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 Dear Editor,
This  letter  presents  an  organoid  segmentation  model  based  on

multi-axis  attention  with  convolution  parallel  block.  MACPNet
adeptly captures dynamic dependencies within bright-field microsco-
py images, improving global modeling beyond conventional UNet. It
excels in sparse global interactions and concurrent computation, yie-
lding enhanced segmentation. MACPNet stands out for its prowess in
multi-scale data capture, aligned with diverse distance dependencies
inherent in organoid images. Experimental results show that the pro-
posed model outperforms several state-of-the-art methods as well as
multiple baseline models in accurate organoid segmentation.

Introduction: Organoids,  three-dimensional  (3D)  cell  cultures
derived from stem cells or tissue explants, have emerged as a promis-
ing tool across various research domains, encompassing developmen-
tal  biology,  disease  modeling,  and drug screening [1].  These minia-
turized and self-organizing tissue structures closely mimic the in vivo
organization and function of organs, offering a unique opportunity to
study  complex  biological  processes  and  disease  mechanisms  in  a
controlled and reproducible manner [2]. However, unlocking the full
potential  of  organoids  necessitates  robust  and  precise  methods  for
their  analysis,  particularly  concerning  segmentation  and  quantifica-
tion.

Accurate  segmentation of  organoids from microscopy images is  a
crucial step in numerous applications, such as tracking cell behaviors,
characterizing  tissue  morphologies,  and  assessing  treatment  respon-
ses. Traditional manual segmentation is time-consuming, labor-inten-
sive, and prone to variability, limiting its use for large-scale studies.
The rapid progress in automated visual analysis provides an opportu-
nity [3].  Therefore,  the  demand  for  efficient  and  reliable  automatic
segmentation techniques has grown substantially in recent years [4],
and  organoid  structure  analysis  particularly  emphasizes  addressing
challenges related to its cultivation and dynamic nature.

The  cultivation  of  organoids  is  a  meticulous  and  time-intensive
process  that  requires  skilled  professionals  to  monitor  and  intervene
based  on  the  developmental  state  of  the  organoids.  This  dynamic
nature of organoid growth adds an additional layer of complexity to
the segmentation process.  The evolving morphologies  and changing
spatial  relationships  within  the  organoid  structures  pose  significant
challenges  for  accurate  and  consistent  segmentation.  While  manual
segmentation is considered the gold standard, its high cost [5] makes
it impractical for large-scale studies and it lacks the necessary consis-
tency  required  for  rigorous  analysis.  Therefore,  the  development  of
automated  and  intelligent  solutions  for  organoid  segmentation  is
essential to bridge this gap.

Traditional threshold-based image segmentation methods [6], when

applied to organoids, often fall short due to their inability to account
for  the  dynamic  changes  and  intricate  internal  structures.  Machine
learning-based  approaches  have  shown  promise  in  various  image
segmentation tasks  but  applying them to organoids  requires  tailored
techniques that  can adapt  to the ever-changing characteristics of  the
growing tissue. The application of deep learning in the field of medi-
cal segmentation [7] has brought inspiration to this task.

Our research addresses the pressing need for automation and intel-
ligence  in  organoid  segmentation  by  introducing  a  novel  approach
called MACPNet that combines multi-axis attention and convolution
parallel block. By leveraging these advanced techniques, our method
can effectively adapt to the evolving morphology and spatial dynam-
ics  of  organoids  during  cultivation.  The  main  contributions  of  this
work are that: 1) MACPNet incorporates an attentional mechanism to
capture  extended  dependencies  among  pixel  points  within  bright-
field  microscopy  images  of  organoids.  This  integration  notably
boosts the global modeling capability, surpassing the performance of
conventional  convolution-based  UNet  organoid  segmentation  net-
work. 2) MACPNet excels in achieving sparse global interactions in
linear time, a notable advancement compared to existing methodolo-
gies. This achievement leads to enhanced segmentation performance
while  concurrently  alleviating  computational  burdens.  3)  A  distinc-
tive  hallmark  of  MACPNet  lies  in  its  concurrent  computation  of
Multi-axis  Attention  and  convolutional  techniques.  Moreover,  it
exhibits a remarkable capacity for capturing multi-scale information,
replete  with  diverse  distance  dependencies  intrinsic  to  organoid
images.

