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Temporal and Spatial Monitoring and Prediction
of Epidemic Outbreaks

Amin Zamiri, Hadi Sadoghi Yazdi, and Sepideh Afkhami Goli

Abstract—This paper introduces a nonlinear dynamic model to
study spatial and temporal dynamics of epidemics of susceptible-
infected-removed type. It involves modeling the respective collec-
tions of epidemic states and syndromic observations as random
finite sets. Each epidemic state consists of the number of infected
individuals in an isolated population system and the correspond-
ing partially known parameters of the epidemic model. The infec-
tious disease could spread between population systems with known
probabilities based on prior knowledge of ecological and biological
features of the environment. The problem is then formulated in the
context of Bayesian framework and estimated via a probability hy-
pothesis density filter. Each population system under surveillance
is assumed to be homogenous and fixed, with daily reports on the
number of infected people available for monitoring and prediction.
When model parameters are partially known, results of numerical
studies indicate that the proposed approach can help early predic-
tion of the epidemic in terms of peak and duration.

Index Terms—Filtering, nonlinear dynamic systems, spatiotem-
poral phenomena, syndromic surveillance.

I. INTRODUCTION

AN epidemic is a term used in epidemiology that refers
to “the appearance of new cases of a particular disease

in a given human population, during a given time period, at a
rate that substantially exceeds the expected number based on
recent experience” [1]. The effects of an epidemic can quickly
spread from a region to a country, or even a group of countries
[2] ranging from a local cluster of a communicable disease
to a global threat, as in the case of the ongoing epidemics of
AIDS, tuberculosis, and the recent outbreaks of avian influenza
(H5N1), SARS, and H1N1 (swine flu) [3], [4].

In surveillance terms, “syndromic” or “prediagnosis” relates
to a specific set of symptoms not requiring laboratory confirma-
tion for diagnosis. While syndromic observations are available
much earlier than that of postdiagnosis reports, they are not de-
terministic and suffer from noisy and incomplete data [5]–[7].
The goal of syndromic surveillance is estimating and predicting
any increase in the rate of reported cases, allowing a timelier
public health response [8], [9].
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Syndromic surveillance algorithms and its applications have
recently attracted significant attention by scientific community
and the governments [8] and there is a plethora of literature
devoted to this topic (more comprehensive reviews are provided
in [10]–[12] and references therein).

Generally, the problem is often formulated as prospective
evaluation of a single-time series. Unfortunately there is not an
extensive body of the literature focusing on analysis of mul-
tiple data sources with spatial information [13]. A straightfor-
ward approach to incorporate spatial information is to apply
a separate single-time series approach within each spatial re-
gion. In practice, however, the different time series under study
may be influenced by common confounding factors, and so
they are likely to be correlated [14]. For example, an infectious
agent in one region could spread to neighboring areas through
various forms of transition pathways, with similar peak and
duration [15].

In this paper, a recursive information fusion algorithm is pre-
sented for the prediction of epidemic progress amongst a set
of isolated population systems. These population systems could
represent a specific geographical area such as a city or a country.
The population dynamics within each area is described indepen-
dently, with additional terms accounting for the probability of
spread. The problem is then formulated in the Bayesian context
of nonlinear multitarget filtering and estimated using a proba-
bility hypothesis density (PHD) filter with particle systems im-
plementation known as particle-PHD or sequential Monte Carlo
(SMC) PHD filter in tracking literature. While the Bayesian for-
mulation and the nonlinear filtering implementation have been
considered earlier, see [16]–[18], none has considered the case
of spatial spread of the disease. This paper introduces a novel
multitarget approach to include spatial information of reported
cases while providing temporal estimates of epidemic peak and
duration. We formulate and solve the optimal Bayes predictor
when there are several sources of syndromic data streams (each
from a specific area) and the number of outbreaks is unknown.
The observation data in this case could be noisy and missed in
some short intervals, as typically in the case of syndromic data
[6]. Numerical results are provided in this paper as a proof of
concept using syndromic data based on a real-world epidemic
in Switzerland.

The celebrated susceptible-infected-removed (SIR) model
[19]–[21] is a suitable epidemiological model for our frame-
work. The epidemic curve in the SIR model is formulated by
only two parameters of the population: contact rate β and recov-
ery time γ. With values of these parameters at hand, the number
of infected people could be predicted at each time step based on
the current population of infected and susceptible.
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Our choice of the SIR model was driven by its widespread
adaptation and relevance for the operational context of the
problem, which is the short-term prediction for an emerging
epidemic that is spreading rapidly. Although the attractive sim-
plicity of the SIR model is a plus, there are some shortcomings
involved. A clear downside of this model is the inability to
describe any spatial aspects of infectious disease spread [22],
which is addressed in the proposed approach.

