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Abstract

Cancer initiating cells have been documented in multiple myeloma and believed to be a key factor

that initiates and drives tumor growth, differentiation, metastasis, and recurrence of the diseases.

Although myeloma initiating cells (MICs) are likely to share many properties of normal stem

cells, the underlying mechanisms regulating the fate of MICs are largely unknown. Studies

designed to explore such communication are urgently needed to enhance our ability to predict the

fate decisions of MICs (self-renewal, differentiation, and proliferation). In this study, we

developed a novel system to understand the intercellular communication between MICs and their

niche by seamlessly integrating experimental data and mathematical model. We first designed

dynamic cell culture experiments and collected three types of cells (side population cells,

progenitor cells, and mature myeloma cells) under various cultural conditions with flow

cytometry. Then we developed a lineage model with ordinary differential equations by considering
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secreted factors, self-renewal, differentiation, and other biological functions of those cells, to

model the cell–cell interactions among the three cell types. Particle swarm optimization was

employed to estimate the model parameters by fitting the experimental data to the lineage model.

The theoretical results show that the correlation coefficient analysis can reflect the feedback loops

among the three cell types, the intercellular feedback signaling can regulate cell population

dynamics, and the culture strategies can decide cell growth. This study provides a basic

framework of studying cell–cell interactions in regulating MICs fate.

Index Terms

Cancer initiating cell; lineage model; mathematical modeling; multiple myeloma (MM); parameter
estimation

I. Introduction

Multiple myeloma (MM) is the second most common hematologic malignancy, with about

15,000 new cases per year in USA, and remains incurable with a median survival of 3–5

years even with recently developed novel therapeutic agents and high dose chemotherapy

with autologous stem cell transplantation [1]. Failure of myeloma cells to undergo apoptosis

plays an important role in the accumulation of myeloma cells within the bone marrow.

Several anti-apoptotic proteins and anti-apoptotic signaling cascades have been identified

that contribute to the survival of the myeloma [1], [2]. Actually, adhesion of MM cells to

bone marrow stromal cells (BMSCs) upregulates cytokine secretion from both BMSCs and

tumor cells, and then triggers cytokine-mediated tumor cell growth, survival, drug

resistance, and migration.

It has become clear that many cancers, including MM, arise from a small population of

cancer stem cells that retain key stem cell properties, including self-renewal, to drive

tumorigenesis. The presence of myeloma stem cells or myeloma initiating cells (MICs) is

relatively well documented in the pioneer works by Matsui et al. [3], [4], compared to most

types of cancers. Previous studies have suggested that CD138+ mature myeloma cells

cannot give rise to clonogenic MM growth in vitro but a small amount of CD138−B cells

can [3]. These cells present in myeloma patient blood samples or myeloma cell lines

possessing the characteristics shared by stem cells, i.e. they can be identified by Hoechst

side population (SP) and positive Aldefluor assay [4]. Studies have shown that well-known

chemotherapeutics (dexamethasone, lenalidomide, bortezomib, and 4-

hydroxycyclophosphamide) inhibit CD138+ mature myeloma cells but had little effect on

MICs in vitro [4]. The earlier experimental findings agree with the clinical observation that

many agents are active in killing MM cells, but majority of the patients relapse, likely due to

regrowth of residual MICs. SP is a phenotype on flow cytometry, originally characterized in

murine hematopoietic stem cells, but is now described to be a feature of many different stem

cell populations [5]. In this study, we propose to use SP as the marker to select MICs.

Although MIC may hold many properties of normal stem cells, the underlying mechanism

of MIC development is largely unknown, and even the identification and purification of

MIC from tumor is a challenge. Hence novel methods and biomarkers used to label and

Peng et al. Page 2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



isolate MIC will be of great importance for further MIC studies and, subsequently, cancer

therapy. Furthermore, the proliferation and differentiation of MIC will significantly affect

the tumor growth, evolution, and heterogeneity as well. Therefore, understanding and

quantitatively modeling the patterns of MIC commitment at cellular level and the

mechanisms of modulating MIC fate at molecular level will enhance our ability to predict

the tumor development, treatment outcomes, and novel therapy strategies.