Method: Traditional  self-attention  mechanisms  suffer  from  qua-
dratic  complexity,  where  the  computational  cost  rapidly  increases
with the size of the input sequence or image, giving rise to issues of
excessive attention and computational burden. The fundamental con-
cept behind multi-axis attention is to break down the attention mech-
anism  along  spatial  axes,  resulting  in  two  forms:  local  and  global
attention [8].

a

The  block  self-attention  (Block-SA)  uses  a  chunking  strategy  to
divide the input sequence or image into multiple blocks. Within each
block,  only  local  correlation  information  is  considered  and  correla-
tions  with  other  blocks  are  ignored,  thus  reducing  computational
complexity.  Global  self-attention  (Grid-SA)  divides  the  input
sequence  or  image  into  a  regular  grid,  then  selects  a  few important
elements  in  the  grid  and  computes  the  attentional  relationships
between them and all other elements to form  global distribution of
attention. The detailed calculation formula is as follows:
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As  shown  in  (1),  in  block  attention,  the  input  feature  map 
 is transformed into a shaped tensor (H/p × W/p, p × p, C), rep-

resenting the partition into non-overlapping windows, with each win-
dow’s  size  as p × p.  Then,  self-attention  computation  is  performed
within  each window.  This  operation  helps  the  model  focus  on local
regions,  reducing computational  complexity while extracting impor-
tant information within the windows. In grid attention, a fixed G × G
uniform grid is used to gridify the input tensor into dimensions like G
× G, H/G × W/G, C.  Then, adaptive-sized windows H/G × W/G are
obtained  based  on  these  dimensions.  Finally,  self-attention  is  calcu-
lated on G × G. This sparse global self-attention mechanism has lin-
ear complexity,  allowing the system to concentrate on a few crucial
elements in the global scope and ignore less important elements, thus
reducing computational burden.
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Attention(Q,K,V) = so f tmax
(
QKT /

√
d
)
V

x← x + Unblock (Attention(Block (LN( x )) ))
Or x← x + Ungird (Attention(Grid (LN( x )) ))
x← x + MLP (LN( x )) (2)

where Q, K, V are the query, key, and value matrices，and d is the hid-
den dimension [9] in (2). The Unblock (·) operation is defined as the
reverse  operation  of  the  block  splitting  process  described  above.
Ungrid (·) converts the gridded input back to the original two-dimen-
sional feature space. LN denotes the layer normalization, where MLP
is a standard MLP network.

Despite  the  presence  of  local  attention  computation  in  multi-axis
attention, this cannot replace convolution for local feature extraction.
We introduce a parallel  approach to convolution and attention com-
putation  to  preserve  local  feature  extraction  while  computing  the
global attention mechanism. As shown in Fig. 1, the parallel block of
multi-axis  attention and convolution serves  as  the  feature  extraction
backbone  module  of  the  network.  The  parallel  features  spliced  by
channels  are  dimensionally  compressed  using  one-dimensional  con-
volution,  and  the  feature  map  is  output  with  residual  concatenation
after  extracting  similarity  information  using  skip  dot  product.  The
computational procedure is shown in (3)
 

out = Ẑ⊗
[
Conv1(concat[ Ẑ, Z̃ ])⊙ Ẑ

]
(3)

Z̃ Ẑ
⊗

⊙

where  represents  the  output  of  the  convolution  and  represents
the feature map calculated by attention; where  represents the resid-
ual connection, and  is the dot product computation.

