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   Dear Editor,
This letter studies the communication-aware mobile relaying via an

autonomous underwater vehicle (AUV) for minimal wait time. Com-
pared  with  the  analysis-based  channel  prediction  solution,  the  pro-
posed discrete Kirchhoff approximation solution has a higher estima-
tion  accuracy.  Different  with  the  deep  learning  (DL),  a  semi-super-
vised  broad  learning  system  (BLS)  based  relaying  controller  can
reduce  training  time.  Major  contributions  of  this  letter  lie  in  two
aspects:  1)  Construct  a  BLS-based  channel  estimator  with  obstacle
scattering  effect,  where  the  accurate  estimated  channel  can  be
obtained  with  low computational  cost;  2)  Design  a  semi-supervised
BLS based relay controller, such that average wait time can be mini-
mized.

Related works: Recently, the mobile relaying of an AUV has been
widely used in marine applications [1], [2]. Since the distribution of
underwater  channels  is  uneven,  some scholars  are committed to use
the spatial  distribution of  channel  quality  to  guide an AUV to relay
data  in  different  positions,  e.g.,  [3],  [4].  However,  the  above  algo-
rithms ignore the impact of obstacles on channel distribution. In [5],
[6],  the  Kirchhoff  approximation-based  numerical  methods  were
developed  to  capture  the  impact  of  obstacles  on  the  channel,  how-
ever they are not suitable for the large objects due to the huge com-
putational workload. To handle this issue, an analytical method was
proposed in [7] to study the scattering of texture details, but it is not
suitable for studying the scattering effect of distant obstacles.

Apart  that,  another  task  is  to  design  an  appropriate  controller  for
AUV  to  reach  the  relay  position.  We  have  noticed  that  the  super-
vised  or  unsupervised  BLS  based  controllers,  such  as  [8],  [9],  can
reduce an amount of training time and achieve better training results
compared  to  the  mainstream  deep  learning  based  controllers  [10].
However,  the  above  controllers  depend  on  labels  or  precise  model
parameters.  Considering  the  scattering  effect  of  obstacles,  how  to
design  a  semi-supervised  BLS based  relay  controller  to  achieve  the
relaying task is an open issue.

Problem  statement: The  underwater  relay  system  comprises n
infinite  capacity  queues,  where  each  queue  is  a  source  and  destina-
tion sensor pair. Data arrived stochastically the source node must be
transferred  to  the  corresponding  destination  node,  which  is  too  far
away  for  direct  communication.  To  improve  the  transmission  suc-
cess rates of queues, the relay operation is performed by an AUV.

pi,s λi

B× ξ

The  characteristics  of  the  multi-queue  system  are  summarized  as
the  following  two  aspects:  1)  Data  accumulation:  Data  accumulates
at  according  to  a  Poisson  process  with  average  rate  bits  per
second  (bps)  in  queue i.  2)  Relaying  service:  When  serviced  by  an
AUV, queue i transfers data from source node at a rate of  bits
per second (bps), where B Hz denotes the fixed bandwidth of queue
and ξ bps/Hz denotes the data upload/offload speed of the AUV.

Specifically, the position and velocity vectors of AUV is defined as

η = [x,y,z,ψ]T v = [u,v,w,r]T τ = [τu, τv, τw, τr]T

τu τv
τw τr

 and ,  respectively. 
is  the  control  input  vector  including  surge  force ,  sway  force ,
heave force ,  and yaw force .  The discrete form of its  dynamic
model is given as
 

ζ(k+1) = f(ζ(k))+h(ζ(k))τ(k) (1)
f(ζ) = [η+δJ(ψ)v;v−δM−1(C(v)v+D(v)v+g

(
η
)
)] h(ζ) =

[04×4; δM−1] ζ = [η;v] J(ψ)
C(v) D(v)

g
(
η
)

where , 
, , δ is  sampling  interval,  is  rotation

matrix, M is inertia matrix,  is Coriolis-centripetal matrix, 
is damping matrix, and  is hydrostatic force.

