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   Dear Editor,

In this letter, a finite-time convergent analysis of continuous action
iterated  dilemma  (CAID)  is  proposed.  In  traditional  evolutionary
game  theory,  the  strategy  of  the  player  is  binary  (cooperation  or
defection), which limits the number of strategies a player can choose
from. Meanwhile, there are no effective methods to analyze the con-
vergence and its convergence time in previous works. To solve these
problems, we make several innovations in this letter. Firstly, CAID is
proposed  by  enriching  the  players’ strategies  as  continuous,  which
means the player can choose an intermediate state between coopera-
tion  and  defection.  And  discount  rate  is  considered  to  imitate  that
players cannot learn accurately based on strategic differences. Then,
to  analyze  the  convergence  of  CAID,  the  Lyapunov  function  is
designed. Furthermore, to analyze the convergence time of CAID, a
finite-time  convergent  analysis  based  on  the  Lyapunov  function  is
introduced. In this case, simulation results show the effectiveness of
our analysis.

With  the  rapid  development  of  network  science,  the  evolutionary
game  theory  has  been  applied  in  economics,  artificial  intelligence,
and multi-agent systems successfully [1]–[4]. Zhang et al. [5] investi-
gate the emergence of oscillatory behavior in evolutionary games that
are  played  using  reinforcement  learning,  providing  insights  into  the
evolution  of  collective  behavior.  In  [6],  the  evolutionary  game  the-
ory is utilized to model the evolution process of attacking strategies
employed by malicious users,  taking into account  the dynamics and
diversity  of  these  strategies.  The  driving  force  mechanism of  infor-
mation is constructed using evolutionary game theory by Xiao et al.
[7]  to  investigate  the  factors  influencing  user  behavior  during  the
rumor spreading process. Notably, the strategy of the player is binary
or limited in these works, which makes it hard to be consistent with
reality. In real-world games, players’ strategies are not limited to full
cooperation or full defection. Thus, CAID with continuous strategies
of players is proposed in this letter, which means the players can be
in an intermediate state of full cooperation and full defection.

Convergence and convergence time are important qualities of evo-
lutionary  game theory  [8].  In  [9],  the  delayed  networked  evolution-
ary games model is proposed. Meanwhile, the convergence and evo-
lutionarily stable profiles are analyzed. Mai et al. [10] design a cen-
tralized evolutionary game-based pool selection algorithm to analyze
the  colony  behaviors  of  devices.  The  convergence  in  a  regular  net-
work  was  analyzed  using  the  Jacobian  matrix  by  Ranjbar-Sahraei
et al. [11]. As we can see in these works, the Jacobin matrix is usu-
ally  introduced  to  prove  the  convergence  of  the  evolutionary  game,
which has a high correlation with the connecting relationship of play-
ers.  When  the  relationship  between  players  is  very  complex,  this
method cannot be applied. At the same time, it should be noted that
the analysis of convergence time has always been hard in the evolu-

tionary  game,  so  proposing  a  new  method  to  analyze  the  conver-
gence and convergence time is practical and essential.

As an important research topic in the field of control theory, finite-
time  convergence  has  attracted  extensive  attention  worldwide  [12]–
[16]. Wang and Xiao [17] study the bidirectional interaction case and
the  unidirectional  interaction  case  of  multi-agent  systems  through
finite-time stability. The focus of the authors in [18] is on the design
of a novel disturbance rejection control scheme for a flexible Timo-
shenko  manipulator  subject  to  extraneous  disturbances  that  exhibits
finite-time  convergence.  In  [19],  the  authors  present  a  method  for
designing an adaptive fast finite-time stabilizer by utilizing an analyt-
ical strategy and carefully selecting appropriate Lyapunov functions.
Notably, these studies are concentrated in the field of control and are
rarely used in evolutionary game theory. These effective studies can
provide  us  with  methods  to  analyze  the  convergence  and  conver-
gence  time  of  the  evolutionary  game.  Based  on  this,  we  propose  a
finite-time analysis of CAID based on the Lyapunov function.

In  this  letter,  a  finite-time  convergent  analysis  of  CAID  is  pro-
posed.  The  contributions  can  be  summarized  as:  1)  To  enrich  the
strategies  of  players  of  the  evolutionary  game,  CAID  is  introduced
with continuous strategies. And discount rate is considered to imitate
that  players  cannot  learn  accurately  based  on  strategic  differences.
2) The convergence of CAID is analyzed by the Lyapunov function.
3) The convergence time of CAID is analyzed by the proposed finite-
time convergence  method based  on  the  Lyapunov function.  Finally,
the  proposed  method  is  demonstrated  through  simulation  examples
using the continuous action iterated prisoner’s dilemma (CAIPD) and
continuous  action  iterated  snowdrift  dilemma (CAISD),  showing its
effectiveness.