The  network  employs  a  U-shaped  symmetric  structure.  In  the

encoder part, the MACP Block facilitates continuous down-sampling
of  the  feature  maps  until  they  are  1/32  of  the  original  size.  In  the
decoding part, feature maps with skip connections are combined with
the  results  from  the  previous  decoding  layer  through  channel  con-
catenation  and  passed  through  the  up-sampling  decoding  module.
Bilinear  interpolation  is  used  in  the  decoding  part  for  2  ×  up-sam-
pling, Conv 1 × 1 for channel tuning, and Conv 3 × 3 for feature inte-
gration.
 

ẐiC= Dconv3
(
Up
(
Conv1(concat[Z2iC, Ẑ2iC ]) )) (4)

Z2iC Ẑ2iCwhere  denotes  the  output  of  the  MACP Block  and  is  the
corresponding upsampled output. Dconv3 is the output of a consecu-
tive Conv 3 × 3.

During network training, the batch size for image input is set to 8,
with an initial  learning rate of 0.01.  The learning rate is  reduced by
half  every  50  epochs,  and  a  total  of  100  training  epochs  are  per-
formed.  Five-fold  training  is  employed,  saving  the  optimal  weights
on the validation set  for  each fold.  To enhance the network’s learn-
ing of organoid bright field image features, we employed a multi-loss
function  training  approach,  where LBCEloss represents  the  Binary

cross-entropy  loss  function,  and LDiceloss represents  the  Dice  loss
function, as shown below: 
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1
n

n∑
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[
yi × logp (yi)+ (1− yi)× log(1− p (yi))

]
LDiceloss = 1−

2 n∑
i=1

(yi × pi)/

 n∑
i

yi +

n∑
i

pi


 (5)

yi ∈ {0,1}
pi

where  denotes  the  ground  truth  pixel  values,  determining
the presence of a specific pixel in the target object, and  represents
the  pixel  value  predicted  by  the  network,  reflecting  the  network’s
estimation of whether a pixel  belongs to the target  object.  The final
loss function Loss is calculated as follows:
 

Loss = LBCEloss +LDiceloss. (6)
Experiments: The organoid training dataset  consists  of 52 binary

images  derived  from  human  pancreatic  ductal  adenocarcinoma
(PDAC) organoids [10],  with  14 images  reserved for  validation.  To
test the model’s robustness, three other image types were used: ade-
noid cystic carcinoma (ACC) of the salivary gland, colon epithelium
(Colon),  and distal  lung epithelia  (Lung).  In  medical  imaging tasks,
data  augmentation  effectively  enhances  the  model’s  generalization
ability [11].  This  process  generated  2000  augmented  images  by
applying random rotations, scaling, elastic distortions, and other mor-
phological  transformations.  During  both  network training  and infer-
ence, the images were converted to single-channel format and resized
to a standardized 512 × 512-pixel resolution.

In evaluating the performance of our model, we have selected a set
of  well-established  metrics,  namely  precision,  recall,  F1-score,  and
mean  intersection-over-union  (mIoU),  which  are  widely  utilized  in
segmentation tasks. Precision quantifies the ratio of true positive pre-
dictions  to  all  positive  predictions,  providing insights  into  the  accu-
racy of positive predictions. In contrast, recall delineates the propor-
tion of true positive predictions among all  instances of ground truth
positives,  offering  a  measure  of  the  model’s  ability  to  capture  rele-
vant  instances.  The  F1-score,  a  harmonious  amalgamation  of  preci-
sion  and  recall,  encapsulates  the  model’s  balanced  performance.  To
determine the mIoU, we have taken the average of Intersection over
Union  (IoU)  values  across  all  classes.  The  IoU  is  mathematically
expressed as TP/(TP + FP + FN). Notably, the mIoU values span the
range  from 0  to  1,  where  a  value  of  1  signifies  a  perfect  alignment
between the predicted segmentation and the ground-truth masks. The
output results are obtained by averaging the predictions from the best
validation weights of each fold in the different models. We compare
our method with SOTA segmentation methods. SegNet [12], notable
for  its  employment  of  a  symmetrical  encoder-decoder  configuration
accompanied  by  pooling  indices  for  up-sampling,  stands  as  one
approach. Another approach, A-Unet [13], augments the Unet model
with an attentional gate mechanism, which in turn directs the model’s
focus  towards  the  intended  target  structures.  On  a  different  note,
FCN [14] adopts a neural network framework reliant exclusively on
convolutional layers, particularly suited for pixel-level semantic seg-
mentation.  Conversely,  DANet [15] introduces  an  adaptive  integra-
tion of local features and global dependencies, a stratagem that lends
itself  well  to  segmentation  tasks.  The  scSENet  architecture [16],  in
contrast, introduces concurrent spatial and channel squeeze & excita-
tion methods,  concurrently  elevating significant  features  while  miti-
gating  the  influence  of  weaker  ones.  Additionally,  OrganoID [10],
 