II. MOTIVATION

The analysis of infection spread through linked populations
systems is of great significance [23] and attracts considerable
attention; the Foot and Mouth Disease epidemic of 2001 be-
ing an important example [24]. An excellent review of the lit-
erature on spatial epidemic models can be found in [5] and
[25].

Incorporating spatial information into the epidemic model
is motivated by two factors. These factors could contribute to
earlier and more accurate modeling during the initial stages of
epidemic, and are discussed in this section.

In order to benefit from spatial information, reported data
from all geographical areas of interest should be modeled in a
holistic approach. This is where single time-series approaches,
including single-target filtering, fall short. Spatial information
in these methods, if considered at all, is usually handled by
running a separate algorithm for each region. Consequently, the
spatial autocorrelation is neglected [5].

A. Spatial Patterns of Spread

Spatial patterns and disease spread directions could be ob-
served during the course of an epidemic. In European continent,
for example, a west–east direction of influenza spread was ob-
servable for several years [26]. The 2003/2004 influenza season
in Switzerland is a clear instance of such pattern. The first wave
of the epidemic appears in the final weeks of 2003 in Geneva,
Switzerland, and then, spreads to nearby cities in the following
weeks [15].

Ecological and geographical features could also shape certain
patterns of spatial spread. In fox rabies, for example, rivers
act as barriers that holds back further spread of the disease
[27].

Once an outbreak is detected, prior knowledge on patterns
and directions of spread could contribute to earlier predictions
for clean areas, based on their risk of contamination.

B. Behavioral Similarity of Epidemics

Because of the spatial variability of the population (contact
rate and recovery time), it is hypothesized that the epidemic
curves could vary from place to place and even wave to wave
[28]. Therefore, an epidemic in one population system could
evolve differently after spreading to another. However, the vari-
ability of this kinetic process for the same strain could be usually
modeled by a limited range of parameter values [29]. Pandemic
influenza cases, for example, are suggested to be latent for two
days and infectious for 2.5 days [30].

III. PROBLEM FORMULATION

A. Modeling Population Dynamics

According to the SIR model, the population of a system can
be subdivided into three interacting groups: susceptible, infec-
tious, and removed individuals [21], [31]. Let the number of
susceptible, infectious, and removed denoted by SL , IL , and
RL , respectively, so that SL + IL + RL = PL , where PL is the
total size of the population system L. To represent an epidemic
progress in time as a dynamic model, the following differential
equations based on the “conservation” law for the population
are derived:

dsL

dt
= −qL (1)

diL
dt

= qL − γLiL (2)

rL = 1 − sL − iL (3)

where
1) sL = SL/PL , iL = IL/PL , and rL = RL/PL are the

normalized compartment sizes;
2) γL represents the average infectious period of the disease;
3) the term qL (iL , sL ) describes the social interactions be-

tween the individuals of population. As in the classical
SIR model, we assume qL (iL , sL ) = βLiLsL . The con-
tact rate parameter βL is a product βL = ρL . γL , with
ρL being the basic reproductive number, which represents
the average number of new infections produced by direct
contact with a single infected individual that would be
expected in a population of entirely susceptible subjects.

The epidemic model parameters can be assumed to be par-
tially known for every population as interval values, that is
βL ∈

[
β̄, β

]
and γL ∈

[
γ̄, γ

]
for each population system of area

L under study.

B. Measurement Model

For each area L (with an ongoing epidemic) at a specific time
step t, we assume

zL = iL + ωL (4)

where zL is the observable proportion (reported cases at time t)
of infected population in area L. The noise term ωL is added to
simulate the randomness of real-world syndromic observations
(measurements noise), which is assumed to be uncorrelated to
other population systems.

The collection of all measurement for all population systems
(observable proportion of infected population) at time t is de-
noted by

Zt
Δ= {zit

, i = 1, . . . , Nt} (5)

where Nt is the total number of measurements reported at time
t. The aforementioned model allows for reports on the number
of cases to be missed and to include noisy or false reports.
The problem is then to estimate the “true” number of infected
areas and normalized number of infected iL and susceptible sL
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at time t, together with model parameters, for each area using
observations zL of (4), collected at time t.

C. Handling Spatial Information

Modeling spatial population dynamics in humans or animals
requires comprehensive ecological and biological knowledge of
the pathogenesis of the infectious agent. Accurate reporting of
the variables involved (including mobility range, dispersal rates,
contact rates, etc.) is paramount for realistic construction of a
spatial model [4], [32]. In practice, however, such information
is not readily available and can be very expensive to obtain
[33]. Moreover, available data primarily reflect politically de-
fined reporting units rather than biologically relevant ecological
units [27].

