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Abstract—Automated screening systems are commonly

used to detect some agent in a sample and take a global

decision about the subject (e.g. ill/healthy) based on these

detections. We propose a Bayesian methodology for taking

decisions in (sequential) screening systems that considers

the false alarm rate of the detector. Our approach assesses

the quality of its decisions and provides lower bounds

on the achievable performance of the screening system

from the training data. In addition, we develop a com-

plete screening system for sputum smears in tuberculosis

diagnosis, and show, using a real-world database, the ad-

vantages of the proposed framework when compared to the

commonly used count detections and threshold approach.
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F. Pérez-Cruz is with the Department of Signal Theory and Com-

munication, Universidad Carlos III de Madrid, Madrid ,Spain. He

is also a Machine Learning Researcher at Amazon (e-mail: fer-

nando@tsc.uc3m.es).

A. Artés-Rodrı́guez is with the Department of Signal Theory and

Communication, Universidad Carlos III de Madrid, Madrid, Spain (e-

mail: antonio@tsc.uc3m.es).

M. G. Madden is with the College of Engineering and Infor-

matics, National University of Ireland, Galway, Ireland (e-mail:

michael.madden@nuigalway.ie).

I. INTRODUCTION

Tuberculosis is a contagious illness caused by the My-

cobacterium Tuberculosis, better known as Koch bacil-

lus. In 2011, there were an estimated 9 million incident

cases of Tuberculosis (TB), 0.99 million deaths from TB

among HIV-negative people and an additional 0.43 mil-

lion TB deaths among HIV-positive people (classified as

HIV deaths in the International Statistical Classification

of Diseases) [1].

To diagnose TB, the following methods are used: tho-

rax radiography [2]; biological culture [2], [3]; the Man-

toux (tuberculine sensitivity/skin) test [4]; interferon-γ

tests [5]; amplified nucleic acids-based tests [6] (which

allow lab-on-chip platforms [7], [8]); and sputum smear

microscopy [8], [9]. Of these tests, the two most com-

monly used to check whether a subject is contagious are

biological culture, and sputum smear microscopy [10].

Biological culture is generally accepted as the gold

standard, but the test can take up to four weeks [11].

Sputum smear microscopy is typically used to make a

decision based on a quick examination. However, smear

microscopy has a low sensitivity and is expensive, as an

expert microbiologist is needed to diagnose the sputum.

Therefore, automatic systems to aid the diagnosis have

been proposed [12]–[17] for both auramine-stained and
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Ziehl-Neelsen-stained sputum smears (fluorescence and

conventional microscopy, respectively). These systems

are focused on the classification of the TB bacillus

by applying segmentation techniques to the images and

report high sensitivities when classifying segmented ob-

jects as bacillus (e.g. 94% [13] or 95% [14]), which

clearly renders them useful to assist the expert by finding

objects that are likely to be bacilli, which accelerates

the time needed to process slides. But, despite having

good accuracy in identifying the bacillus in small object

databases, their false alarm rate (1-specificity) (e.g. 1%

[13] or 2% [14]) is too high to analyze subject images

where the proportion of bacilli is low.

The examples of automated systems considered above

have reported to need 3 detections or more [13] or 2

or more [14] to declare a TB-positive smear. Roughly,

taking into account their false alarm rate, these systems

declare a false bacillus per 100 objects examined. If

bacilli are scarce, TB-smear might be declared positive

after only analyzing non-bacilli objects. Bacilli scarce-

ness is usually the case as World Health Organization

recommends that at least 100 fields (non overlapped

images from the sample) have to be examined and 1

bacillus in 100 images is enough to declare a positive

sputum smear [18], [19]. The problem of the false alarm

rate has been pointed out in [20], who devised a sequen-

tial test to manage the false alarm rate by augmenting

the number of images until a performance criterion is

met, which continued our previous approaches to this

problem [21].

As no classifier is likely to have specificity equal to

one, two important questions arise: can we trust these

screening systems for making decisions about smears?

what is the quality of these decisions based on the

bacilli classifier performance (specificity and sensitiv-

ity)? The main contribution of this paper is filling the

gap that exists between classifying bacilli and subjects,

i.e., between classifying objects as bacilli and classifying

smears as TB-positive. We propose an automatic screen-

ing system for TB and evaluate its performance in a

real-life database. We address both the bacilli classifier

(detector) and the subject classifier. Our system sequen-

tially analyses images from a subject until enough bacilli

are detected or enough images are analyzed without

detecting any bacilli according to the decision quality

requirements. The number of images to be examined

and the maximum attainable performance of the subject

classifier are related to the bacilli classifier performance

in the training set, and each subject (smear) diagnosis is

given a quality measure. The bacilli detector architecture

is constrained for real-time amenable operation. The sub-

ject classifier is automatically adjusted given the training

set and it has only three parameters: the thresholds for

stopping the analysis for each kind of decision (TB-

positive, TB-negative) and the a priori probability of

being TB-negative, whose setting is straightforward. Its

design is addressed from a Bayesian point of view and

compared with the commonly used count detections and

threshold approach.