E = {p1,s,p1,d , . . .pi,s,pi,d , . . . ,pn,s,pn,d}

pc = {pc,1, . . . ,pc, j, . . . ,
pc,N } i ∈ Vq = {1, . . . ,n} j ∈ Vo = {1, . . . ,N}

The  position  set  of  source-destination  sensor  pairs  is  defined  by
.  In  addition,  ordinary  sensor

nodes  are  randomly deployed in  underwater  to  gather  channel  mea-
surements,  whose  position  set  is  defined  by 

.  Accordingly, ,  and N is
the  number  of  ordinary  nodes.  As  a  result,  the  measured  SNR
between AUV and source/destination nodes in queue i can be shown
as follows, i.e.,
 

SNRdB(p,pi,b) = P0(p,pi,b)−10li,b log10 (α ( f ))−N0
dB

+
∑
p̄∈S

P0(p, p̄)∇p̄G(p, p̄)× n⃗out (2)

G(p, p̄)= exp(−ικ∥p−p̄∥)
4π∥p−p̄∥ P0(p,pi,b) = KdB −10nPL log10(li,b)+

µMP(p,pi,b)+σSH(p,pi,b) li,b = ∥p−pi,b∥ ι =
√
−1 b ∈ {s,d} ∇p̄G=

∂G
∂p̄ 10log10α( f )= 0.11 f 2

1+ f 2 +
44 f 2

4100+ f 2 +2.75×10−4 f 2 +0.003
p̄ n⃗out

p̄
N0
dB KdB nPL

µMP σSH

where , 
, , , , 

 and . Mean-
while,  denotes the discretized point on the surface S and  is the
unit  normal  vector  at  the  correspondent  position .  Noting  that  the
parameters , acoustic frequency f, , , the statistical charac-
teristics  of  multipath  and  shadow  fading  are  obtained  in
advance. Conversely, κ is an scattering parameter to be estimated.

Some necessary definitions and assumption are given as follows.
𝟋i,sd(p)

p∗
𝟋max

i,sd (p∗)

Definition  1:  Transmission  success  rate  is  the  successful
probability of data transmission on the queue i when the position of
AUV is p. Once AUV moves to an optimum position , we get the
maximum data transmission success rate .

Γ1 Γ2

Definition 2: Average wait time Γ is the mean duration between the
arrival of data at queues and the end of its transmission, including the
total service  and switch-over time  among relay positions.

i+1
Definition  3:  The  exhaustive  service  strategy  means  AUV  serves

the queue i until the queue i is empty before serving queue .

Ωk ⊂ {B1(O1,ρ1,h1), . . . ,Bm(Om,ρm,hm), . . .} Bm(Om,
ρm,hm) (m = 1,2, . . .) Om ρm hm

Assumption  1:  The  obstacles  are  regarded  as  rigid  objects,  i.e.,
sphere,  cylinder  and  cone.  The  detected  set  at  the k-th  time  step  is
defined as  , where 

 is the m-th  obstacle; ,  and  are its cen-
ter, radius and height, respectively.

Γ2,min Γ2Define  as the minimum value of . The purposes of mobile
relaying task are

𝟋i,sd(p)→ 𝟋max
i,sd (p∗)1) Maximize transmission success rate: .

Γ2→ Γ2,min2) Minimize average waiting time: .
P0

p̄ ∈ S
n⃗out

∇p̄G(p, p̄) n⃗out
dB(pc, j,p) j ∈ Nk

Design and analysis: With  the  known incident  wave ,  the  dis-
cretization  measurement  process  of  SNR  is  as  follows:  1)  Discrete
sampling of obstacle surfaces: We get the discretized point  and
corresponding unit vector  using the mesh discretization method.
2)  Calculate  scattering field:  Add up the inner  product  of  the gradi-
ent  and .  3)  Obtain  the  measurement  vector  of  SNR.
Accordingly, the measured SNR  for  is stacked into
a vector form, i.e.,
 