To avoid complications that arise from comprehensive mod-
eling of population dynamics, our model is reduced to the basic
assumption of infectious disease spread based on predefined
probabilities between each pair of population systems.

IV. PROPOSED APPROACH

A. Optimal Bayesian Solution

The model (1)–(3) are given in continuous time. For a recur-
sive algorithm, a discrete-time approximation of this model is
required. The state vector for each target area is adopted as

x = [s i β γ L]T (6)

where T denotes the matrix transpose. It includes i and s for
every infected area and also the imprecisely known parameters
β and γ as well as the area identifier L.

The state is assumed to follow a Markov process on state space
X ⊆ Rnx . Let Mk be the number of ongoing epidemics detected
at k, where k = tk/τ is the discrete time index for small inte-
gration interval τ > 0. Suppose that, at time k − 1, the targets
are xk−1,1 , . . . , xk−1,Mk

∈ X . At the next time step, a subset of
these targets may not exist (finished epidemics), the surviving
targets evolve to their new states, and some new targets may ap-
pear (due to disease spread to new areas or spontaneous epidemic
emergence). This results in new states xk,1 , . . . , xk,Mk

∈ X .
The state vector in from of (6) includes all the required in-

formation for each target (i.e., an ongoing epidemic of SIR type
for an isolated population system). Following the discussions
provided in Section II, the spread of disease from one area to
another, as well as the possibility of new epidemic emergence
in areas under study, should also be modeled. The problem is
that the state evolution model for each area cannot be processed
independently. Moreover, the number of infected areas in this
case is unknown and false alarms in the number of reported
cases (clutter) are possible.

The random finite set (RFS) [34] approach to multitarget
tracking is an emerging and promising approach to address these
limitations [35], [36]. In the RFS formulation, the collection
of individual targets is treated as a set-valued state, and the
collection of individual observations is treated as a set-valued
observation, i.e.

Xk = {xk,1 , . . . , xk,Mk
} ∈ F(X ) (7)

Zk = {zk,1 , . . . , zk,Nk
} ∈ F(Z) (8)

whereF(X ) andF(Z) are the respective collections of all finite
subsets of X and Z .

Set-valued states and set-valued observations modeling ap-
proach allows the problem of dynamically estimating multiple
targets in the presence of noisy and incomplete data [34]–[37].
The problem of spatial monitoring of epidemics is then formu-
lated as multitarget tracking and is posed as a filtering problem
with multitarget state space F(X ) and observation space F(Z).

The RFS that models the multitarget state, is the union of
state vectors that survived from previous time step, those which
have been spawned by existing targets and those which appear
spontaneously, and is given by

Xk =

⎛

⎝
⋃

x∈Xk −1

Sk |k−1(x)

⎞

⎠ ∪

⎛

⎝
⋃

x∈Xk −1

Bk |k−1(x)

⎞

⎠ ∪ Γk .

(9)
In the aforementioned formulation, the first term is the RFS

of epidemic states at discrete time index k given the previous
states Xk−1 (survived targets). Sk |k−1(x) can take on either
{xk} when the epidemic continues, or ∅ when the epidemic
period is passed. The second term represents the RFS of newly
infected areas spawned from the previous epidemics at time
step k − 1. The last term, RFS Γk , accounts for spontaneous
epidemic emergence in clean areas.

The multitarget measurement at time step k is modeled by
the RFS

Zk = Kk ∪
(

⋃

x∈Xk

Θk (x)

)

(10)

where Θk (x) is the RFS of measurements from multitarget state
Xk , and Kk is the RFS of measurements due to false reports
(clutter). For a given target xk , the term Θk (xk ) can take on
either {zk}when the target is detected (there is a report available
for kth day) with probability pD,k (xk ), or ∅ when the target is
missed with probability 1 − pD,k (xk ).

The formal Bayesian solution is given in the form of the
multitarget posterior density p(Xk |Z1:k ). Based on the posterior
density, our aim is to predict the progress of the epidemic across
areas under study at the next time step k + 1, using the dynamic
model equations.

The multitarget Bayes filter propagates the multitarget poste-
rior density pk (·|Zk ) conditioned on the sets of observations up
to time k, Zk , with the following recursions.

Step 1–Prediction:

pk |k−1(Xk |Zk−1) =
∫

fk |k−1(Xk |X)pk−1(X|Zk )μs(dx).