Studies have suggested that the MICs may play an important role in supporting MIC lineage

and that targeting MIC lineage is an attractive therapeutic approach for curing MM.

However, the study of MIC linage is currently hampered by the lack of in vitro and in vivo

models suitable for evaluating this interaction. We will use the model established in this

study to start answering some fundamental questions about this interaction such as apoptosis

(survival), proliferation, and differentiation of various stages of MM cells, i.e., MICs,

progenitor cells (PCs), and mature myeloma cells (MCs), as well as secreted inhibitory and

stimulatory factors. In our developed model, we incorporate different stages of MM cell

development and consider self-renewal and differentiation for MM cells. In addition, the

model also includes the feedbacks between different types of cells during MM cell

development, which is regulated by stimulation/inhibition factors, such as various cytokines

secreted by diverse types of cells. The purpose of this study is to take advantage of our

expertise in cell biology and computational modeling to develop coherent experimental

protocols and construct mathematical models for understanding the mechanism underlying

MIC evolution from subcellular level to cellular level.

The rest of this paper is organized as follows. In Section II, we present the cell culture

procedure and the experimental data. Based on these data, a mathematical model to simulate

the cell–cell interactions as well as the MM cell growth are constructed in Section III, and

then some theoretical results predicted from the model are shown in Section IV. Finally, we

present some discussions and conclude the paper in Section V.

II. Cell Culture and Experimental Data

A. Hoechst Side Population Analysis and Cell Culture

Hoechst staining was performed according to the protocol outlined by the Goodell’s lab at

the Baylor College of Medicine. Briefly, human MM Roswell Park Memorial Institute

(RPMI) 8226 cells were harvested by centrifuge and washed in PBS, and then re-suspended

at 1 × 106 cells/mL in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10

mM HEPES (Invitrogen) and 2% FBS with Hoechst 33342 dye at a final concentration of 10

g/mL. After incubation at 99 °F for 60 min, the cells were centrifuged and re-suspended in

cold Hanks’ balanced salt solution (HBSS) buffers with 2 g/mL propidium iodide (PI) to

exclude dead cells. Sample was then put on ice before sorting. Hoechst dye was then excited

with UV laser at 350 nm and signal measured with Hoechst blue and Hoechst red filters. SP

cells were sorted out by cell sorter and used for further experiments. The collected SP cells

were then cultured as explained later.

As summarized in Fig. 1(a), the SP cells were sorted and cultured in RPMI 1640 (10% FBS)

for four days and then 80% of cells were resorted for the SP cells. The remaining 20% of the
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cells were then separated into two groups, i.e., “nonsorted & old medium (NSOM)” (1/2 of

the old medium and 1/2 of fresh RPMI 1640 plus 10% FBS) and “nonsorted & new medium

(NSNM)” (fresh RPMI 1640 plus 10% FBS), for further SP analysis at Day 9 and Day 14.

The resorted SP cells were also divided similarly as earlier into two groups, i.e., “sorted &

old medium (SOM)” and “sorted & new medium (SNM)”, for further SP analysis at Day 9

and Day 14. Before the SP analysis, the total cells were stained with CD138-PE as a marker

for cell differentiation from SP cells to PCs (CD138− non-SP cells) or MCs (CD138+ non-

SP cells).

The results indicated that when sorted SP cells were cultured for four days, most of

progenies were committed to PCs or MCs with only 2.17% SP cells remaining.

Additionally, SP cells continued to decline at Day 9 to only 0.83% under the condition of

NSNM, while most cells died at Day 9 under the condition of NSOM [data thus not shown

in Fig. 1(a)]. Similarly, the resorted SP cells shown significant declining of SP cells with old

medium compared to replacing new medium at Day 4. These findings suggest that the

differentiated cells may secret inhibitory factors to inhibit the development of MM cells. In

addition, Fig. 1(b) shows two examples of the flow cytometry data under conditions of SNM

at Day 9 and SOM at Day 9.

