
 

Letter

Achieving 500X Acceleration for Adversarial Robustness
Verification of Tree-Based Smart Grid Dynamic

Security Assessment

Chao Ren , Chunran Zou , Zehui Xiong , Han Yu ,
Zhao-Yang Dong , and Niyato Dusit 

   Dear Editor,
This letter presents a novel and efficient adversarial robustness ver-

ification  method  for  tree-based  smart  grid  dynamic  security  assess-
ment  (DSA).  Based  on  tree  algorithms  technique,  the  data-driven
smart  grid  DSA has  received  significant  research  interests  in  recent
years.  However,  the  well-trained  tree-based  DSA  models  with  high
accuracy  are  always  vulnerable  caused  by  some  physical  noises  or
attacks, which can misclassify the DSA results. Only with the accu-
racy  index  is  not  enough  to  represent  the  performance  of  the  tree-
based  DSA  models.  To  provide  formal  robustness  guarantee  and
select the trusted tree-based DSA models, this letter proposes an effi-
cient adversarial robustness verification strategy with a sound robust
index  to  quantify  the  ability  of  tree-based  DSA models  against  any
adversarial attack. Analysis results verifies the proposed strategy can
achieve up to ~564X speedup.

Tree-based  data-driven  models  have  been  identified  as  a  promis-
ing approach to achieve real-time stability assessment of power grids
[1].  With  the  real-time  measurements,  the  well-trained  tree-based
model in the offline process can directly deliver the highly accurate
stability assessment result [2]. However, due to some practical issues,
such as false data injection, noise manipulation, communication error,
or  even  with  cyber-attack  by  adversarial  attack  algorithms  [3]−[6],
the  tree-based  models  designed  for  power  systems  may  be  vulnera-
ble to these scenarios and make the misclassification, which can ver-
ify that high accuracy is not equal to good robustness and tree-based
models  only  with  the  high  accuracy  performances  cannot  guarantee
to be valid all the time. Thus, the robustness and security of the tree-
based models have become a severe concern [7].

This letter proposes an efficient adversarial robustness verification
strategy  to  evaluate  the  ability  of  tree-based  models  to  resist  adver-
sarial attack algorithms, and systematically analyzes the acceleration
for  ensemble  trees.  Besides,  an  attack-independent  sound  robust
index is  designed,  which can provide  formal  robustness  verification
for safety-critical applications, such as DSA.

Related  work: For  DSA  problem,  given  the  fault  database,  the
data-driven  DSA  models  can  be  trained  by  various  tree  algorithms.
The feature inputs to the DSA models are P/Q power generation, load
demand,  and  bus  voltage  magnitudes;  the  output  is  the  correspond-
ing stability  status  [6].  Based on tree structures,  tree algorithms can
be divided into single decision tree and ensemble tree. For tree with
ensemble learning, it consists of bagging and boosting methods. The
bagging aims to train weak learners based on bootstrap sampling set
in  parallel,  and  such  method  includes  random forest  (RF)  and  extra
tree  (ET).  The core  idea of  boosting is  to  promote  weak learners  to

strong learners, and it includes adaptive boosting (AdaBoost), gradi-
ent boosting (GBDT) and extreme gradient boosting (XGBoost).

Notations  and  problem  description: In  order  to  provide  formal
robustness guarantee for the different tree-based DSA models (single
or ensemble), an efficient adversarial robustness verification strategy
with a precise robust index is proposed to quantify the ability of tree-
based DSA models against  any adversarial  attack.  For ease of  nota-
tion,  the  proposed  adversarial  robustness  verification  tree-based
(ARVT) strategy for single tree-based and ensemble tree-based DSA
model are referred as ARVT-S and ARVT-E, respectively. The pur-
pose of  ARVT is  to measure the distance from the original  input  to
the closest  box decision boundary with the high computational  effi-
ciency,  especially  for  the  ensemble  tree-based  DSA  models.  We
firstly  introduce ARVT-S how to exactly  calculate  for  verifying the
single tree-based model,  then we convert  robustness  verification for
ensemble tree-based model into the max-clique problem on a multi-
partite graph with bounded boxicity.

x1, . . .xn|xn ∈ Rm

{ f (·) |Rm→ {−1,1}}
f (x) = y

εx ∈ Rm

f (x+εx) , y

Adversarial  perturbation  and  adversarial  attack: Denote  the
database  with n training  instances  X  =  { }  as  the
input vector with m features, and the binary tree-based classification
model , where the correct predicted label of x can
be  formalized  as .  Given  x  and  a  well-trained  tree-based
model, the adversarial perturbation is defined as , misleading
to .  Then,  adversarial  attack algorithms aim to  find the
minimal adversarial perturbation as (1).
 