YdB = P0 +Psca −ε (3)
YdB= [ dB(pc,1,p), . . . , dB(pc,|Nk |,p)]T P0=Hθ+µMP+

σSH P sca=
∑

p̄∈S P0⊙∇p̄G(pc,p̄)× n⃗out ε= [1,∥pc,1−p∥; . . . ;1,∥pc,|Nk |−
p∥][N0

dB;10 log10(α( f ))] θ = [KdB, nPL]T H = [1,
−10log10(∥pc,1 −p∥); . . . ;1−10log10(∥pc,|Nk | −p∥)] σSH = [σSH(pc,1,
p), . . . , σSH(pc,|Nk |,p)]T µMP = [µMP(pc,1,p), . . . , µMP(pc,|Nk |,
p)]T

where SNR SNR , 
, , 

.  Meanwhile,  , 
 , , 

  and  
.

κ̇ = τκ τκ
We  employ  a  first-order  linear  differential  equation  to  depict  the

estimation  procedure  of κ,  i.e., ,  where  is  the  increment
input. Specifically, the k-th step cost function is given as
 

g1(κ(k), τκ(k)) = ∆(k)T Q1∆(k)+R1τ
2
κ (k) (4)
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∆(k)= YdB −Hθ+ε−P′sca(κ(k)) P′sca =
∑

p̄∈S Hθ⊙∇p̄G(pc, p̄)×
n⃗out Q1 R1

where , 
,  is  a positive definite matrix and  is a coefficient control-

ling the cost of increments.

V1(κ(k)) = g1(κ(k), τκ(k))+γ1V1(κ(k+1)) γ1 ∈ (0,1]
Based  on  (4),  the  Bellman  equation  for  the  value  function  is

,  where  denotes
the discount factor for the future reward. Accordingly, the optimiza-
tion problem of κ can be conducted as
 

τ∗κ(k)=argminτκ {g1(κ(k), τκ(k))+γ1V1(κ(k+1))} . (5)

Zℏ(k) = X(k)Wℓ +ρℓ, ℓ ∈ {1, . . . ,n f }
Eℏ(k) = ϕ(Z f (k)Wℏ +ρℏ), ℏ ∈ {1, . . . ,ne} Z f =

[Z1(k), . . . ,Zn f (k)] Wℓ Wℏ ρℓ ρℏ
Zℓ(k) Eℏ(k)

n f ne Zℓ(k) Eℏ(k)
S(k) = [Z f (k)| Ee(k)]

Ee(k) = [E1(k), . . . ,Ene (k)]

Referring  to  [11],  the  BLS-based  network  structure  includes  the
“feature  nodes”   and “enhance-
ment  nodes”  ,  where 

 is the set of feature nodes. , , and  are
random weight  and  bias  matrices  for  and ,  respectively.

 and  are  the  group  numbers  of  and ,  respectively.
Accordingly, the network structure is defined as ,
where .

V1(κ(k)) V s
1(κ(k)) =

(Ws
1)T ST (k) W1

S(k)

Accordingly,  at s-th  iteration  is  replaced  as 
,  where  denotes  the  weight  for  the  basis  function

. Thus, we obtain the optimal increment policy, i.e.,
 

τs
κ(k+1) = −1

2

∂V s
1(κ(k))

∂κ(k)
= −1

2
∂S(k)
∂κ(k)

Ws
1. (6)

Ws+1
1 Ws+1

1 =

(ΩΩT )−1Ωχ Ω = [Ω1, . . .Ων̄, . . .]T χ = [χ1, . . . ,χν̄, . . .]T χν̄ =
g1(κ(ν̄), τκ(ν̄)) Ων̄ = ST (kν̄)−γ1ST (kν̄ +1) ν̄ ∈ {1, . . . , ν}

ν kν̄
ν̄ τ∗κ(k)

Next, we employ the following update law for , i.e., 
,  where , , 
 and  for . Mean-

while,  denotes the total number of date set and  is the time instant
for the -th data element. With this process,  can be obtained.