III. Mathematical Model Construction

A. Lineage Model of MIC, PPC, CPC, and MC

The hematopoietic hierarchy can be divided into a number of discrete compartments [see

Fig. 2(a)] from MICs to fully differentiated MCs. Each compartment can be viewed as

representing a cell population at a distinct state of maturation, with unidirectional transition

between compartments. Our previous study [6] showed that MIC may undergo self-renewal

and differentiation. A cell population can be constructed based on each compartment of the

lineage model, in which the number of cells depends on the number of cells entering from

the earlier compartment, the cell proliferation rate, and the probability of self-renewal.

As it is described in Fig. 2(b), the MICs can self-renew or differentiate to primitive PCs

(PPCs) and committed PCs (CPCs), and the CPCs also can self-renew or differentiate to

MCs, and MCs can proliferate by themselves. In addition, apoptosis will be considered in

the stage of MC [7].We consider several compartments during the MIC development as

modeled in [8]–[10]. The major purpose is to elucidate the dynamic changes of the numbers

of these four cell types during MIC development.

As we can see from Fig. 2(a), X1 represents the number of MICs, X1 to X10 represent the

number of PPCs in each compartment for the process of progenitor development, X1 to X12

represent the number of CPCs in each compartment for the process of progenitor

development, andX13 toX18 represent the number of MCs in each compartment, respectively.

We denote fi as the probability of self-renewal of MM cells in the ith compartment. µi

represents the proliferation rate of MM cells in the ith compartment; dMC represents the

apoptosis rate of MCs. We ignore the apoptosis terms for MICs, PPCs, and CPCs [see (1)–

(2)], because the apoptosis rates are rather small in those stages. Therefore, by referring to
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[8]–[10], an ordinary differential equations (ODEs) system of the lineage model for MIC

development can be constructed as follows:

(1)

(2)

(3)

Note that the range of i is from 2 to 12 in (2) and from 13 to 18 in (3). This lineage model is

a deterministic model, which describes the growth of MM cancer cells at different stages. It

is worth noting that, although this type of lineage model of stem cell development has been

well established in literature such as [8]–[10], none of them has paid attention to the MIC

development, which is the focus of our work. For example, [8] focused on neural stem cell,

[9] hematopoietic stem cell, and [10] mesenchymal stem cell. Next we will focus on the

determination of the major parameters in the lineage model, which include self-renewal

probabilities and proliferation rates, by linking them to the secreted factor system.

B. Secreted Factor System

In order to completely build the mathematical model for the considered MICs development

system, we design a secreted factor system to describe how the different cell compartments

interact with each other, how the factors are secreted from cells at different stages, and how

the major system parameters in the lineage model are determined by the secreted factors.

Fig. 2(b) gives us an intuitive diagram for this system, where SSF1 and SSF2 represent

secreted stimulatory factors that are able to stimulate the survival of MM cells and ISF1 and

ISF2 represent secreted inhibitory factors that are able to inhibit the survival of MM cells.

Briefly, SSF1 produced by MCs stimulates the self-renewal of MM cells, SSF2 produced by

MCs stimulates the proliferation of MM cells, ISF1 produced by MCs inhibits the

proliferation of MM cells, and ISF2 produced by PPCs inhibits the self-renewal of MM

cells. The secreted factors used here represent the general relationship of different known or

unknown molecules instead of some specific molecules. The major reason of the usage of

the general representation is because the secreted factors remain largely theoretical and most

of them are still needed to be identified by research in the future though some potential

candidates have been identified in the literatures. For example, TGF-β is a well-established

inhibitor of stem and progenitor expansion in vitro and in vivo [7], IL-8 suppresses myeloid

colony formation in vitro [11], a few molecules with stimulatory effects on self-renewal and

proliferation have been reported as being expressed by hematopoietic cells [9].