z =min
εx
∥εx∥∞ s.t. f (x+εx) , y. (1)

z

Note  that  directly  solving  (1)  cannot  ensure  to  achieve  the  minimal
adversarial  perturbation due to the non-convexity.  Therefore,  adver-
sarial attack algorithms can only obtain the upper bound of , which
can not  provide a  sound safety  guarantee,  even if  the  attack fails  to
obtain  the  adversarial  examples,  it  does  not  mean  no  adversarial
example exists.

z
Ball∞ (x,z) = {x̂ ∈ Rm|∥x̂−x∥∞ ≤ z}

Adversarial  robustness  verification: It  aims  to  determine
whether  exists  the  adversarial  examples  within  a  radius  fixed  ball
region around x, . It can be seen to
determine whether (2) is true.
 

f (x+εx) = y ∀∥εx∥∞ ≤ z. (2)

z
Ball(x,z)

z

Note that (2) are designed to calculate the global optimal exact value,
which  can  be  regarded  as  the  lower  bound  of ,  implying  that  no
adversarial example exists within . Through giving the exact
“Yes/No” answer, a binary search can obtain the value of . Hence, it
can provide a  sound safety guarantee solution against  any adversar-
ial attack.

vi

Proposed ARVT-S method: Distinguish from neural network-based
models,  tree-based  models  are  non-continuous  step  functions,  so
existing robustness  verification for  neural  networks [4]  are  not  suit-
able for tree-based models. Assuming that the single decision tree has
n leaf nodes, for each given instance x with m features, starting from
the root node, x will traverse several internal nodes until it reaches a
leaf  node.  Each internal  node i decides  x to  pass  to  the left  or  right
child  node  via  comparing  the  feature  value  and  its  threshold.  Each
leaf node has a value , which indicates the predicted class label for
a  classification  tree.  The  purpose  of  ARVT-S  is  to  calculate  a m-
dimensional  box  for  each  leaf  nodes  such  that  any  instance  in  this
box will definitely exist in this leaf node. Based on the tree structure,
the box of leaf node i is defined by the Cartesian product [8], formal-
ized in (3).
 

Bi = (li1,r
i
1]× · · ·× (lim,r

i
m]. (3)

BiEach  denotes the decision boundary of a leaf node as Fig. 1.
x ∈ Rm B = (l1,r1]× · · ·×

(lm,rm] ∞ B
Theorem 1: Given an instance  and a box 

. The smallest -norm distance from x to  can be calculated
as
 

dist∞(B,x) =min
b
∥b−x∥∞ (4)

 

b =


r j, x j ≥ r j

l j, x j ≤ l j

x j, r j > x j > l j.

(5)

b jProof for Theorem 1: Given the constraint on , the minimal dis-
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tance can be obtained in (4).
 

dist∞ (B,x) =min
b
∥b−x∥∞ =min

b

∑m

j=1

∣∣∣b j − x j
∣∣∣ (6)

 

s.t. r j > b j > l j ∀ j ∈ [m] . (7)

  ■
∩ Ball∞ (x,z)

B∩Ball∞ (x,z) , ∅, dist∞ (B,x) ≤ z
Corollary  1:  Denote  as  intersection  between  and B,

 if and only if .

∥εx∥∞ ≤ z
dist∞(Bi,x)

In  order  to  prove whether  there  are  misclassification points  under
,  we  can  enumerate  the  boxes  for  all n leaf  nodes  and

choose  according to Theorem 1.
 

z = min
i:vi,y
∥dist∞

(
Bi,x

)
∥∞. (8)

ONoted that ARVT-S can be solved within (nm) time referred to [8].

Ball∞ (x,z)

Proposed ARVT-E method: For  ensemble  tree-based  models,  it  is
NP-complete for directly solving (2), which is intractable for ARVT-
E. We propose an efficient strategy to solve ARVT-E by converting
ARVT-E into the max-clique problem on a  multi-partite  graph with
bounded  boxicity.  In  order  to  judge  whether  a  group  of  leaf  nodes
from G different  single  trees  can  form  a G-size  clique,  it  needs  to
check  the  intersections  among  the G different  single  tree  leaf  node
boxes and the perturbation ball .

x x

x x
ig g = 1, . . . ,G

vig

Assuming that the ensemble tree has G single trees, for each given
instance  with m features,  starting  from  the  root  node,  will  tra-
verse  several  internal  nodes  until  it  reaches  a  leaf  node.  Given  the
instance , the ensemble tree will pass  to each of G single tree leaf
nodes independently as  for all , and each leaf node has
a predicted label value  as Fig. 2.

