22]. Sta-
bility crossing sets  were obtained for  an LTI system of neutral  type
with  two  delays  [36]  and  with  three  or  multiple  delays  [24]  in  the
delay parameter space.

We are now back to Pontryagin’s Theorems and would like to dis-
cuss about future research. Among the existing results on the distri-
bution  of  zeros  of  quasi-polynomials  for  LTI  time-delay  systems,
Pontryagin’s Theorems can be directly applied to stability judgement
in theory. Furthermore, the quasi-polynomial form due to Pontryagin
is probably one of the most general [16] in various methods for sta-
bility analysis of LTI time-delay systems. Besides, over the past two
decades,  the  stability  criteria  by  Pontryagin  for  quasi-polynomials
play  an  important  role  in  low-order  stabilization  of  time-delay  sys-
tems, see e.g., [11], [37]–[42]. Based on Pontryagin’s Theorems, we
proposed a new one revealing information about zeros of quasi-poly-
nomials  with  real  coefficients  in  the  open  right-half  plane  and  pre-
sented  some  PID  controllers  for  LTI  systems  with  single  delay  via
dominant eigenvalue assignment to further improve the dynamic per-
formance in addition to stability [12]. However, due to the difficulty
in numerical implementation,  Pontyagin’s Theorems have not found
wide applications expect for some single delay systems [11]. It seems
that  it  is  challenging  to  solve  the  problem  on  the  numerical  imple-
mentation for Pontryagin’s Theorems.

To  end  this  perspective,  we  raise  two  open  questions  for  future
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research.
i)  How  to  derive  Pontryagin-like  results  that  can  be  numerically

implemented for the determination of the number of zeros in the open
right-half  complex  plane  of  the  quasi-polynomials  for  LTI  systems
with commensurate delays?

ii) How to develop a general mathematical analysis of the distribu-
tion  of  zeros  of  the  quasi-polynomials  for  LTI  systems  with  incom-
mensurate delays?

We do hope you will join us in this endeavor to discuss about this
important issue with your own insight and research.  
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