W ∈ RN×N

wi j = 1 wi j = 0

wi j = w ji = 1 (i, j)

xi ∈ [0,1] xi = 1 xi = 0

Problem statement: Suppose there are N players, and the connect-
ing  relationship  is  described  by  the  adjacency  matrix .  If
player i and  player j is  connecting, ; ,  otherwise.  The
fully  connected  network  is  used  in  the  letter,  so  it  can  be  obtained

 for  any  pair  of  players .  Compared  to  the  binary
strategy  in  traditional  evolutionary  game  theory,  the  CAID  is  pro-
posed  in  this  letter,  in  which  the  strategy  of  player i is  continuous

.  Notably,  represents  the  full  cooperation  and 
represents  the  full  defection.  The  payoff  matrix  of  CAID  between
player i and player j can be defined as
 [a0 a1

a2 a3

]
(1)

a0, a1, a2, a3where  represents the payoff.
According to Darwin’s principle of survival of the fittest, the strat-

egy fitness between player i and player j can be described as
 

F(xi, x j) = a0xix j +a1(1− xi)x j +a2xi(1− x j)
+a3(1− xi)(1− x j)
= (a0 −a1 −a2 +a3)xix j + (a1 −a3)x j

+ (a2 −a3)xi +a3. (2)
∆F jiThen, the difference  is calculated by

 

∆F ji = F(x j, xi)−F(xi, x j). (3)
Drawing inspiration from the imitation dynamics, players adopt the

strategy of one of their neighbors with a certain probability, resulting
in a dynamic that can be formulated as follows:
 

xi(k+1) = (1− pi j)xi(k)+ pi jx j(k) (4)
pi j = ϵsign(β|∆F ji|) sign(β|∆F ji|) =

1/(1+ exp(−β|∆F ji|)) β > 0, ϵ > 0
where k is the iterated number.  with 

 and  are constants.
∆xi(k) = xi(k+1)− xi(k)Based  on ,  the  dynamic  model  of  strategy

adaptation in two-players CAID is
 

ẋi(t) = pi j(x j(t)− xi(t)). (5)
Considering the  connecting relationship of N players,  the  strategy

fitness of player i is
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F(xi) =
N∑

j=1

F(xi, x j) =
N∑

j=1

[a0xix j +a1(1− xi)x j

+a2xi(1− x j)+a3(1− xi)(1− x j)]

=

N∑
j=1

[(a0 −a1 −a2 +a3)xix j + (a1 −a3)x j

+ (a2 −a3)xi +a3]. (6)
∆F jiThus, one can conclude the difference  between the fitness of

player i and j as follows:
 

∆F ji = F(x j)−F(xi). (7)
Similar to (5), the dynamic model of strategy adaptation in N-play-

ers CAID is
 

ẋi(t) =
1
N

[
N∑

j=1

pi j(x j − xi)]. (8)

0 < α < 1

However,  in  the  dynamic  model  (8),  players  can  learn  accurately
based on strategic differences, which is not in line with actual games.
Thus, we propose a new CAID dynamics model (9) in which player
learning exists with a discount rate 
 

ẋi(t) =
1
N

[
N∑

j=1

pi jsign(x j − xi)|x j − xi|α] (9)

where
 

sign(r) =

 1, r > 0
0, r = 0
−1, r < 0.

(10)

Main  results: To  analyze  the  convergence  of  (9),  some  lemmas
are introduced firstly.

V(t)Lemma  1  [17]:  Suppose  that  function  is  differentiable  such
that
 

V̇ ≤ −KV(t)q (11)
K > 0 0 < q < 1 V(t) t∗where  and . Then,  will reach zero at finite time 

as
 

t∗ =
V(0)1−q

K(1−q)
(12)

V(t) = 0 t ≥ t∗and  for all .
Lemma 2 [20]: For a connected graph G that is undirected, the fol-

lowing well-known property holds:
 

min
x,0,1T x=0

xT Lx
∥x∥2

= λ2(L) (13)

λ2(L)where L is the Laplacian of graph G and  is the second smallest
eigenvalue of L.

Υ1,Υ2, . . . ,Υn ≥ 0 0 < p < 1Lemma 3 [17]: Let  and let . Then,
 

(
n∑

i=1

Υi)p ≤
n∑

i=1

Υ
p
i ≤ n1−p(

n∑
i=1

Υi)p. (14)

Theorem 1:  If  the  connecting  relationship  of  players  is  fully  con-
nected, then the dynamic model (9) is finite-time convergent.

Proof: Set
 

γ =
1
N

N∑
i=1

xi(t) (15)

∑N
i=1 ẋi(t) = 0

ei = xi(t)−γ
and  it  can  be  concluded  that γ is  invariant  because 
according to (9). Define the error as . we can get
 

ei − e j = xi −γ− x j +γ = xi − x j.

