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Abstract
This study explores a novel application of multi-scale entropy (MSE) analysis for characterizing
different patterns of spontaneous electromyogram (EMG) signals including sporadic, tonic and
repetitive spontaneous motor unit discharges, and normal surface EMG baseline. Two algorithms
for MSE analysis, namely the standard MSE and the intrinsic mode entropy (IMEn) (based on the
recently developed multivariate empirical mode decomposition (MEMD) method), were applied to
different patterns of spontaneous EMG. Significant differences were observed in multiple scales of
the standard MSE and IMEn analyses (p < 0.001) for any two of the spontaneous EMG patterns,
while such significance may not be observed from the single scale entropy analysis. Compared to
the standard MSE, the IMEn analysis facilitates usage of a relatively low scale number to discern
entropy difference among various patterns of spontaneous EMG signals. The findings from this
study contribute to our understanding of the nonlinear dynamic properties of different spontaneous
EMG patterns, which may be related to spinal motoneuron or motor unit health.

Index Terms
Motor unit action potential; multi-scale entropy; spontaneous muscle activity; surface
electromyography

I. Introduction
THE presence of spontaneous electromyographic (EMG) activity has been reported in
muscles affected by motoneuron diseases (e.g., amyotrophic lateral sclerosis (ALS)) or
neurologic disorders (e.g., hemiparetic stroke, spinal cord injury) [1]–[6]. For example,
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fibrillation potentials or positive sharp waves and fasciculation potentials have been viewed
as evidence of denervation to increase the diagnostic sensitivity of ALS [2]. Spontaneous
motor unit activity is also widely present in individuals with spinal cord injury [4], [5] or
hemiparetic stroke [6].

In order to quantitatively characterize spontaneous motor unit firing properties, statistics of
motor unit firing rates or inter-spike intervals are often used [7]. Recently, we employed
approximate entropy (ApEn) measurement to explore the complexity of spontaneous motor
unit discharge patterns in ALS [8]. Such entropy analysis [9], [10] serves as a novel
approach for evaluating the spontaneous motor unit activity or their neural origins in the
nonlinear complexity domain, thus expanding our knowledge of the pathophysiology of
motoneuron or motor unit functions.

In recent years, significant advances have been made in entropy analysis. For example, the
multiscale entropy (MSE) analysis has been developed which essentially calculates the
sample entropy (SampEn) [10] (a robust single scale entropy estimate modified from ApEn
[9]) over multiple scales determined by the coarse-grained procedure [11], [12]. Compared
with a single entropy measure at the original time scale, the entropy analysis performed over
multiple time scales provides more details on the signal dynamics. Taking this advantage,
the MSE analysis has achieved a number of applications in assessing the dynamic property
of physiological signals in normal controls and disease [11]–[15].

Another recently developed approach, termed intrinsic mode entropy (IMEn) [16], computes
SampEn over different scales of time series, namely intrinsic mode functions (IMFs)
extracted by empirical mode decomposition (EMD). EMD acts as a fully data-driven method
that decomposes a time series into multiple nonlinear scales representing its inherent
oscillatory modes. Thus IMEn has been considered as a MSE analysis method adapted to
nonstationary and nonlinear nature of physiological time series [17]. Furthermore,
extensions of the EMD algorithm such as ensemble EMD (EEMD) [18] and multivariate
EMD (MEMD) [19], [20] have been developed to overcome the mode-mixing and mode-
misalignment problems of the original EMD algorithm. This makes IMEn analysis a more
powerful tool for multi-scale time-frequency analysis of physiological data.

The current study attempts to explore the application of the recent advances in entropy
analysis for analyzing different spontaneous EMG patterns. Two MSE algorithms, i.e. the
standard MSE and the IMEn analyses were specifically used in this study. Compared with
single entropy measurement, the MSE provides more detailed information revealing the
nonlinear dynamics of different patterns of spontaneous EMG. This expands our knowledge
of generalized spontaneous EMG activity often observed in neuromuscular diseases or
neurological disorders.

II. Methods
This section introduces two algorithms for MSE analysis, namely the standard MSE and the
recently developed IMEn based on MEMD method, and their application to different
spontaneous motor unit patterns recorded from ALS patients.