II. MATERIALS AND METHODS

A. Image Acquisition & Database

We have access to auramine-stained images of the

subjects’ sputum that were acquired from a 20× fluo-

rescence Nikon microscope with a Prior automatic slide

loader and a Retiga 2000R camera. We have around 300

1200×1600 RGB images (8 bits per color) using manual

focus for each one of 61 subjects, 12 of which are TB-

positive (have TB bacilli in the sputum). In addition, we

have access to around 90 images per subject for 12 TB-

positive subjects acquired with an autofocus algorithm.
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All the images are unlabeled. The type of subject (TB-

negative or TB-positive) was confirmed by culture (even

though culture is an imperfect tool to determine the

existence of bacilli in the extreme low range, as it uses

a decontamination procedure that may result in killing

some bacilli [19]).

In addition, we have around 5000 labeled patches with

bacilli from previous subjects. This database provides

help to identify the bacilli in our automatic detection

algorithm. Unfortunately, these patches are low quality,

some only containing partial bacillus or several parts

of them, or they are overlapping, or even controversial

images of bacillus (not all doctors agree if the mass in the

patch is a bacillus). After a careful preprocessing we are

left with 1258 “mug shots”. We also have non-bacillus

patches that contain the objects that would pass the

Bacilli Preprocessor (see below) and have been collected

from training TB-negative subjects.

We randomly split the TB-negative subjects into train-

ing and testing sets fixing a 30% for testing purposes.

For the TB-positive subjects we randomly take 7 subjects

for testing from the ones that have been manually

acquired and 6 from the automatically acquired (we put a

larger percentage of TB-positive subjects in the test set

because we have other database for identifying bacilli

and we want to have a similar number of positive and

negative test subjects). Finally, 45 subjects are selected

for training (34 TB-negative and 11 TB-positive) and 28

for testing (15 TB-negative and 13 TB-positive).

Solving this problem accurately is extremely difficult:

first, because we have a global decision (whether the

subject culture has TB bacilli) that might not be error

free, but we need to seek for individual bacillus in the

acquired images, which are not labeled; furthermore, a

dead bacillus in a TB-negative subject (e.g., cured or

with latent TB) looks as the same as a bacillus; and

an TB-positive subject might not have any bacilli in the

acquired images (a little as one bacilli per 100 images

is considered as enough to declare a positive sputum

smear). We need to be able to extrapolate from bacilli

finding to subject classification with high sensitivity and

specificity.

B. Bacilli Classifier

The bacilli classifier has the cascade structure shown

in Fig. 1. It has two parts: the bacilli preprocessor, which

is fast and discards the patches that can not contain

a bacilli (see below), saving processing time; and the

main processing for bacilli, which performs object seg-

mentation and analyzes these objects. An object is only

declared as a bacillus if it reaches the pixels classifier

and is declared bacillus.

1) Bacilli Preprocessor: The image is divided into

patches as shown in Fig. 2. We use several overlapping

grids to avoid the situation where a bacillus is located

on the edge of a patch; ultimately, a bacillus detection is

assigned to the patch of the first grid where most of its

body lies. For the preprocessor we end up with a simple

classifier that focuses on the green component of RGB

images because the auramine tincture is basically green.

It sends to the next step any patch whose minimum

green-color value exceeds a threshold T1, and has P or

more pixels exceeding a threshold T2, and discards the

rest of patches. T1, T2 and P are selected to ensure that

all bacilli on the training set are not discarded.

2) Main Processing for Bacilli: In the patches se-

lected by the Bacilli Preprocessor we perform object

detection. We use Canny edge detection [22], using

the green color for segmentation. Then, following [14]

and [16], we extract a set of rotation and translation

invariant features of each candidate object (see Table I)

and classify the objects using them. This intermediate
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Patches Bacilli Preprocessor Object Segmentation
Invariant Feature

Classifier

Centering

& Rotation
Pixels Classifier Bacillus

Non bacillus Non bacillus Non bacillus

Main Processing for Bacilli

Fig. 1. Bacilli Classifier. This cascade represent the processing steps for each image patch in order to detect bacilli objects.

Fig. 2. Image division. Each grid outputs its patches to be analyzed

but all detections are assigned to the continuous grid.

classifier is tuned for sensitivity close to 1. Finally, the

TABLE I

ROTATION AND TRANSLATION INVARIANT FEATURES.

φ1 Object major axis length.

φ2 Object minor axis length.

φ3 φ3 = φ1/φ2.

φ4 Object perimeter.

φ5 Object area.