(11)
Step 2–Update:

pk (Xk |Zk ) =
gk (Zk |Xk )pk |k−1(Xk |Zk−1)

∫ gk (Zk |Xk )pk |k−1(Xk |Zk−1)μs(dx)
(12)

where the dynamic model is governed by the multitarget
transition density fk |k−1(Xk |X) and multitarget likelihood
gk (Zk |Xk ) and μs is an appropriate reference measure on
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F(X ) [38]. The randomness in the multitarget evolution and
observation described by (9) and (10) are, respectively, captured
in fk |k−1(·|·) and gk (.|.) [39].

The function gk (Zk |Xk ) is the joint multitarget likelihood
function of observing the set of measurements, Z, given the set
of target states X . The parameters for this density are the set
of observations Z, the unknown set of targets X , observation
noise, probability of detection PD , false alarm PFA , and clutter
models [40].

The evolution of the epidemic state, by neglecting the process
noise for the moment, can be written according to (1) and (2) as
ẋ = g(x) where

g(x) = [−βis (βs − γ)i 0 0 0]T . (13)

For a small integration interval τ > 0, one could approximate
the state evolution in time using the Euler method:

x(t + τ) ≈ x(t) + τg(x (t)). (14)

The state evolution in discrete time can be expressed as

Sk |k−1(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk [1] − τxk [3]xk [2]xk [1]

xk [2] + τxk [2](xk [3]xk [1] − xk [4])

xk [3]

xk [4]

xk [5]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ wk .

(15)
In this notation, xk [i] represents the ith component of vector

xk . Process noise w in (14) is assumed to be zero-mean white
Gaussian with a diagonal covariance matrix Q of size 5 × 5.
Its components, except the first two, are set to zero based on
assumption that β and γ are constant during the epidemic.

As mentioned earlier, spatial spread is modeled by a set of
predefined probabilities of transition pathways between areas.
In this setting, βk |k−1(x), returns an state vector of (6) with area
identifier selected based on the transition probability of area x[5]
to other areas (trans(.)), and is defined by

Bk |k−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0

1 − s0

xk−1 [3]

xk−1 [4]

trans(xk−1 [5])

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ vk (16)

where s0 is a small random number representing the initial
population of susceptible and vk is zero-mean white Gaussian
noise with a diagonal covariance matrix Q́ modeling the varia-
tion in epidemic parameters in the new population system. The
components of matrix Q́ are set to zero except the second and
third components. Subroutine trans generates a random num-
ber identifying an area under study, such that the area with the
highest transition probability with xk−1 [5] has a higher proba-
bility of selection.

B. Estimation With Particle-PHD Filter

The recursion (11) and (12) involves multiple integrals on the
spaceF(X ), which are computationally intractable [39]. There-
fore, the multitarget Bayes filter is computationally intractable.
The PHD filter [41] is an approximation that propagates the
first-order statistical moment, or PHD, of the RFS of states in
time [35]. Since the PHD filter operates on the single-target state
space, it avoids the combinatorial problem that arises from data
association. These outstanding features of the PHD filter are
extremely attractive for practical problems [39]. In our study,
the problem of data association is resolved by including the area
identifier (L) in the state vector, because the origin of reported
cases of infection is always available.

For a RFS X on X with probability distribution P, its first-
order moment is nonnegative function v on X , called the inten-
sity or PHD [35] in tracking literature, such that for each region
S ⊆ X

∫
|X ∩ S|P (dX) =

∫

S

v(x)dx. (17)

Hence, the total mass

N̂ =
∫

v(x)dx (18)

gives the expected number of elements of X that are in S. The
local maxima of the intensity v are points in X with the highest
density of expected number of targets, and therefore, can be
used to generate estimates for elements of X [39].

Let vk and vk |k−1 denote the respective intensities associated
with the multitarget posterior density pk and the multitarget
predicted density pk |k−1 in the recursion (11) and (12). It can be
shown that the posterior intensity can be propagated in time via
the PHD recursion.

Step 1– Prediction:

vk |k−1(x) =
∫

ps,k (ς)fk |k−1(x|ς)vk |k−1(ς)dς

+
∫

βk |k−1(x|ς)vk−1(ς)dς + γk (x). (19)

Step 2– Update:

vk (x) = [1 − pD,k (x)] vk |k−1(x)

+
∑

z∈Zk

pD,k (x)gk (z|x)vk |k−1(x)
Kk (z) + ∫ pD,k (ξ)gk (z|ξ)vk |k−1(ξ)dξ

(20)

where γk (x) is intensity of the birth RFS Γk , βk |k−1(.|ς) is
intensity of the spawn RFS Bk |k−1 , ps,k (ς) is the probability of
survival with previous state ς , pD,k is the proability of detection,
and Kk is the intensity of clutter RFS Kk .