A. SampEn and Standard MSE
SampEn is an effective and robust entropy measure with a single scale for the short and
noisy time series [10]. In order to compute SampEn, a time series (denoted as x(t)) is first
embedded into a set of vectors in a delayed m-dimensional space. Then, the probability
Bm(r) that two vectors match in the m-dimensional space is computed by counting the
average number of the matched vector pairs. The match of two vectors is defined as their
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distance lower than a tolerance r. Similarly, Bm+1(r) can also be computed for the embedded
dimension of m+1. Thus, the SampEn is defined as:

(1)

In order to develop MSE analysis, the standard MSE algorithm, which was developed by
Costa et al. [11], applies the simple “coarse-grained” multiscale approach on the considered
time series prior to the entropy measure to determine multiple time scales. In fact, the
“coarse-grained” approach represents a linear smoothing that gradually removes the fine-
scale (high-frequency) components of the original time series. Thus, the standard MSE is
obtained by computing SampEn over these scales.

B. MEMD-based IMEn
Algorithms for computing the standard EMD and its modified version, MEMD, have been
previously provided in detail [19], [20]. Amoud et al. [16] first defined the calculation of
IMEn based on standard EMD. Hu and Liang [21], [22] further refined the MEMD-based
IMEn analysis method. Here, we present a brief summary of these calculations, slightly
modified from their description [21].

The EMD is a fully adaptive, data-driven method that is able to decompose a time-series, by
the sifting algorithm, into a finite set of IMFs. These represent the inherent oscillation
modes of that time series [17]. The EMD performed prior to entropy analysis, referred to as
the IMEn analysis, enables entropy to be calculated over different scales of the original time
series. The EMD-based IMEn analysis thus becomes an investigatory approach for the
characterization of univariate time series. However, the mode-misalignment introduced by
standard EMD limits its further application on the multivariate time series data. Recently,
MEMD [19], [20] has been proposed to extend the application of the EMD technique to
multivariate data, thus inspiring the improved IMEn analysis based on the MEMD [21],
[22].

The key to the MEMD algorithm is the calculation of the local mean. In EMD, the local
mean is computed by taking an average of upper and lower envelopes obtained by
interpolating the local maxima and minima of the signal. MEMD works directly with
multivariate data (usually representing n-variable time series) in which the local maxima and
minima are not well defined. To deal with this problem, multiple n-dimensional envelopes
are generated by taking signal projections along different directions in (n−1)-dimensional
spaces. These envelopes are then averaged to obtain the local mean. Considering that

 is an input time series in an n-variable form, and xθk denotes a set of vectors along

the directions represented by angles  on the (n−1)-sphere, the
algorithm can be briefly summarized as follows [19]:

1. Generate a point set based on the Hammersley sequence for sampling on an (n−1)-
sphere.

2. Calculate a projection  of the multivariate input data  along a

direction vector xθk, for all k, thus giving  as the set of projections.

3. Locate the time points  according to maxima of the set of projected signal

.
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4.
Interpolate , for all values of k, to obtain multivariate envelope curves

.

5. For a set of K direction vectors, calculate the mean m(t) of the envelop curves

(2)

6. Iterate on the detail d(t) = v(t) − m(t) until it becomes a multivariate IMF. The
above procedure is then applied to v(t) − d(t).

The stoppage criterion for multivariate IMFs is similar to that for the univariate IMFs except
that the equality constraint for the number of extrema and zero crossings is not imposed, as
extrema cannot be properly defined for the multivariate signal [19]. By projection, MEMD
directly processes the multivariate signal to produce the mode-aligned IMFs.

The mode alignment of resultant IMFs derived from MEMD allows two IMEn algorithms,
namely the fine-to-coarse IMEn and the coarse-to-fine IMEn, which indicate that the
multiple scales can be determined in a way of consecutively removing either the high-
frequency or low-frequency IMFs from the original data [21]. Note that the standard MSE
can be regarded as a fine-to-coarse approach.

The calculation of fine-to-coarse IMEn based on MEMD is the same as the standard IMEn
based on EMD. The fine-to-coarse IMEn is the SampEn computed over the adaptive scales
selected by removing the high-frequency IMFs, starting from the first IMF,

(3)

where the fine-to-coarse scale  is defined as . Here, N
represents the total number of IMFs, where the residual is always regarded as the last IMF,
in this study. On the other hand, the coarse-to-fine IMEn can be calculated by consecutively
removing the low-frequency IMFs, starting from the last IMF (e.g. the residual),

(4)

where the coarse-to-fine scale  is defined as .