Table 1. Network Evaluation on PDAC Segmentation
PDAC

Model mIoU Precision Recall F1
SegNet 0.778 0.740 0.855 0.783
A-Unet 0.801 0.763 0.875 0.806

FCN 0.803 0.769 0.863 0.807
DANet 0.778 0.759 0.813 0.780

scSENet 0.764 0.684 0.875 0.762
OrganoID 0.752 0.702 0.836 0.752
MACPNet 0.832 0.855 0.862 0.856
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Fig. 1. The overall architecture of MACPNet. MACP Block is a combination
of multi-axis attention and convolution parallel block, FFN stands for feedfor-
ward  neural  network,  and  it  includes  Block-SA  (block  self-attention)  and
Grid-SA (grid self-attention).
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tailored for the segmentation of organoids, finds its basis in the Unet
architecture.  We perform a  quantitative  evaluation  of  the  prediction
results  of  each  network  on  the  PDAC dataset  in Table  1.  Addition-
ally, we quantitatively evaluate the segmentation results, presented in
Table  2.  Our  evaluation  compares  the  performance  of  our  method
against the baselines on different tissues of organoids. The quantita-
tive  results  show  that  our  approach  outperforms  the  baselines  in
terms of both robustness and accuracy. And, the segmentation results
of our model are shown in Fig. 2.
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Fig. 2. Visualization comparison of ground truth on the testing dataset.
 

Conclusions: The  expanding  frontier  of  organoid  research  has
ignited  remarkable  potential  across  diverse  scientific  disciplines.
These three-dimensional cell cultures faithfully emulate the intricate
structures  and  functions  of  organs,  presenting  an  unprecedented
avenue  for  probing  intricate  biological  processes  and  disease  path-
ways.  However,  unlocking  their  full  potential  mandates  sophisti-
cated analysis, with a particular emphasis on segmentation and quan-
tification.  Although  manual  methodologies  offer  accuracy,  they  fal-
ter when scalability and consistency are demanded, thereby obstruct-
ing  expansive  studies.  To  surmount  this  obstacle,  we  introduce
MACPNet,  a  pioneering  framework  that  amalgamates  multi-axis
attention  and  convolution  parallel  block.  By  synergizing  these  cut-
ting-edge  techniques,  our  approach  seamlessly  adapts  to  the  ever-
shifting  morphology  and  spatial  dynamics  intrinsic  to  organoid
growth. Notable contributions encompass the amplified global mod-
eling prowess via attentional mechanisms, the achievement of linear
time  sparse  global  interactions,  and  the  comprehensive  capture  of
multi-scale information. This effectively surpasses the limitations of
conventional segmentation methods. In essence, our efforts drive the
frontiers of automation and intelligence in organoid analysis, thereby
enabling  deeper  insights  and  broader  applications  across  develop-
mental biology, disease modeling, and drug screening.
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