κ∗After obtaining the optimal parameter , we have
 

Avg(SNRdB(p,pi,b)

= h̄θ(1+ℜ̆)−ΞTΦ−1(YdB+ε−Hθ⊙(1|Nk |+ℜT ))−εi,b
Var(SNRdB(p,pi,b) = (ξ2 +ρ2)(1+ ℜ̆)−ΞTΦ−1Ξ (7)

h̄=[1,−10log10(∥p−pi,b∥)] ℜ = [
∑

p̄∈S ∇p̄G(pc,1, p̄)× n⃗out,
. . . ,
∑

p̄∈S ∇p̄G(pc,|Nk |, p̄)×n⃗out] ℜ̆=
∑

p̄∈S ∇p̄G(p, p̄)× n⃗out Ξ = ξ2×
[exp(−||p−pc,1||/β), . . . ,exp(−||p−pc,|Nk |||/β)]T εi,b = 10li,b log10×
(α( f ))+N0

dB

where , 
 , , 

 and 
. Proof is shown in Theorem 1.

Γ2,min=√
(ρ̄(1− ρ̄)ϖ)/(ρ̄2−∑n

i=1 ρ̄
2
i ) ρ̄i = λiBξ

ρ̄ =
∑n

i=1 ρ̄i ϖ =
∑n

i=1ϖ
2
i ρ̄i

ϖ2
i

With  the  predicted  channel,  a  semi-supervised  BLS-based  relay
controller  is  proposed  to  achieve  the  relay  task,  as  shown in Fig. 1.
Under  the  exhaustive  strategy,  there  is  a  specific  value 

 that  minimizes  Γ,  where ,
, . Meanwhile,  is the traffic of the queue i

and  is the variance of the switch-over time.

The cost function of motion planning is defined as
 

g2(p(k),τ(k))=♭1C1(p(k))+♭2C2(k)+♭3C3(p(k))+τT (k)Rτ(k) (8)

C1(p(k))=
∑n

i=1
(1+tanh(ai(𝟋i,sd(p(k))−ϵi,1))

𝟋2
i,sd(p(k))

×(1−tanh(ai(𝟋i, sd(p(k))−
ϵi,2)) C2(p(k))=

∑
m∈Ωk

1
(dm−ρm)2 C3(k)= (k−Γ2,min)2 𝟋i,sd(p(k)) =

Pi,s(p(k))×Pi,d(p(k)) ♭1 ♭2 ♭3 ai ϵi,1 ϵi,2
dm = ∥p(k)−Om∥ R = {[ru,rv,rw,rr]}

Pi,b(p) = Q
(
ϱ−Avg(SNRdB(p,pi,b))
Var(SNRdB(p,pi,b))

)
Q (·)

where 

,  ,  and 
. , , , ,  and  are positive constants.

.  Meanwhile, diag  is  a  positive
definite matrix. Of note, , where 
is the complementary cumulative distribution function and ϱ is a suc-
cess rate threshold.

V2(ζ(k)) = g2(p(k),τ(k))+γ2V2(ζ(k+1)) γ2 ∈ (0,1]
The Bellman equation for the value function of motion planning is

,  where  denotes

the discount factor for the future rewards. Accordingly, the optimiza-
tion problem can be organized as
 

τ∗(k) = argminτ (g2(p(k),τ(k))+γ2V2(ζ(k+1))) . (9)

{p(k#), Ψ(k#)}k
max
#

k#=1 {p(k#)}kmax
k=kmax

# +1 Ψ(k#) =
g2(p(k#),τ(k#)) k# ∈ {1#, . . . ,kmax

# } k# kmax
#

To  solve  (9),  an  admissible  policy  is  used  to  collect  labeled  data
 and unlabeled data ,  where 

,  is  the -th  sampling  and  is
the total number of sampling.