φ6 φ6 = φ4/φ5.

φ7−27 Object GPD invariant moments of [23].

φ28−30 Object pixels mean (for each band).

φ31−33 Object pixels standard deviation (for each band).

φ34−36 Object pixels maximum value (for each band).

φ37−44 Fourier descriptors for the boundary [24].

objects classified as non bacillus are discarded, and the

objects classified as bacilli are rotated and centered, fol-

lowing the procedure used by [25]; and classified using

their pixels as features. Both, the invariant feature and

the pixels classifiers are implemented using a Support

Vector Machine (SVM) [26], [27].

C. Subjects Classifier

The bacilli classifier provides an output zi ∈ {0, 1} for

each analyzed patch that identifies whether a bacilli was

detected (zi = 1). We define z = {z1, z2, . . . , zK} as

the K outputs of the bacilli classifier for all the patches

of the analyzed images of a test subject. The rate of

bacilli declarations 1
K

∑
zi approximates the probability

of declaring a bacillus in this test subject, which is the

sum of the unknown probabilities of detection (PD) and

false alarm (PFA) of the bacilli classifier in that subject.

We formalize the global decision about the smear as

a binary hypothesis testing problem [28] that decides

between two alternative hypotheses H0 (TB-negative)

and H1 (TB-positive), which respectively state that an

independent and identically distributed (i.i.d.) set of

samples z (the outputs of the bacilli classifier) has been

generated according to a distribution p(z; θ0) or p(z; θ1).

We model these samples using a Bernoulli distribution

p(zi; θ`) = θzi` (1−θ`)1−zi , where the success probabili-

ties θ0 and θ1 are the probabilities of declaring a bacillus

in a TB-negative and TB-positive smear, respectively.

We consider this binary decision when θ0 and θ1

are fixed but unknown, and they are described by two

i.i.d. sets x = {x1, . . . , xN} and y = {y1, . . . , yM},

respectively, drawn from p(z; θ0) and p(z; θ1). Here, x

(y) are the outputs of the bacilli classifier for all the

patches of the images of a prototype subject for the TB-

negative (TB-positive) smear class. A prototype for each
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class can be chosen as a typical subject or as a limiting

subject (the one that is closest to the other class). We

stress that we only know θ0 (θ1) through x (y) and

therefore some uncertainty will always remain about θ0

(θ1) true value. We propose to address this decision

problem following a Bayesian sequential approach.

In Bayesian statistics, variables and parameters are

treated as random variables and our objective is to

obtain the posterior distribution of the desired quantity

conditioned on the observed variables (and integrating

out the unknowns) [29]. Next, we detail our desired

quantity, how to define the hypotheses and how to bound

our confidence on the decision.

1) Desired Quantity: p(H0|z), is the probability of

the test subject being TB-negative given the outputs

of the bacilli classifier. We compute the posterior for

hypothesis H`, ` = {0, 1} by applying Bayes rule:

p(H`|z) =
p(z|H`)p(H`)

p(z|H0)p(H0) + p(z|H1)p(H1)
, (1)

where p(z|H`) are the likelihoods for each hypothesis

and p(H`) their a priori probabilities (i.e. the probability

of a generic patient being TB-negative or TB-positive).

2) Hypotheses Definition and Likelihoods: If θ0 and

θ1 were known:

p(z|H`) = P (z|θ`) =
∏
i

θ`
zi(1− θ`)1−zi .

However, the only information we have for each hypoth-

esis are the sets x and y. Therefore, the likelihood should

be computed, by integration of the unknown random

variable θ0, as:

p(z|H0) = p(z|x) =

∫
p(z|θ0)p(θ0|x) dθ0 , (2)

where p(θ0|x) is the posterior of θ0 with respect to the

known set x:

p(θ0|x) =
p(x|θ0)p(θ0)

p(x)
=

p(x|θ0)p(θ0)∫
p(x|θ0)p(θ0) dθ0

,

and the prior of θ0, p(θ0), is selected as a beta distribu-

tion:

p(θ0) = beta(θ0|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θ0
a−1(1− θ0)b−1 ,

where Γ(·) is the gamma function. The beta distribution

is flexible and allows a non-informative prior by setting

a = b = 1, which results in a uniform distribution

between 0 and 1. Other values of a and b can be

used to incorporate different prior knowledge. The beta

distribution is also a conjugate prior for the Bernoulli

distribution, which makes the selection of a beta prior

convenient from an analytic point of view: p(θ0|x)

becomes a beta distribution p(θ0|x) = beta(θ0|a0, b0),

where a0 = n1 + a; b0 = N − n1 + b; N is the

number of samples of x and n1 is the number of “1”s

(bacilli declarations) in x. Finally, for any posterior of

θ0 with the form of beta(θ0|a0, b0), the likelihood for

H0 becomes:

p(z|H0) =
Γ(K − k1 + b0)Γ(a0 + b0)Γ(k1 + a0)

Γ(a0)Γ(b0)Γ(K + a0 + b0)
,

(3)

where K and k1 are respectively the number of samples

and the number of “1”s in the test sample z. An

equivalent expression can be computed for p(z|H1).