Then, by referring to [9], we model the secreted factor system as ODEs (4)–(7) with Hill-

type functions to describe the feedback loops shown in Fig. 2(b)
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(4)

(5)

(6)

(7)

Note that Hill-type functions are used herein to substitute for the linear functions proposed

in [9], for Hill-type function is more reasonable to describe a certain growth from a

biological point of view. In this system, nMC denotes the number of MCs given by the sum

of X13 to X18; nCPC denotes the number of CPCs given by the sum of X1 to X12; the

parameters are described in Table I. Finally, we complete the lineage model by linking

together with the secreted factor system and using algebra equations incorporating with Hill-

type functions as well as Gaussian-type functions to describe the self-renewal probabilities

and proliferation rates as (8)–(10)

(8)

(9)

(10)

Note that the range of i is from 1 to 18 in (8) and from 1 to 12 in (9) and from 13 to 18 in

(10). It is important to note that we build the earlier algebra equations by referring to [9]

meanwhile transforming the Eq. (16)] in [9] into two equations (9) and (10) herein to

distinguish between the two cases of CPC and MC. In the earlier equations, τD denotes the

time for 50% of the cells to enter cycle and kt denotes the Hill coefficient defining the rate at

which cells are induced to cycle and here we set τD = 2 days and kt = 4 as previously

described [9], and the other parameters are described in Table I.
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C. Parameter Estimation

The resulting model as described through (1)–(10) contains 21 unknown parameters shown

in Table I. Dynamic data from experiment shown in Fig. 1(a) was used as a training set to

estimate those parameters through a reverse engineering strategy. The objective function,

which is based on the errors between theoretical and experimental data, is defined as

follows:

(11)

In the earlier objective function, ‖·‖ denotes the L2 norm operator; Θ=(θ1, θ2, …, θ21)

denotes the vector of parameters in the lineage model; Ω is the available parameter space; I

represents the number of experimental stages that is set as I = 4; Ji represents the number of

time points of observation for ith stage of experiment;  represents the jth time points of

observation in the ith stage; and ωi represents the corresponding coefficients of the weights

in the four different stages, and here we set all of them as 1 equally based on the

experimental conditions and model assumptions. There is one time point for the first two

stages of experiments, two time points for the last two stages of experiments, and the

corresponding parameters are set as 

for i = 2, 3. In addition, the two variables, V(th) and V(exp) represent the theoretical and

experimental vectors of the observations composed of three types of cells, i.e., V = (pSP,

pPC, pMC), where pSP, pPC, and pMC denote the percentages of SP cells, PCs, and MCs

over the total cells (TCs).

Finally, a total of 18 system outputs (experimental data) are therefore used to fit 21 model

parameters listed in Table I by minimizing the earlier objective function, namely

(12)

Because of the highly nonlinear and multi-modal nature of the objective function (J), the

multi-scale algorithm based on Particle Swarm Optimization (PSO) [12], [13] was used to

solve this nonlinear programming problem. The whole algorithm included the following

three steps. The first step is to determine the rough searching range. Because the model was

built using biological knowledge, the involved parameters had the corresponding biological

meanings. Accordingly, we could get the rough searching range. The second step is to

globally search the optimal solution on the scale of 10Θ1 (Θ1 is the optimized vector).

Because of the limitation of PSO, we search the optimal solutions 20 times independently

and choose the best one. The third step is to locally search the optimal solution on the scale

of Θ2 (Θ2 is the optimized vector). PSO was employed to search the optimal solution.

The final results of parameter estimations are shown in Table I, and the corresponding fitting

results are shown in Fig. 3(a)–(c). Most of the fitting errors are rather small except for those

under the condition of SNM at Day 14 shown in Fig. 3(a). There may be several reasons
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causing this problem. First, we only considered four secreted factors in our model, SSF1,

SSF2, ISF1, and ISF2. However, in the intercellular environment there are many factors that

are involved in the self-renewal, differentiation, and proliferation of different MM cells.

Second, the signaling pathways related to the secreted factors were not considered. In other

words, the lineage model is still a simplified model. We hope that the combination of the

lineage model and signaling pathway model will provide more detailed simulation of cell

development in the future research.