In this study, the parameters m and r in the calculation of SampEn were chosen as 2 and
0.15×SD, the standard deviation of the processed signal segment, respectively, to minimize
the standard error of entropy estimation [23].

C. Processed Dataset Description
The dataset used in this study was selected from spontaneous EMG recordings of 9 subjects
(six males, three females, 57 ± 7 years) with “Definite ALS” or “Probable ALS with
Laboratory Support”. The study was approved by the local Institutional Review Board.
During the data collection, each subject was positioned comfortably supine on a clinical bed
in a quiet examination room without any disturbing sensory stimuli. The spontaneous
surface EMG signals were recorded bilaterally from the thenar muscle while the tested arm
was placed in its resting position. A Refa system (TMS International, Enschede, The
Netherlands) comprising a 128-channel amplifier and a flexible surface electrode array with
64 (in an 8 × 8 square formation) recording probes (1.2 mm diameter, 4 mm inter-electrode
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distance) was used for data collection. The system built-in band-pass filter was set at 20–500
Hz, and all recorded surface EMG signals were sampled at 2 kHz per channel. The duration
of each spontaneous muscle activity recording from ALS subjects lasted at least 4 minutes.

From the spontaneous surface EMG recordings of the ALS subjects, three types of
spontaneous action potentials were selected from the database in term of their firing
patterns. One type represented the sporadic spikes firing randomly at very low firing rates.
The other type always exhibited a series of spikes firing regularly, which was similar to a
motor unit action potential at minimal activation. The third type represented high-frequency,
repetitive action potential discharges, such as doublets, triplets, multiplets, or prolonged
iterative spontaneous discharges (i.e. myokymic or neuromyotonic discharges). In contrast
to the different spontaneous EMG patterns from the ALS database, a normal spontaneous
EMG with quiescent baseline recordings was also reviewed, using data collected from 9
healthy control subjects. For each type of the three spontaneous EMG patterns and the
normal surface EMG baseline pattern, 25 representative data segments (each 500ms in
length) were selected from the database, generating 100 signal segments in total. A data
segment length of 500 ms was expected to be adequate to show distinct information
regarding the general firing rate and action potential duration of the considered spontaneous
EMG patterns. A longer length segment might contain too much background noise, whereas
a shorter one might not sufficiently reveal patterns having multiple discharges.

D. Data Processing
All of the selected 100 signal segments were reshaped into a multivariate form as a 100-
dimensional dataset which was suitable for MEMD analysis. The source code for MEMD,
which is publicly available from the webpage of MEMD algorithm’s proposer [32], was
exploited for fast and convenient implementation of this algorithm in Matlab (version 2012a,
The Mathworks Inc., MA) environment. Since the number of directions is suggested to be
considerably greater than the dimension of multivariate signals [32], we set the number of
directions at 512 for MEMD implementation. The resultant scale-aligned IMFs for each
signal segment were obtained at the same time. Both the fine-to-coarse and coarse-to-fine
IMEn analyses were then performed over multiple scales interpreted by the consecutive
summation of a part of IMFs along different ways. The standard MSE results were also
computed for each signal segment for comparison purpose. A one-way analysis of variance
(ANOVA) was performed to examine the effect of entropy measure across multiple scales
on the discrimination of different spontaneous EMG patterns. The level for significance was
set to 0.001.

III. Results
A. Standard MSE Analysis

The standard MSE was performed on each of the selected segments of spontaneous EMG
signals. Fig. 1 shows the results of MSE (averaged from 25 segments for each spontaneous
EMG pattern) as a function of scale factor used in the coarse-grained procedure. It was
found that at all scale factors, the MSE curve for normal surface EMG baselines (indicated
as the healthy pattern) was above the curves for the other three patterns with its entropy
values varying approximately from 1.5 to 2.4. The MSE curve for the repetitive pattern was
below the other three patterns with its entropy values lower than 0.5, which were relatively
consistent with the entropy values at the original scale. The MSE curves for the sporadic and
tonic patterns exhibited a similar trend that entropy increased at scale factors below 6, then
maintained relatively stable or slightly decreased at scale factors higher than 6. At the scale
factors from 6 to 14, there was a significant difference (p < 0.001) between any two of the
four spontaneous EMG patterns.
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B. MEMD-based IMEn Analysis
Fig. 2 shows the corresponding IMFs for each of the representative signal segments for the
three spontaneous EMG patterns. It can be observed that the IMFs with the same scale index
exhibited a similar common oscillation mode across all the signal segments.