3) Bounds for the Achievable p(z|H0): When the

number of test samples tends to infinity, the likelihood

p(z|θ0) tends to a Dirac delta function δ(θ0−θ∗), where

θ∗ is the true value of the success probability of the

Bernoulli for the test sample. Therefore (2) simplifies to

p(z|H0)as =

∫
p(z|θ0)p(θ0|x) dθ0 = p(θ0|x)

∣∣∣∣
θ0=θ∗

,

where “as” stands for asymptotic. An analogous reason-

ing gives p(z|H1)as = p(θ1|y)

∣∣∣∣
θ1=θ∗

and by substitut-
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ing these values in (1) we attain

p(H0|z)as =

p(H0)p(θ0|x)

∣∣∣∣
θ0=θ∗(

p(H0)p(θ0|x) + p(H1)p(θ1|y)
)∣∣∣∣θ0=θ∗
θ1=θ

∗

.

(4)

P (H0|z)as only depends on the a priori probabilities of

the hypotheses, the sets of samples which characterize

the hypotheses x, y and the prior distributions on θ0

and θ1, and is limited by the initial uncertainty in

the hypotheses no matter how many test samples are

used. These bounds help to set the stopping threshold

probabilities (see below).

The Bayesian test may be applied sequentially. We

only need to use the recursive rule for the Gamma

function, i.e. log Γ(n+ 1) = log n+ log Γ(n), each time

a new sample from z is processed.

III. RESULTS

A. Bacilli Classifier

The bacilli classifier was developed using Matlab and

LIBSVM [30] package for SVM. The bacilli classifier

sensitivity is obtained by 10-fold cross-validation from

the training labeled bacilli. It is found to be 73.53%. On

the other hand, we can obtain the specificity from the

complete analysis of 15 TB-negative test subjects and

it works out as 99.999% (28 “false alarms” in 6288320

patches). Operation time of the bacilli classifier is around

a second per image, which is the time needed for acquir-

ing an image (operation is pipelined: when an image is

being acquired, the bacilli classifier is processing the last

one). If faster processing is needed, the Invariant Feature

Classifier and the Pixel Classifier can be deployed as

cascade classifiers [31] and/or the complexity of the

SVM boundaries can be reduced [32], with almost no

penalty in accuracy. If even faster processing is required,

the sensitivities of the Bacilli Preprocessor and the

Invariant Feature Classifier can be reduced, which adds

a penalty in the overall bacilli classifier sensitivity.

B. Subjects Classifier

When running the bacilli classifier over all the patches

of the images of the training subjects, we obtain the

bacillus declarations (number of patches that contain

bacillus) summarized in Tables II and III for the TB-

negative and the TB-positive, where “Subject ID” is

the identifier of subject; “#patches” stands for the total

number of patches available; “#bacilli” for the number

of patches that contain a bacillus; and “pdecl. bac.” for the

observed probability of declaring a bacillus.

1) Count and Threshold Approach: This is the most

common approach in the literature [8], [9], [19]. It es-

tablishes a threshold on the number of bacilli detections.

Any smear with as many or more detections is declared

TB-positive. After carefully considering the number of

detections in the training subjects in Tables II and III) we

choose to establish the threshold in 6 bacilli. Therefore,

2 out of 34 TB-negative training subjects will be mis-

classified and the maximum attainable specificity of the

global decision should be lowered by 2/34. Also, 5 out

11 TB-positive training subjects will be misclassified and

the maximum attainable sensitivity should be lowered by

5/11. On the other hand, we fix the number of images

to analyze to 300 (412800 patches) or as many as have

been acquired when 300 images are not available. If we

reach the threshold before analyzing 300 images, we stop

early.

With this strategy (tables not shown) we get the same

decisions than with the Bayesian approach (see below).

For the TB-positive test subjects we get 7 out of 13

correct decisions. The test finishes early in the 7 subjects

with 6 or more bacilli detections (subject 6 in Table IV

has a total of 123 bacilli declarations in 151360 patches
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TABLE II

TB-NEGATIVE TRAINING SUBJECTS. NUMBER OF PATCHES

DECLARED AS BACILLI, AND OBSERVED PROBABILITY OF

DECLARING A BACILLUS.

Subject ID #patches #bacilli pdecl. bac.

