Loading [a11y]/accessibility-menu.js
Automatic Identification and Classification of Muscle Spasms in Long-Term EMG Recordings | IEEE Journals & Magazine | IEEE Xplore

Automatic Identification and Classification of Muscle Spasms in Long-Term EMG Recordings


Abstract:

Spinal cord injured (SCI) individuals may be afflicted by spasticity, a condition in which involuntary muscle spasms are common. EMG recordings can be analyzed to quantif...Show More

Abstract:

Spinal cord injured (SCI) individuals may be afflicted by spasticity, a condition in which involuntary muscle spasms are common. EMG recordings can be analyzed to quantify this symptom of spasticity but manual identification and classification of spasms are time consuming. Here, an algorithm was created to find and classify spasm events automatically within 24-h recordings of EMG. The algorithm used expert rules and time-frequency techniques to classify spasm events as tonic, unit, or clonus spasms. A companion graphical user interface (GUI) program was also built to verify and correct the results of the automatic algorithm or manually defined events. Eight channel EMG recordings were made from seven different SCI subjects. The algorithm was able to correctly identify an average (±SD) of 94.5 ± 3.6% spasm events and correctly classify 91.6 ± 1.9% of spasm events, with an accuracy of 61.7 ± 16.2%. The accuracy improved to 85.5 ± 5.9% and the false positive rate decreased to 7.1 ± 7.3%, respectively, if noise events between spasms were removed. On average, the algorithm was more than 11 times faster than manual analysis. Use of both the algorithm and the GUI program provide a powerful tool for characterizing muscle spasms in 24-h EMG recordings, information which is important for clinical management of spasticity.
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 19, Issue: 2, March 2015)
Page(s): 464 - 470
Date of Publication: 29 April 2014

ISSN Information:

PubMed ID: 24801733

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.