x ∈ Rm

B(g) = {B1,B2, . . . ,BG} Bp∩Bq , ∅ Bp∩Ball∞
(x,z) , ∅ p,q ∈ [

g
]

B̃ = B1∩B2∩ · · ·∩BG ∩Ball∞ (x,z)
B̃ , ∅

Theorem 2: Given an instance  and G single trees with cor-
responding ,  if  and 

 for  all .  Then,  
will also be a box and .

l1 ≤ l2 ≤ · · · ≤ lG
(ls,rs]∩ (lG ,rG] , ∅ lG < rs s <G

(lG ,min(r1,r2, · · · ,rG )]
(l1,r1] , (l2,r2] , · · · , (lG ,rG] (l1,r1]∩ (l2,r2]∩ · · ·∩(lG ,rG] , ∅

B(g)

B1,B2, . . . ,BG Bp∩Bq , ∅ p,q ∈ [
g
]

m B̃ = B1∩B2∩
· · ·∩BG ∩Ball∞ (x,z) , ∅ B̃

Proof  for  Theorem  2:  Assuming  without  loss  of
generality,  implies  for each . Then,

 will be a nonempty set which is contained in
.  Thus, 

and  it  is  another  interval.  Hence,  it  can  be  generalized  to .
Assuming  such  that  for  all ,  for
each -dimensional  boxes,  the  above  can  proof  that 

 and  will also be another box. ■̃
B

V = {i|Bi∩Ball∞ (x,z) , ∅} E =
{
(p,q) ∈ [

g|Bp∩Bq , ∅}
Ball∞ (x,z)

(p,q) p q

Based on the boxicity property and Theorem 2, the intersection 
can  be  represented  as G-size  cliques  in  a  graph K=(V,  E)  where

 and .  In  this
graph, nodes in each layer indicate the leaf nodes of each single tree,
and they don not include the empty intersection with . The
edge  exists between node  and node  when their boxes inter-
sect.  Such  graph  belongs  to G-partite  graph  because  all  edges  con-
nect the different single trees, and this graph belongs to G-maximum
clique graph and each clique represents a reachable output for x after
perturbation.  Thus,  we  can  accurately  solve  ARVT-E  by  using  the
maximum clique searching algorithm in G-partite graph.

V(1) V(2)

V(1) V(2) V(2)′

V(2)′ V(3)

C

Algorithm  1  (maximum G-cliques  searching  algorithm  on  a G-
partite graph): For a G-partite graph, we firstly check connectivity
of any first two parts  and  to find 2 cliques and enumerates
all 2-cliques. Then, all the found 2-cliques are converted into the new
nodes  (possible  as  Theorem  2)  and  replace  and  as .
After that, continue to find 2-cliques between  and . Repeat
above steps until  reach the final tree layer G.  Based on the boxicity
property,  all  the G-cliques  on  a G-partite  graph  can  be  obtained
with  the  vertices  form.  We  show  a  basic  enumeration  process  in

Fig. 3.
CWith  all  the  obtained G-cliques  on  a G-partite  graph,  ARVT-E

can be solved via verifying their prediction class label values to cal-
culate the robust index (verification bound).

Ball∞ (x,z) C
ṽ

Corollary 2: The basic ARVT-E strategy aims to verify if the sign
of the summation can be flipped with  for all G-cliques ,
we can calculate  as (9).
 

ṽ =


max

c

{
sign

(∑
G

v(g)
i,c

)}
, y = −1

min
c

{
sign

(∑
G

v(g)
i,c

)}
, y = 1.

(9)

ṽ

However, such strategy is sensitive to the number of cliques and the
number  of  ensemble  trees.  By  extension,  the  improved  ARVT-E
strategy is to calculate the limit of  as (10).
 

limit (ṽ) =


sign

(∑|V|
G

max
i∈V(g)

v(g)
i,c

)
, y = −1

sign
(∑|V|

G
min
i∈V(g)

v(g)
i,c

)
, y = 1.

(10)

ṽ

min{O(nG),O((Gn)m)}

It can be seen that such limit of  indicate the upper bound for “−1”
label  and lower bound for “1” label,  since all  the G-cliques are still
considered if adding more edges to the graph, even it becomes a fully
G-partite graph. Thus, ARVT-E will  not be particularly affected via
the  number  of  trees  and  cliques,  which  can  provide  the  sound  and
efficient  solution  for  (2).  Noted  that  ARVT-E can  be  solved  within

 time, referred to [9].
Based on Corollarys 1 and 2, combining the binary search, we can

compute the value of z in (2) via ARVT-S and ARVT-E. The aver-
age  value  of z with  overall n instances  can  be  considered  as  the
robust index for tree-based models (RIT).
 