30207 425184 0 0

30304 426560 0 0

30881 467840 0 0

30986 443072 0 0

31060 415552 0 0

31547 410048 0 0

32642 443072 0 0

32748 448576 0 0

51523 470592 1 2.125e-6

30261 456832 1 2.189e-6

30619 447200 1 2.236e-6

32550 436192 1 2.293e-6

30825 434816 1 2.300e-6

30911 421056 1 2.375e-6

31230 408672 1 2.447e-6

32955 401792 1 2.489e-6

30880 454080 2 4.405e-6

32688 445824 2 4.486e-6

30855 418304 2 4.781e-6

32750 418304 2 4.781e-6

31549 412800 2 4.845e-6

32111 410048 2 4.877e-6

31245 436192 3 6.878e-6

30262 432064 3 6.943e-6

29994 425184 3 7.056e-6

32497 410048 3 7.316e-6

31522 401792 3 7.467e-6

30783 392160 3 7.650e-6

30877 433440 4 9.228e-6

31934 429312 5 1.165e-5

30998 412800 5 1.211e-5

38841 225664 3 1.329e-5

30214 410048 10 2.439e-5

30663 392160 16 4.080e-5

TABLE III

TB-POSITIVE TRAINING SUBJECTS.

Subject ID #patches #bacilli pdecl. bac.

7 100448 0 0

157512 194016 1 5.154e-6

31087 432064 3 6.943e-6

52707 400416 3 7.492e-6

48940 418304 6 1.434e-5

97649 90816 4 4.405e-5

8 111456 6 5.383e-5

32741 441696 57 1.290e-4

46989 390784 573 1.466e-3

10 155488 327 2.103e-3

9 121088 433 3.576e-3

but the Bayesian test finishes after considering 2752

patches); on the rest, the test runs until 300 images are

examined (the number of bacilli detections for these later

subjects are shown in Table IV [column #bacilli] but

for subject 56036, where the number of bacilli detected

in 300 images increases to 1). For the TB-negative test

subjects we get 15 out of 15 correct decisions. The test

runs until 300 images are analyzed (the bacilli detections

for these subjects are the same than in Table V but for

subject 36856 where the number of bacilli detected in

300 images increases to 3).

2) Bayesian Approach: In the Bayesian approach

we can easily incorporate the information of all our

training subjects. We propose to use a beta distribution

as posterior for each class (TB-positive, TB-negative)

and compute the maximum likelihood estimates of its

parameters from the maximum likelihood estimates of

the declaring-a-bacillus probabilities of the subjects that

belong to that class. Therefore, from the numbers of

Table II we obtain p(θ0|all TB-negative subjects)

as a beta(θ0|0.20753, 35033) (having replaced

zero values by 1 × 10−6 to avoid numerical

problems) and plug it in (3). We calculate
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Fig. 3. Probability of being a TB-negative subject as function of the

asymptotic probability of declaring a bacillus.

from Table III p(θ1|all TB-positive subjects) as a

beta(θ1|0.20583, 305.71). We fix the a priori probability

of subject being TB-negative, p(H0) = 0.5, in order to

not favor any class.

We first explore our training data by obtaining the

asymptotic posterior of being a TB-negative subject

p(H0|z)as, shown in Figure 3, where we can observe

that the maximum of p(H0|z)as is bounded for the

TB-negative subjects (low probability of declaring a

bacillus): it does not rise much beyond 0.72. On the

other hand, for TB-positive subjects (high probability

of declaring a bacillus), p(H0|z)as drops exponentially

from probabilities of declaring a bacillus greater than

10−5. Therefore, with the available training data and

detector capability, we can attain high confidence in

declaring a subject TB-positive, but not so much in

declaring one TB-negative. This is because the posterior

of θ1 for TB-positive subjects captures the fact that some

of them have no or very few bacilli declarations, as is the

case with TB-negative subjects. On the other hand, when

a sufficient number of bacilli are declared, the test is very

confident in deciding that a subject is TB-positive.

Figure 3 helps to select the probability thresholds for

stopping the Bayesian test. But we have to be careful

as the asymptotic procedure assumes that an infinite

number of samples have been analyzed. Therefore, we

test a sequence with no bacilli declarations zzero, to

see which probability threshold is adequate to stop

analyzing a TB-negative subject. Figure 4 shows that

after around 2 × 105 samples, the probability p(H0|z)

reaches the value 0.72. This corresponds to 180 images

without a bacilli declaration and seems an appropriate

moment to stop. Therefore, we set TH = 0.72 as

the first stopping threshold, which corresponds to an

asymptotic probability of declaring bacilli of 10−6. We

set the stopping threshold for a TB-positive subject to

TL = 10−3, which seems a good compromise between

early stopping and decision quality. Figure 3 shows that

this threshold is equivalent to stop analyzing any subject

with asymptotic probability of declaring a bacillus higher

than 2.25 × 10−4. The minimum number of patches

analyzed is 1376, which corresponds to one image.

Otherwise, the test stops when the maximum number

of images is reached. See Figure 5 for a summary of the

patient classifier procedure.