After applying the MEMD method on the entire spontaneous EMG dataset reshaped into
multivariate form, the aligned IMFs across all signal segments were obtained. Then, the
IMEn analysis could be performed over the obtained scales. Fig. 3 shows the coarse-to-fine
IMEn results averaged from 25 selected segments for each of the four different spontaneous
EMG patterns. For scale one (the original scale), the healthy pattern and the repetitive
pattern demonstrated the highest and lowest entropy values, respectively (p < 0.001 for
either the healthy or repetitive pattern vs. any of the others), and the entropy values for the
sporadic and tonic patterns partly overlapped (p = 0.002). As the fine-scale IMFs were
progressively removed from the raw signal segment, entropy values for all four patterns
generally exhibited a decreasing trend but with different decreasing rates. With relatively
high scales, the entropy for the healthy pattern dropped most rapidly, and the IMEn values
for the sporadic and tonic patterns were likely to be separate. Across all segments selected
from the spontaneous EMG database, it was found that a significant difference between any
two of the four patterns occurred at the 4th scale (p < 0.001). The tonic pattern could be
mostly distinguished from the sporadic and repetitive patterns (p < 0.001) at the 5th scale
while its entropy overlapped with the healthy pattern at this scale (p = 0.008).

The coarse-to-fine IMEn results for the same selected 100 segments are shown in Fig. 4.
Across the examined signals, it was observed that the entropy value for each pattern did not
vary significantly as the coarse-scale IMFs were gradually discarded. The resultant IMEn
curves for each pattern were stable from the 1st to 7th scale and then started to decrease
from the 8th scale. No significant difference could be observed between the sporadic and
tonic patterns at any scale (p > 0.001).

IV. Discussions and Conclusion
The nonlinear dynamic properties of surface EMG signals have been examined with
different entropy algorithms [24]–[30]. Compared with the single scale entropy, the MSE
analysis has been proved to be a more suitable approach in quantifying the degree of
complexity of physiological signals having multiple spatiotemporal scales [11]–[15]. In this
study, two MSE algorithms, i.e. the standard MSE and the MEMD based IMEn, were used
to characterize the spontaneous EMG patterns often observed in diseased muscles.

Across almost all scales, the normal surface EMG baseline (or the healthy pattern) yielded
the highest entropy values over the other three spontaneous EMG patterns. This indicates
that the normal surface EMG baselines are more complex and irregular than the spontaneous
sporadic, tonic or repetitive spikes. This observation is in accordance with the general
hypothesis proposed in the medical sciences [31] that abnormal physiology is always
associated with more regularity. Similarly, the repetitive spikes showed the lowest entropy
values over all scales, suggesting that they have the lowest complexity level and contain the
least information among different spontaneous EMG patterns.

When only the original time scale (raw data) was considered, the repetitive spontaneous
spikes and the normal surface EMG baseline can be easily discriminated from others by
their lowest and highest mean entropy values, respectively. This was consistent with the
findings of our previous study using the single-scale entropy analysis [8]. However, the
sporadic and tonic discharge patterns may have overlapping entropy values at the original
scale. By contrast, when calculating entropy that takes into account different time scales of
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the time series, the resultant dynamic entropy curves could illustrate valid differences
between different spontaneous EMG patterns. This may enhance discrimination capacity.

With the current dataset, the MEMD method synchronously yielded 10 aligned IMFs
(scales), and the fine-to-coarse IMEn analysis exhibited significant differences between the
four patterns at scale 4. In contrast, the standard MSE analysis had to be performed over
more scales (larger than 6) in order to discern such a significant difference. The relative
small scale number required by the IMEn analysis may be due to the adaptive multiscale
approach of the EMD, where there is nonlinear selection of scales according to the
processed signal characteristics [16], [18]–[21]. In contrast, the coarse-grained procedure
used for standard MSE is purely linear. The advantage provided by the EMD family
methods makes IMEn more appropriate in characterizing the dynamics of the physiological
signals, as compared to the standard MSE.