ėi = ẋi − γ̇ = ẋiMeanwhile, as for γ is invariant, we can get .
Take the Lyapunov function as

 

V =
1
2

N∑
i=1

e2
i . (16)

Then, it can be obtained that

 

V̇ =
N∑

i=1

eiėi =
1

2N

N∑
i, j=1

(pi jeisign(e j − ei)|e j − ei|α

+ p jie jsign(ei − e j)|e j − ei|α)

=
1

2N

N∑
i, j=1

pi jsign(e j − ei)(ei − e j)|e j − ei|α

= − 1
2N

N∑
i, j=1

pi j|e j − ei|α+1 = − 1
2N

N∑
i, j=1

((pi j)
2
α+1 |e j − ei|2)

α+1
2 (17)

pi j = p ji > 0where .
V̇ , 0Suppose , based on Lemma 3, we can get

 

V̇ ≤ − 1
2N

(
N∑

i, j=1

(pi j)
2
α+1 |e j − ei|2)

α+1
2

= − 1
2N

(∑N
i, j=1(pi j)

2
α+1 |e j − ei|2

V
V
) α+1

2 . (18)

∑N
i, j=1(pi j)

2
α+1 |e j − ei|2 , 0∑N

i, j=1(pi j)
2
α+1 |e j − ei|2 = 0

ei = e j e = [e1,e2, . . . ,eN ]T ∈ span(1)
1T e =

∑N
i=1 xi(t)−Nγ =

∑N
i=1 xi(t)−

∑N
i=1 xi(t) = 0, e = 0 V =

0
∑N

i, j=1(pi j)
2
α+1 |e j−

ei|2 , 0

The  last  equation  follows  from  that .  In
fact, if , then by the connectivity of graph,

 for all players, namely, . Because
, and thus 

,  which  contradicts  our  assumption.  Therefore, 
.

 

N∑
i. j=1

(pi j)
2
α+1 |e j − ei|2 =

N∑
i. j=1

(pi j)
2
α+1 (e j − ei)2 = 2eT L((pi j)

2
α+1 )e (19)

li j = −(pi j)
2
α+1 j , i li j =

∑N
k=1,k,i(pik)

2
α+1 j = i

L((pi j)
2
α+1 ) [li j] ∈ RN×N e ⊥ 1

where  if  and  if  in
 = .  As  for ,  we  can  get  (20)  based  on

Lemma 2,
 

N∑
i, j=1

(pi j)
2
α+1 |e j − ei|2

V
=

2eT L((pi j)
2
α+1 )e

1
2 eT e

≥ 4λ2(L((pi j)
2
α+1 )) > 0. (20)

Thus,
 

V̇ ≤ − 1
2N

(4λ2(L((pi j)
2
α+1 )))

α+1
2 V

α+1
2

≤ − 1
2N

min(4λ2(L((pi j)
2
α+1 )))

α+1
2 V

α+1
2 (21)

0 < α+1
2 < 1where .

Then,  based  on  the  Lemma  1,  the  system  can  realize  finite-time
convergence. ■

Simulation examples: The prisoner’s  dilemma is  a  classic  exam-
ple  of  an evolutionary game that  illustrates  how individual  rational-
ity can conflict  with group rationality.  CAIPD is  introduced here as
an example. The payoff matrix can be described as
 [

m− k −k
m 0

]
(22)

m > k
where m denotes the benefit  gained by the individual  and k denotes
the price paid by the cooperator, and the parameters satisfy .

Snowdrift  dilemma is  another  classic  evolutionary game.  We also
introduce CAISD here. The payoff matrix is
 m− k

2
m− k

m 0

 (23)

m > kwhere .
m = 5, k = 1 β = 1 ϵ = 0.5 α = 0.5Set , ,  and ,  the  simulation  results

in Fig. 1 show the convergence of the CAIPD and CAISD in the full
connected network.

Conclusion: This  letter  has  proposed  a  finite-time  analysis  of
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CAID, which provide a method to analyze the convergence and con-
vergence time of CAID. Firstly, the CAID with continuous strategies
has been designed to enrich the binary or limited strategies in tradi-
tional  evolutionary  game theory.  And discount  rate  is  considered  to
imitate that players cannot learn accurately based on strategic differ-
ences. Then, the finite-time analysis based on the Lyapunov function
has been proposed to avoid the influence caused by the complex con-
necting  relationship  of  players.  Furthermore,  CAIPD  and  CAISD
have been introduced as examples to demonstrate the effectiveness of
the proposed method.
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Fig. 1. The convergence simulation results of CAIPD and CAISD.
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