The results of this procedure for the test subjects are

presented in Tables IV and V, where “stop” column

informs whether the test has stopped before analyzing

all the available images; “#patches” are the number of

patches analyzed by the test (which is different to the

number of patches available); and “#bacilli” the number

of detected bacilli in the analyzed patches (again, this

can be lower than the number of bacilli in the available

images). On the one hand, Subjects 50304 and 55798

in Table IV have a similar number of detections, but

the first has a higher rate of bacilli and its probability

touches the TB-positive threshold whereas the second

has its detections in the last images, which makes the
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Fig. 4. Probability of TB-negative subject as function of the number

of samples using an all zeros sequence.

procedure PATIENT CLASSIFIER SETUP

Define a0, b0 for the posterior of θ0. .

II-C2, III-B2..

Define a1, b1 for the posterior of θ1.

Define TL, TH with p(H0|z)as (4) and

p(H0|zzero).

return TL, TH . Stopping Thresholds.

end procedure

procedure PATIENT CLASSIFIER(z, p(H0), TL, TH )

while TL < p(H0|z) < TH do . See (1)

Analyze another image.

end while

return p(H0|z) . Decision quality.

end procedure

Fig. 5. Patient Classifier Algorithm. If p(H0|z) < 0.5 we decide

subject is TB-positive, otherwise we decide subject is TB-negative.

test to be more cautious. Similarly, subjects 6 is decided

a TB-positive patient after only two images because its 5

detections, but the test needs more images (not available)

for subject 2 to meet the requirement of p(H0|z) ≤ TL

TABLE IV

TB-POSITIVE TEST SUBJECTS. WE SHOW THE PROBABILITY OF

BEING TB-NEGATIVE FOR p(H0) = 0.5, THE NUMBER OF PATCHES

USED BY THE TEST AND THE NUMBER OF BACILLI DECLARATIONS

IN THESE PATCHES. WE DECIDE A SUBJECT IS TB-NEGATIVE IF

p(H0|z) ≥ 0.5.

Subject ID stop p(H0|z) #patches #bacilli

32743 1 0.720 238048 0

40279 1 8.95e-4 265568 65

50304 1 8.68e-4 92192 25

51862 0 0.708 436192 1

55165 1 0.720 238048 0

55798 0 0.190 399040 29

56036 1 0.720 238048 0

1 1 0 1376 319

2 0 0.208 105952 8

3 0 0.714 101824 0

4 1 3.71e-50 1376 37

5 0 0.713 99072 0

6 1 5.53e-6 2752 5

and it is decided to be TB-positive but with less certainty.

Table V shows the effect of detections on early stopping:

with the available data and threshold choices, the test

only stopped for subjects with no detections, but those

with one detection were about to stop. We also see

how detections lower the confidence on the TB-negative

decision. Globally, the hard decisions for the subjects,

i.e., the result of thresholding p(H0|z) at 0.5, are the

same than in the count-and-threshold case. We observe

that TB-positive subjects can attain a high confidence

value. However, without a high a priori probability

for H0 increasing the probability for the TB-negative

subjects, our confidence for one of these will never be

high, as we have already observed in the asymptotic

analysis.
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TABLE V

TB-NEGATIVE TEST SUBJECTS.

Subject ID stop p(H0|z) #patches #bacilli

30257 0 0.693 443072 2

30266 1 0.720 238048 0

30295 0 0.675 423808 3

30665 0 0.706 377024 1

30725 0 0.675 422432 3

31228 0 0.656 416928 4

31523 0 0.706 388032 1

31534 1 0.720 238048 0

31684 0 0.659 430688 4

31819 1 0.720 238048 0

32240 1 0.720 238048 0

32633 0 0.707 408672 1

32781 0 0.649 470592 5

32956 0 0.706 393536 1

36856 1 0.720 238048 0

IV. DISCUSSION

A. Image Acquisition & Database

In this application, we face a challenging problem

because the bacilli rate can be very low in some TB-

positive subjects (e.g. training subject with ID 7 has been

declared TB-positive by culture method but no bacillus

where detected by our bacillus classifier). There are

several reasons for this: bacilli live in a 3D volume and

they can be orthogonal to the slide; the image acquisition

process does not capture bacilli, or only very few of

them; lack of focus in both manual (because of lack

of training or excess of work) and automatic image

acquisition; bacilli weakly tinted due to non-uniform

tincture application or degradation of it, or due to an-

tibiotics that degrade bacilli walls and less tincture get

attached to them. These factors and the bacilli classifier

capabilities condition the maximum performance of the

system, but the proposed subjects classifier accounts for

these sources of uncertainty in a principled way. It does

not matter whether the detector fails to detect bacilli

or they have not been captured, the proposed subject

classifier deals with all previous system errors.