V(s)
2 (ζ(k#)) =W(s)T

cri ST
cri(k#) τ(s+1)(k#) = [τ(s+1)

u ,

τ
(s+1)
v , τ

(s+1)
w , τ

(s+1)
r ]T τ

(s+1)
h̄ =W(s+1)T

h̄ ST
h̄ (k#)

h̄ ∈ {u,v,w,r} W(s)
cri W(s+1)

h̄
(s+1) Scri(k#)
Sh̄(k#)

Ψ(s)(k#)=−W(s)T
cri (ST

cri(ζ(k# +1))−ST
cri(ζ(k#)))−2

∑
h̄ W(s+1)T

h̄ ST
h̄ (ζ(k#))×

rh̄τh̄(k#) = W(s+1)T × Ω̄(ζ(k#)) τh̄(k#) = τh̄(k#) − τ(s)
h̄ (k#)

Ω̄(ζ(k#)) = [∆Scri(ζ(k#)); −2ST
u (ζ(k#))ruτu(k#); −2ST

v (ζ(k#))rvτv(k#);
−2ST

w(ζ(k#))rwτw(k#);−2ST
r (ζ(k#))rrτr(k#)] W(s+1) = [W(s)

cri;W(s+1)
u ;

W(s+1)
v ;W(s+1)

w ;W(s+1)
r ] ∆Scri(ζ(k#)) = ST

cri(ζ(k#))−ST
cri(ζ(k#+

1))

Similarly,  and 
, where  denotes the actor

network  of AUV,  and  denote the s-th and
-th  iterations  of  weights  for  the  basis  functions  and
,  respectively.  The  Bellman  equation  at  the s-th  iteration  is

 ,  where ,
 

,  
 and 

 is the difference in critic network.
Ω̄Combined with  and (9), the weight update is solved by

 

W(s+1) = argmin
W(s)

{
♭4
2

∥∥∥∥Ω⃗W(s) −Y
∥∥∥∥2 + 1

2

∥∥∥W(s)
∥∥∥2

+
♭5
2

tr(W(s)TΩ⃗T LΩ⃗W
(s)

)
}

(10)

Ω⃗ = [Ω̄(ζ(1)), . . . ,Ω̄(ζ(kmax
# )), . . .Ω̄(ζ(kmax))]T L =

([
∑kmax

j⃗
w1 j⃗, . . .,

∑kmax

j⃗
wkmax j⃗])−[w⃗i j⃗]kmax×kmax w⃗i j⃗ = exp(−0.5||p(⃗i)−

p( j⃗)||/σ̄2) Y = [Ψ(s)(0), . . . ,Ψ(s)(kmax
# ),0, . . . ,0]T ♭4 ♭5

σ̄2 i⃗ j⃗ ∈ {1,
2, . . . ,kmax}

where , 
diag ,  

, , ,  are positive
constants,  is  the  variance  of  Gaussian  function  and , 

.
To solve (10), we set the gradient of (10) to 0, i.e.,

 (
♭4Ω⃗

T Ω⃗+ In0 + ♭5Ω⃗
T LΩ⃗

)
W(s) = ♭4Ω⃗

T Y (11)

In0 n0 n0
Ω̄(ζ(·))

where  is the -dimensional diagonal identity matrix and  is the
number of neurons in the activation function .

kmax > n0 W(s+1)

W(s+1) = ♭5(♭5Ω⃗T Ω⃗+ In0 + ♭6Ω⃗
T LΩ⃗)−1Ω⃗T Y W(s+1)

W(s+1) = Ω⃗T (♭6LΩ⃗Ω⃗
T
+

Ikmax + Ω⃗Ω⃗
T

)−1Y

If ,  is  calculated  by  considering  (11),  i.e.,
,  and hence,  can

be obtained by the alternative solution, i.e., 
.
||W(s+1) −W(s)|| < ϵ̄2

W∗ ϵ̄2 > 0
Once the condition  is met, the optimal weight

vector  can  be  obtained,  where  is  a  threshold.  Based  on
this, the optimal policy can be obtained, i.e.,
 

τ∗ =
[
W∗T ST

u ;W∗T ST
v ;W∗T ST

w;W∗T ST
r

]
. (12)

YdB
YdB ∼ N(Hθ−ε+P′sca Φ)

Theorem  1:  Given  the  channel  measurement  vector  with
obstacle scattering effect, which satisfies , 
and the predicted mean and variance of SNR are given as (7).