D. Parameter Identifiability and Sensitivity Analysis

Coefficient of variation (CV) based on bootstrapping approach [14] was used to study

whether and how many parameters are identifiable. CV is a normalized measure of

dispersion of a probability distribution of a variable, which is defined as the ratio of the

standard deviation to the mean. Briefly, we first resampled the experimental data for 100

times using bootstrapping approach. Then, based on the resampled data, we obtained 100

sets of estimated parameters using the proposed optimization algorithm. Finally, based on

the estimated parameters sets, we calculated the CVs for all parameters and defined the

number 1 as the threshold to determine the identifiability for parameters. The results are

shown in Table I, in which the CVs marked with red color illustrate the corresponding

parameters are nonidentifiable and thus about 76% of the parameters are identifiable in our

model.

Parameter sensitivity analysis is a tool to quantitatively determine the effect of specific

parameters on the output. To understand the relationship between system responses and

variations in individual model parameters, local parameter sensitivity analysis was

performed (see [15] for detail). Briefly, we increased or decreased the estimated value of

each parameter by 1% and then checked the response of the system outputs in order to

determine the corresponding parameter sensitivity. In Fig. 3(d)–(i), the results show the

percentage changes of system outputs are less than 6% for most all parameters as increased

or decreased by 1%, which demonstrates the stability of our model. It is also worth noting

that three most sensitive parameters may control the antagonistic relationship between

mature and primitive cell compartments, including the 1st parameter fmax, the 2nd parameter

nmax, and the 19th parameter D1 as it has been shown that the regulation of stem cell self-

renewal and proliferation plays an important role in preventing cancer cells [16].

E. Model Cross-Validation

Here we use cross-validation to evaluate how accurately our model will perform. In the

cross-validation technique, we first partitioned the observations into two complementary

subsets, and then used one subset to train the model and the other to test and validate the

model. In our study we used leave-one-out cross-validation. That means we used one single

observation from original sample as the validation data and the remaining observations as

the training data. This process was repeated until each observation in the dataset was used

once as the validation data. The results are shown in Fig. 4.

Briefly, we first got the estimated parameters of the lineage model based on the whole

dataset, and the estimated parameters of the lineage model based on the dataset in which one
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single observation is deleted. Then we calculated the relative errors (REs) for all parameters

by comparing these two sets of estimated parameters. The results are presented in Fig. 4(a)

where we can see that the RE is rather large for the 8th parameter µ+ and the 20th parameter

D2 .

Fig. 4(b)–(d) shows the comparison results between the experimental data and the predicted

outputs from the estimated model trained by the leave-one-out dataset. About 94% of results

are consistent with the experimental data. For example, when we leave out the single data of

“the percentage of PCs at Day 9 under the condition of SNM” from the whole dataset, the

predicted data from the model trained by the leave-one-out dataset does not show a good

agreement with the experimental data, as shown in Fig. 4(c). This happens may be due to the

following reasons. First, the size of the whole dataset is not big enough, hence when we

leave one out of the dataset, some important information such as nonlinear property could be

lost. Second, we did not consider signaling pathways in the different types of cells in the

lineage model, which could make the model inaccurate in cell population prediction.

Generally speaking, our model can be used to do the prediction in practice because only one

out of 18 cases did not show good performance.

IV. Theoretical Results

A. Correlation Coefficient Analysis Reflects Feedback Loops

To systematically explore the regulation function of the model parameters in an unbiased

manner, the Pearson correlation coefficients (PCCs) were employed to investigate the

relationships between 21 model parameters and 18 system outputs. The detailed method for

the calculation of PPCs in the simulation is provided in the supplementary.

The results are presented using a heat map shown in Fig. 5. First, the results show the strong

correlations between the 2nd parameter nma and most of the model outputs, which means

that the parameter nmax plays an important role in regulating MICs development. Second,

the 4th parameter DGR shows strong negative correlations with the outputs of the

percentages of SP under all cultural conditions. Third, the outputs of the percentages of MCs

under all cultural conditions have strong correlations with all parameters. Finally, the

correlation is significantly negative between the 19th parameters D1 and the 14th output (the

percentage of PCs under the condition of SNM at Day 9), which indicates that the secreted

factors produced by MCs have significant effects on regulating the MICs development

through the corresponding feedback loops depicted in Fig. 2(b).