Another advantage of MEMD-based IMEn analysis is that the scale-aligned IMFs derived
from the MEMD allow not only fine-to-coarse but also coarse-to-fine IMEn analysis [21].
The coarse-to-fine IMEn analysis illustrated a steady entropy curve for each discharge
pattern in scales 1 to 7, indicating that the entropy has relative dependence on fine-scale
(high-frequency) components in the spontaneous EMG. The rationale behind this
observation was that all the selected surface EMG recordings had a quiescent baseline, and
thereby the amplitude of their coarse-scale (low-frequency) components was very low, as
indicated by the high order IMFs in Fig. 2. By comparing the fine-to-coarse and coarse-to-
fine IMEn results, we can infer that the first 5 IMFs (representing the high-frequency
components) contain the most distinguishing features of the signal dynamics for
discrimination between different spontaneous EMG patterns.

The mean SampEn value of the tonic spikes was slightly lower than that of the sporadic
spikes at the original scale. However, the tonic spikes yielded significantly higher SampEn
values than the sporadic spikes at larger scales, indicating that the tonic spikes had higher
complexity level and contained more information than the sporadic spikes. This observation
revealed by the MSE analysis supplements our previous findings using single-scale entropy
analysis [8]. More specifically, with the fine-to-coarse IMEn analysis (Fig. 3) and the
standard MSE analysis (Fig. 1), the entropy curve of tonic spikes started below but exceeded
that of sporadic spikes as the scale factor increased. The relative increase in complexity of
the tonic spikes compared with the sporadic spikes implies the long-range variability in the
tonic dynamics due to the inherent changes of firing properties over time.

It should be noted that this study focuses on the MSE analysis of different spontaneous
motor unit discharge patterns. The results were obtained from 100 signal segments (500 ms
in duration) selected from the spontaneous EMG database (with 25 segments representing
each of the spontaneous motor unit discharge patterns). Our objective was not, however, to
compare the complexity of spontaneous EMG between ALS and neurologically intact
subjects or between different subjects. For a specific subject, we acknowledge that there are
many other factors (e.g., signal segment selection, segment duration, EMG channel, etc.)
that may influence the MSE analyses, and these factors must be considered when different
subjects are to be compared.

In conclusion, MSE analyses including the standard MSE and the MEMD-based IMEn were
performed in this study to characterize the dynamics of different spontaneous EMG patterns.
Both methods offered a distinctive description for different patterns in terms of their
complexity changing over multiple time scales. Significant differences between any two
spontaneous EMG patterns were observed in multiple scales of the standard MSE and the
IMEn analyses, while such significance may not be observed from the single scale entropy
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analysis. Furthermore, taking advantage of the MEMD that adaptively decomposes
multivariate time series into a finite set of mode-aligned IMFs, the IMEn analysis required a
relatively low scale number compared to the standard MSE to discern significant differences
among different spontaneous EMG signals. These findings from the MSE analysis expand
our understanding of the nonlinear dynamic properties of different spontaneous EMG
patterns, which may be related to the spinal motoneuron or motor unit’s integrity.
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Fig. 1.
The standard MSE results for the four different spontaneous EMG patterns. Error bars refer
to the standard deviation of the entropy value averaged across all signal segments for each
pattern. The asterisk sign “*” represents significant difference between any two of the four
patterns.
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Fig. 2.
Examples of representative signal segments for three distinct spontaneous EMG patterns: (a)
sporadic discharge, (b) tonic discharge, and (c) repetitive discharge, and their corresponding
IMFs after the MEMD.

Zhang et al. Page 13

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
MEMD-based fine-to-coarse IMEn results for the four different spontaneous EMG patterns.
Error bars refer to the standard deviation of the entropy value averaged across all signal
segments for each pattern.
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Fig. 4.
MEMD-based coarse-to-fine IMEn results for the four different spontaneous EMG patterns.
Error bars refer to the standard deviation of the entropy value averaged across all signal
segments for each pattern.
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