YdB
dB(p,pi,b)

Proof: We employ the measurement vector  to deduce the con-
ditional probability density function of SNR .

ϑ = [YdB+
ε;SNRdB(p,pi,b)+εi,b] = [ϑblk1;ϑblk2] f0(ϑ) =

1√
(2π)|Nk |+1 |Φ̄|

exp{−Λ(ϑ)
2 } Λ(ϑ) = (ϑ− H̄θ⊙ (1|Nk |+1 + ℜ̄T ))T×

Φ̄−1(ϑ− H̄θ⊙ (1|Nk |+1 + ℜ̄T )) H̄ = [H; h̄] ℜ̄ = [ℜ,ℜ̆] Φ̄ = [Φ,Ξ;
ΞT ,α] α = (ξ2+ρ2)(1+ ℜ̆) Λ(ϑ)

Specifically,  the  probability  density  function  (pdf)  of 
 is  reorganized  as 

,  where 

, , , 
 and . Accordingly,  is rearranged as

 

Λ(ϑ) = Λ1(ϑblk1)+Λ2(ϑ blk2)
Λ1(ϑblk1) = (ϑblk1 −Hθ ⊙ (1|Nk | +ℜT ))TΦ−1(ϑblk1 −Hθ ⊙

(1|Nk | +ℜT )) Λ̄2(ϑblk1,ϑblk2) = (ϑblk2 − )T −1(ϑblk2 − )
h̄θ(1+ ℜ̆)+ΞTΦ−1(w̄blk1−Hθ⊙ (1|Nk | +ℜT )) = (ξ2+

ρ2)(1+ℜ̆)−ΞTΦ−1Ξ

where 
, Avg Var  Avg ,

Avg= ,  and  Var
.

f0(ϑ) =
exp
{
− Λ1(ϑblk1)

2

}
exp
{
− Λ2(ϑblk1 ,ϑblk2)

2

}
√

(2π)|Nk | |Φ|
√

2πVar
ϑblk1

Further,  the  pdf  of  the  vector ϑ can  be  changed  as 

. Accordingly, the marginal pdf of 
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Fig. 1. Relationship between channel prediction and mobile relaying.
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fϑblk1 (ϑblk1) =
exp
{
− Λ1(ϑblk1)

2

}
√

(2π)|Nk | |Φ|
can be expressed as .

ϑblk2 f2|1(ϑblk2|ϑblk1)= f (ϑ)
fϑblk1 (ϑblk1)=

exp
{
− Λ̄2(ϑblk1 ,ϑ blk2)

2

}
√

2π|Var|

Finally, the conditional pdf of  is  

. ■

κ = 1
KdB = −52 nPL = 0.5

ξ2 = 4 ρ2 = 2.25 β = 1 Q1 = I2500 R1 = 1

j1(·) j2(·) P2(·)

r0 = 5
P0 + j1(κr0)+ j2(κr0)×P2(cos(θ)) θ ∈ (0,2π]

P0 = −1 j1(κr0) j2(κr0) P2(cos(θ))

Simulation  and  experiment  results: In  this  section,  we  conduct
simulation  studies  to  verify  the  proposed  relaying  solution.  It  is
assumed  that  three  queues  are  deployed  in  the  relaying  area.  The
actual  channel  parameters  is  set  as .  Besides  that,  some  other
channel  parameters  can  be  shown  as  dB, ,