B. Intercellular Feedback Signaling Regulates Cell Population Dynamics

Here, we simulated the dynamics of the number of total cells and the percentage of SP in

response to different theoretical treatments shown in Fig. 6. In the simulation, the culture in

each condition was intermittently renewed (i.e., all secreted factors are reset back to zeros)

every two days after Day 4.

First, we considered the treatment of increasing the self-renewal rate (increasing fmax by

50%). The simulation results in Fig. 6 show that the number of total cells expands faster and

the percentage of SP reaches the steady stage in the same short time period compared to the
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control condition, which means that increasing self-renewal rate can only influence the

number of total cells but not the percentage of SP. Second, we considered the treatment of

partially blocking the differentiation (decreasing µmax by 50%). The results show that the

increase of the total cell number slows down and the percentage of SP is rather high

compared to the control condition. Third, we considered the treatment of “unresponsive to

the promoters” in which the promotion factors do not affect the self-renewal and

differentiation (setting SSF1 = SSF2 = 0 in the model). The results show the increase of the

total cell number is totally inhibited, i.e., blocking the stimulatory factors can result in

inhibiting the growth of cell population, indicating that stimulatory factors play important

roles in regulating the MM cell development. From the discussion earlier, we can conclude

that stimulatory factors may play a major role in regulating the self-renewal and

differentiation of MM cells.

C. Culture Strategies Decide Cell Growth

We also in silico studied the cell culture strategies based on the established linage model by

renewing the medium at three different frequencies of culture manipulations, i.e., “1 Day”,

“2 Days”, and “3 Days”. Three culture strategies were performed in the simulation as

follows. “1 Day”: resetting all secreted factors back to zeros every 1 day after Day 4 culture;

“2 Days”: resetting all secreted factors back to zeros every 2 days after Day 4 culture; “3

Days”: resetting all secreted factors back to zeros every 3 days after Day 4 culture.

Fig. 7(a) shows the results of the percentage dynamic of SP cells over total cells, the

percentage dynamic of MCs over total cells, and the dynamic of the total cell population,

along with three different cultural strategies described earlier. With the culture strategy of “1

Day”, the total cell number will reach the steady stage early at the 4th day compared to other

two culture strategies. Specially, with the culture strategy of “3 Days”, the total cell number

expands exponentially. Fig. 7(b) and (c) shows the results of the concentration dynamics of

ISF1 and ISF2, respectively, along with three different cultural strategies. Fig. 7(b) shows

that the faster the culture frequency, the faster the maximal concentration of ISF1 increases.

In addition, the concentration of ISF2 is always rather small through 30 days culture with

the culture strategies of both “1 Day” and “2 Days” except that it increases significantly

after 25 days culture with the culture strategy of “3 Days”, as shown in Fig. 7(c). From the

earlier discussion, we conclude that increasing the frequency of culture manipulation can

result in inhibiting the growth of cell population. Thus, manipulating the culture strategy

may make great contributions to the growth of MM cells.

V. Discussion and Conclusion

The goal of this study is to take advantage of our expertise in cell biology and computational

modeling to develop coherent experimental protocols and mathematical models for

understanding the cell–cell interactions between MICs, PCs, and MCs regulating MICs

evolution. We experimentally measured the dynamic population numbers of different types

of cells under various cultural conditions. These data were then employed to construct a

mathematical model consisting of the MIC lineage model and the corresponding secreted

factor system. Finally the model was used to predict some theoretical results. The theoretical
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results showed that stimulatory factors play important roles in regulating the MM cell

development and blocking the stimulatory factors can result in inhibiting the growth of cell

population, and the increasing frequencies of culture manipulation can also result in

inhibiting the growth of cell population. This study provides a basic framework of studying

cell–cell interactions in regulating MIC fate. The obtained results from dynamic system may

be potentially useful for understanding mechanism of cancer stem cells development, as well

as the selection of drug treatments in the chemical therapy by targeting the stem cells.