The magnification used in this database is 20×; this

is the magnification used in the standard practice among

microbiologists in Madrid as a good trade-off between

the time required to analyze a subject and the discrim-

ination capability (40x is the recommended setting by

WHO [8]). Other authors have used larger magnifications

like 630x [13], 250x [14], or 100x [16]. It is possible

that the magnification of 20× is lower than optimum

for automatic recognition, and better results could be

achieved with larger magnifications.

B. Subjects Classifier

The methodology presented here is general and can be

applied to problems where the classes overlap and are

defined by several collections of samples. The Bayesian

approach demonstrates how to incorporate the uncer-

tainty of the hypotheses in a closed-form expression that

can be updated sequentially using sums for each new test

sample. We also show that the maximum performance

of the Bayesian test is limited by these uncertainties.

Common practice in TB screening systems is to

declare a positive smear if the number of TB bacilli

detections exceeds a threshold [9], [19]. In the case

of humans, this number depends on the experience of

the microbiologist and the type of tincture/microscope.

On automated systems, this number is fixed to classify

the subjects in the database balancing sensitivity and

specificity of the decision about the smear. In real

databases of sputum smears some TB-positive subjects

might have less bacilli detections than some TB-negative

subjects, therefore, some training subjects are going to

be misclassified, which must be noted in the specificity

and sensitivity of the global decision. Real detectors also
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have a false alarm probability, which must be considered

because it might render the system decisions useless.

Our methodology takes into account all these issues and

bounds the maximum quality of the system decisions

from the available training data and, at the same time,

avoids the need of fixing a threshold, by incorporating all

the available information of the training patients in the

decision process. In addition, the sequential nature of the

decision mitigates to some extent the deficiencies of the

detector and the image acquisition process. We have also

developed a frequentist approach for this problem [33].

C. Experiments

The count and threshold approach, obtains the same

decisions than the Bayesian approach in our test patients

but gives no quality measures with the decisions. In

our experiments, by using the former approach with a

threshold of 6 detections we ignore the quality (i.e., if

we can trust) of a TB-negative decision with 5 detections

or a TB-positive decision with 6 detections. In addition,

with this approach, the system is not capable of early

stopping in a negative test or examining a different

number of images for cases with different number of

detections, which does not happen with sequential anal-

ysis. The Bayesian procedure is straightforward to adjust,

and only the probability thresholds for the sequential

test and the a priori probability of being TB-negative

has to be specified (for example, p(H0) = 0.92 is

the a priori probability of a TB-negative subject in

Madrid hospitals). The experiments show that the global

performance can be estimated from the training data.

They stress the importance of having a good bacilli

classifier and show how to penalize our confidence in

the decisions, taking into account all the steps of the

decision process.

V. CONCLUSION

Screening systems need to provide not only a decision,

but also an estimate of its quality. We have shown how to

provide this quality and how to bound its maximum from

the training data and bacilli classifier performance. This

allows knowing what the strengths and weakness of the

decision system are, and points toward further improve-

ment in its parts. The described decision methodology

is general and can be applied to any screening system.

In addition, our subject classifier is straightforward to

use and its computing requirements are negligible as it

has a closed-form expression, which can be sequentially

updated.

We have illustrated this framework with a screening

system for tuberculosis, which can be trained for any

type of microscope/tincture combination. The proposed

system combines a bacilli classifier amenable for real-

time operation (processing images at the rate they

are captured) with sequential analysis, which stops the

screening when the quality of the decision has reached

the requirements. The evaluation of the quality of the

decisions of this system on real data shows that the sys-

tem is only confident in declaring TB-positive subjects.

This opens up the opportunity of further research for the

bacilli classifier.
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Ruiz Serrano for her supervision in the gathering of the

database. We would also like to thank the Irish Centre

for High-End Computing (ICHEC) for allowing us to

use their computing facilities.

REFERENCES

[1] World Health Organization, “Global tuberculosis report,” Tech.

Rep. WHO/HTM/TB/2012.6, 2012.

[2] V. Kumar, A. K. Abbas, and J. C. Aster, Robbins Basic Pathology.

Saunders Philadelphia, 2012.

[3] R. S. Wallis, M. Pai, D. Menzies, T. M. Doherty, G. Walzl,

M. D. Perkins, and A. Zumla, “Biomarkers and diagnostics for

tuberculosis: progress, needs, and translation into practice,” The

Lancet, vol. 375, no. 9729, pp. 1920–1937, Jun. 2010.

[4] R. Diel, R. Loddenkemper, K. Meywald-Walter, R. Gottschalk,

and A. Nienhaus, “Comparative performance of tuberculin skin

test, QuantiFERON-TB-Gold In Tube assay, and T-Spot.TB test

in contact investigations for tuberculosis.” Chest, vol. 135, no. 4,

pp. 1010–8, Apr. 2009.