,  and .  and .  Accordingly, the
iterative  process  for  the  unknown  scattering  parameter  is  shown  in
Fig. 2(a), where the estimated parameters converge to 1. Correspond-
ingly, the measured SNR and predicted SNR are shown in Fig. 2(b).
Clearly,  the difference between the estimated SNR and the sampled
SNR  is  very  small.  On  the  basis  of  this,  the  data  transmission  suc-
cess rate (DTSR) for the queues is shown in Fig. 3(a). Compared to
the  analytical  solution  proposed  in  [7],  our  channel  estimator  has  a
higher estimation accuracy. Specifically, the analytical solution com-
bines  with  the  first  and second kind spherical  Bessel  functions,  i.e.,

 and , and Legendre order polynomial of order 2, i.e., ,
to calculate the amplitude of scattering field. Accordingly, we calcu-
late  it  at  a  distance  of  m  from  the  center  of  the  circle  is
expressed as , where  and

 dB. In addition, ,  and  can be calcu-
lated  by the  besselj  and legendre  functions.  Finally,  the  comparison
result  is  shown  in Fig. 2(c).  The  above  results  verify  the  effective-
ness of the proposed channel estimation method.
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Fig. 2. Simulation results for the BLS-based online channel prediction.
 

ζ(0) = [45,20,−33,5,0,0,0,0]T

𝟋1,sd(p(k)) 𝟋2, sd(p(k)) 𝟋3,sd(p(k))
0.25

Γ2,min

With  the  predicted  channel  information,  we  verify  the  effective-
ness of the semi-supervised relay controller. The initial state of AUV
is .  Accordingly,  the  trajectory  of
AUV  is  presented  in Fig. 3(a),  whose  position  and  orientation  are
shown  in Fig. 3(b).  Correspondingly,  the  optimal  policy  of  AUV is
shown  in Fig. 3(c).  Based  on  this,  the  DTSR  of  AUV  is  shown  in
Fig. 3(d). Clearly, ,  and  converge to

, which means AUV has been derived to the optimal relay posi-
tions  for  the  three  queues.  The  collision  avoidance  distances  are
shown  in Fig. 3(e),  where  the  collision  avoidances  are  both  greater
than 6 m, 5 m and 3 m. Finally, the time taken for this control pro-
cess  is  shown  in Fig. 3(f),  which  approaches .  These  results
verify the effectiveness of the proposed controller.

2.68

The  field  experiment  is  conducted  in  the  pool  of  our  lab.  Due  to
condition limitation, we only verify the channel estimator. As shown
by Fig. 4(a),  the  obstacle  is  captured  by  an  cylinder  according  to
Assumption 1. As mentioned above, we employ a digital hydrophone
to  obtain  channel  measurement  data.  Correspondingly,  the  iterative
process of scattering parameter is shown in Fig. 4(c). In addition, the
measured  and  estimated  channel  distribution  is  shown  in Fig. 4(b).
Clearly, the scattering parameter can be converged to . The esti-
mated results are very close to the measured results, which proves the

effectiveness of our proposed channel estimator.
Conclusion and future works: This letter studies the broad learn-

ing based mobile relaying solution of AUV for minimal wait time. It
should be emphasized that our solution assumes that the obstacles are
regarded as rigid objects, which is a prerequisite for using the Kirch-
hoff  approximation method.  However,  it  is  valid  only in  a  few spe-
cial  cases,  where  a  underwater  scatterer  is  rigid  and  immovable.
Therefore, this is a limitation of our method. To solve this limitation,
we  will  combine  the  controller  with  multiple  sensing  techniques
(e.g., the sonar and binocular vision), such that the sensing informa-
tion can be effectively fed back to the control systems. In future, we
will implement the solution to the practical marine environment.
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Fig. 3. Simulation results for the BLS-based online channel prediction.
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Fig. 4. Experimental results for the channel prediction.
 

CAO et al.: COMMUNICATION-AWARE MOBILE RELAYING VIA AN AUV FOR MINIMAL WAIT TIME: A BROAD LEARNING-BASED SOLUTION 799 