The main limitation of our wok is that we did not consider the signaling pathways involved

in the lineage model, though recent studies have suggested that many pathways may be

involved in regulating the cellular behavior of cancer stem cells, e.g., Wnt [17], Notch [18],

Hedgehog [19], and so on. Second, although some secreted factors have been identified in

literature, we did not specify them in our model and just simply classify them into four

classes, i.e., SSF1, SSF2, ISF1, and ISF2. Third, we only used the percentages of SP cells,

PCs, MCs over TCs based on many theoretical assumptions, and the dynamic changes of

these cell numbers were not employed in training our model. In addition, more discussions

about the parameters in the model are needed, such as the number of compartments

belonging to the stages of MIC, PC, and MC. In order to discover new drugs for treating

MM, we need more detailed models and more experimental data. In the following work, the

significant pathways will be considered in the model, and more experimental data will be

measured, such as reverse phase protein array data that measure the phosphorylation levels

of the proteins involved in the signaling pathways.
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Fig. 1.
Cell culture procedures and experimental data. (a) The flow cytometry data consisting of the

percentages of three cell types over the total cells under various cultural conditions. (b) Two

examples of the flow cytometry data. The first example shown in the second row is the data

under the condition of SNM at Day 9, and the second example shown in the third row is the

data under the condition of SOM at Day 9 (the first row is for control condition).

Peng et al. Page 15

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 July 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Schematic depiction of MICs development model incorporating functional assays and

positive and negative feedbacks. (a) The model consists of 18 compartments. SP and non-SP

are both composed of CD138− and CD138+. MIC is in the zone of CD138− of SP, PPC is in

the zones of CD138− and CD138+ of SP, CPC is in the zones of CD138− and CD138+ of

SP and CD138− of non-SP, and MC is in the zones of CD138+ of non-SP. (b) All cells are

divided into four types of cells. Each type of cells self-renew. MIC, PPC, and CPC

differentiate to PPC, CPC and MC, respectively. MC undergoes the apoptosis. MCs secret

SSF1 and SSF2 stimulating the self-renewal and the differentiation respectively, and MCs

secret ISF1 inhibiting the differentiation, and CPCs secret ISF2 inhibiting the self-renewal.

Note that there is no other meaning of the usage of two green arrows for each self-renew

except for the convenience of presentation.
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Fig. 3.
Fitting results of parameter estimation and parameter sensitivity analysis. (a–c) The fitting

results between theoretical data and experimental data. The brown (left) bar is the theoretical

data and the green (right) bar is the experimental data. (d–i) The results of model sensitivity

for total 18 system outputs on total 21 kinetic parameters listed in Table I.
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Fig. 4.
Results of leave-one-out cross-validation. (a) The REs between the estimated parameters

trained by the leave-one-out datasets and the estimated parameters trained by the whole

dataset. (b–d) The comparisons between the experimental data and the theoretical data

predicted from the developed model trained by the leave-one-out datasets.
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Fig. 5.
Theoretical results from function analysis of parameters in the model. The heat map shows

the results of Pearson correlation coefficients (PCCs) between total 21 model parameters

and total 18 system outputs.
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Fig. 6.
Theoretical results from model under various treatment conditions. (a) The results of total

cell number dynamics. (b) The results of the percentage dynamics of SP cells over total

cells. “Increase self-renewal rate”: increasing fmax by 50%; “Partial differentiation block”:

decreasing µmax by 50%; “Unresponsive to the promoters”: setting SSF1 = SSF2 = 0.
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Fig. 7.
Theoretical results from model under various culture strategies. Three culture strategies

were simulated based on the established linage model by renewing the medium at different

frequency of culture manipulations, i.e., “1 Day”, “2 Days”, and “3 Days”. (a) The

percentage dynamic of SP cells over total cells, the percentage dynamic of MCs over total

cells, and the dynamic of the total cell population. (b and c) The concentration dynamics of

ISF1 and ISF2.
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