[5] A. Zwerling, S. van den Hof, J. Scholten, F. Cobelens, D. Men-

zies, and M. Pai, “Interferon-gamma release assays for tuberculo-

sis screening of healthcare workers: a systematic review.” Thorax,

vol. 67, no. 1, pp. 62–70, Jan. 2012.

[6] M. Pai, J. Minion, H. Sohn, A. Zwerling, and M. D. Perkins,

“Novel and improved technologies for tuberculosis diagnosis:

progress and challenges.” Clinics in chest medicine, vol. 30, no. 4,

pp. 701–16, viii, Dec. 2009.

[7] C. C. Boehme, P. Nabeta, D. Hillemann, M. P. Nicol, S. Shenai,

F. Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee,

A. Milovic, M. Jones, S. M. O’Brien, D. H. Persing, S. Ruesch-

Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M. D. Perkins,

“Rapid molecular detection of tuberculosis and rifampin resis-

tance.” The New England journal of medicine, vol. 363, no. 11,

pp. 1005–15, Sep. 2010.

[8] D. Boyle and M. Pai, “Tuberculosis: Diagnostic Technology

Landscape,” UNITAID Secretariat, World Health Organization,

Tech. Rep., Jul. 2012.

[9] K. Steingart, M. Henry, V. Ng, P. Hopewell, A. Ramsay, J. Cun-

ningham, R. Urbanczik, M. Perkins, M. Aziz, and M. Pai,

“Fluorescence versus conventional sputum smear microscopy for

tuberculosis: a systematic review.” Lancet Infect Dis, vol. 6, no. 9,

pp. 570–81, 2006.

[10] M. Pai, J. Minion, K. Steingart, and A. Ramsay, “New and

improved tuberculosis diagnostics: evidence, policy, practice, and

impact.” Current opinion in pulmonary medicine, vol. 16, no. 3,

pp. 271–84, May 2010.

[11] J. A. Robledo, G. I. Mejia, N. Morcillo, L. Chacon, M. Camacho,

J. Luna, J. Zurita, A. Bodon, M. Velasco, J. C. Palomino,

A. Martin, and F. Portaels, “Evaluation of a rapid culture method

for tuberculosis diagnosis: a latin american multi-center study,”

International Journal of TuberculosiS and Lung Disease, vol. 10,

no. 6, p. 613, 2006.

[12] B. Yu, F. B. Dazzo, R. Srivatsa, T. Zhang, and A. K. Jain,

“A computer-aided system for image analysis of morphological

diversity, abundance and spatial distribution,” Department of

Computer Science, Michigan State University, East Lansing,

Michigan, Tech. Rep. MSU-CPS-97-24, Jul. 1997.

[13] K. Veropoulos, G. Learmonth, C. Campbell, B. Knight, and

J. Simpson, “The automated identification of tubercle bacilli in

sputum: A preliminary investigation.” Analytical and Quantita-

tive Cytology and Histology, vol. 21, no. 4, pp. 277–281, Aug.

1999.

[14] M. G. Forero, G. Cristobal, and M. Desco, “Automatic identifica-

tion of mycobacterium tuberculosis by gaussian mixture models,”

Journal of Microscopy, vol. 223, no. 2, pp. 120–132, 2006.

[15] R. Khutlang, S. Krishnan, A. Whitelaw, and T. Douglas, “Auto-

mated detection of tuberculosis in Ziehl-Neelsen-stained sputum

smears using two one-class classifiers,” Journal of Microscopy,

vol. 237, no. 1, pp. 96–102, 2010.

[16] R. Khutlang, S. Krishnan, R. Dendere, A. Whitelaw, K. Veropou-

los, G. Learmonth, and T. S. Douglas, “Classification of

Mycobacterium tuberculosis in images of ZN-stained sputum

smears,” IEEE Transactions on Information Technology in

Biomedicine, vol. 14, no. 4, pp. 949–957, 2010.

[17] J. Chang, P. Arbeláez, N. Switz, C. Reber, A. Tapley, J. L.

Davis, A. Cattamanchi, D. Fletcher, and J. Malik, “Automated

tuberculosis diagnosis using fluorescence images from a mobile

microscope.” in MICCAI, vol. 15, Jan. 2012, pp. 345–52.

[18] World Health Organization, “Treatment of tuberculosis: guide-

lines – 4th ed.” 2009.

[19] H. L. Rieder and A. V. Deun, “Proposal for a



13

revision of the case definition of “sputum smear-positive

tuberculosis”,” World Health Organization, WHO Policy

background document, 2007. [Online]. Available: http://www.

who.int/entity/tb/laboratory/proposed reduction hravd.pdf

[20] R. Santiago-Mozos, R. Fernández-Lorenzana, F. Pérez-Cruz, and
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