RIT ( f ( · )) = 1
n

∑
n
zn. (11)

A higher  RIT  typically  indicates  the  better  robustness  of  tree-based
model, since it is equal to have a larger decision boundary.
Simulation  results: The  proposed  method  was  implemented  using
the MATLAB programming language, and the experimental evalua-
tions  were  conducted  on  a  computer  with  the  following  specifica-
tions: An Intel(R) Xeon(R) W-2133 CPU with a clock speed of 3.6-
GHz,  16-GB RAM, and  a  GPU with  NVIDIA GeForce  RTX 3070.
The analysis process is on the New England 10-machine 39-bus sys-
tem to validate the performance. In the database generation process,
massive operating points are generated by randomly sampling gener-
ation and load within a certain range based on Monte-Carlo method.
The  detailed  database  description  can  refer  to  [6].  Eight  different
faults are studied which are the three-phase faults with inter-area cor-
ridor  trip.  Transient  stability  criterion  is  utilized  to  label  the
instances, where 60% of samples are randomly sampled for training
and the remaining 40% serve as testing data for each fault.

∥εx∥∞ = 0.5 ∥εx∥∞

In this case study, the maximum number of nodes in a clique is set
as 2 that can ensure all G trees are enumerated; the maximum num-
ber  of  binary  searches  for  finding  the  largest z is  set  as  10  that  the
proposed  ARVT  can  be  verified.  Verification  error  is  the  upper
bound  of  errors  under  any  attack,  indicating  that  no  attack  can
achieve more than a certain percentage error on the testing set within

. If only want to get verification errors at a certain ,
just need to disable binary search via setting the maximum number of
binary searches as 1 to be computed. To demonstrate the validity of
the  proposed  ARVT  with  RIT  for  tree-based  DSA  models,  we
applied  six  state-of-the-art  tree  algorithms  (DT,  RF,  ET,  GBDT,
XGBoost  and AdaBoost)  to  compare  the  DSA accuracy,  RIT,  com-
putational efficiency and verification error as Table 1. Among them,
single DT is considered as the baseline, the number of ensemble tree
is  set  as  200  and  1000.  In  order  to  guarantee  the  best  DSA  perfor-
mance and fair comparison, all the tree-based DSA models have been
well-trained and the hyper-parameters have been fine-tuned to avoid
underfitting and overfitting.

It  can  be  seen  that  ensemble  tree-based  models  always  have  the
better  DSA  accuracy  than  single  DT.  Although  bagging  ensemble
methods have the better DSA accuracy than boosting ensemble meth-
ods, the RIT and verification errors of bagging ensemble methods are
worse  than  boosting  ensemble  methods.  It  can  proof  that  the  accu-
racy  index  is  not  enough  to  represent  the  performance  of  the  tree-
based  DSA  models.  Besides,  it  is  clear  that  the  computational  effi-
ciency  of  ARVT  strategy  can  achieve  up  to  ~564X  speedup  com-
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BiFig. 1. Illustration  of  for  the  tree-based  models  (Left:  exist  adversarial

examples; Right; no adversarial example).
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pared with linear sum of several baseline. With the increasing of the
number  of  ensemble  trees, Table 1 shows  the  different  degree  of
increase in RIT and speedup and decline in verification errors.

Conclusions: In this letter, an ARVT strategy is proposed to char-
acterize the robustness of both single and ensemble tree-based DSA
models  against  any  adversarial  attack,  hence,  to  select  the  more
trusted  tree-based  DSA models.  Analysis  results  have  demonstrated
ARVT strategy can achieve up to ~500X speed up. To the best of our
knowledge,  similar  works  have  not  been  reported  in  the  literature,
and the proposed ARVT can also provide the formal robustness veri-
fication for other safety-critical data-driven problems in power engi-
neering.
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200 98.22% 0.796 25.78 ms 146X 16.1%
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Fig. 2. Illustration of ARVT-S. Combine the different boxes of different single trees, and then convert them into the graph layer form.
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Fig. 3. Illustration  of  Algorithm  1:  Maximum G-cliques  searching  algorithm  on  a G-partite  graph.  (A  simple  example  of  3-partite  graph  to  find  all  the  3-
cliques).
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