Since the PHD recursion involves multiple integrals that have
no closed-form solutions in general, we develop an approxi-
mate solution. Generic sequential Monte Carlo techniques have
been proposed to propagate the posterior intensity in time (see
[42] and references therein). In this approach, state estimates
are extracted from the particles representing the posterior inten-
sity using clustering techniques such as k-means or expectation
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maximization [43], [44]. The k-means approach was adopted
for this study.

The particle-PHD approximates the intensity of the poste-
rior PDF pk (Xk |Zk ) by a weighted random sample. Given a
sequence of measurement sets Z1:k , the approximation at time
step k > 0 is given as follows.

In the initialization step, particles are distributed across the
state space according to the prior. The initial intensity function
v0 is given by

v0(x) =
L0∑

i=1

w
(i)
0 δ

(
x − x

(i)
0

)
. (21)

Here, δ(.) is the Dirac delta function and {xi
k , i = 1, . . . Lk}

are support points or particles with associated weights {wi
k , i =

1, . . . Lk} constructing a random measure {x(i)
k , w

(i)
k }Lk

i=1 ,
where Lk is the particle count for step k. The weights are se-
lected based on the principle of importance sampling and are
normalized such that

∑
i wi

k = 1.
The particles are propagated in the prediction stage using the

dynamic model (15) and (16). Particles are also added to allow
for new epidemics representing the term Γk in (9). The predicted
intensity function vk |k−1 at time step k is

vk |k−1(x) =
∑Lk −1 +Jk

i=1
w̃

(i)
k |k−1δ

(
x − x̃

(i)
k

)
(22)

where

x̃
(i)
k ∼

{
qk

(
· |x(i)

k−1 , Zk

)
, i = 1, . . . , Lk−1

pk

(
· |Zk

)
, i = Lk−1 + 1, . . . , Lk−1 + Jk

(23)
and

w̃
(i)
k |k−1 =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φk |k−1
(
x̃

(i)
k , x

(i)
k

)

qk

(
x̃

(i)
k |x(i)

k−1 , Zk

)w
(i)
k−1 , i = 1, . . . , Lk−1

1
Jk

γk

(
x̃

(i)
k

)

pk

(
x̃

(i)
k |Zk

) . i = Lk−1 + 1, . . . , Lk−1 + Jk

(24)

In the aforementioned equations qt and pt are two important
sampling proposal densities by which the samples are obtained.
Here, the Lk−1 particles are predicted forward by the kernel
φk |k−1 that captures the dynamic model (14) and (16), and an
additional Jk particles are drawn to detect new and emergent
epidemics.

The prediction steps are carried out until a set of measure-
ments of reported cases Zk becomes available, at time index k.
When the measurements are received, weights are calculated for
the particles based on their likelihoods, which are determined by
the statistical distance of the particles to the set of observations
(i.e., ongoing epidemics). Given that the particle representation
of the predicted intensity function is available at time step k, the
updated intensity function vk is given by

vk (x) =
∑Lk −1 +Jk

i=1
w̃

(i)
k δ

(
x − x̃

(i)
k

)
. (25)

In this formulation, w̃
(i)
k are given by

w̃
(i)
k =

[
(
1 − pD,k

(
x̃

(i)
k

))
+

∑

z∈Zk

pD,k

(
x̃

(i)
k

)
gk

(
z|x̃(i)

k

)

Kk (z) + Ck (z)

]

× w̃
(i)
k |k−1 (26)

where Ck (z) =
∑Lk −1 +Jk

j=1 pD,k (x̃(j )
k )gk (z|x̃(j )

k )w̃(j )
k |k−1 . We,

therefore, have a discrete weighted approximation of the true
posterior pk (Xk |Zk ). The sum of the weights gives the esti-
mated number of ongoing epidemics. For more details on pre-
diction and update steps see [40] and [43] and for detailed
implementation techniques including resampling step see [42].

V. NUMERICAL RESULTS

A. Simulation Setup

An experimental dataset based on the reported cases in
2003/2004 influenza season in Switzerland (see Section II) is
used for prediction of an epidemic. Three cities Geneva, Bern,
and Lausanne were chosen for the following experiments.

This choice was driven by two main factors; first there is
one dominant influenza strain in the period of interest, and sec-
ond clear empirical spatial patterns of disease spread could be
observed.

In the model, it is assumed that measurements from different
cities are available for each day (using interpolation of weekly
data) during the course of the epidemic, with the exception of
a few days with possible missed reports. For each simulation
day, daily counts above a specified threshold are provided to
the algorithm. In order to study the algorithm behavior in dif-
ferent scenarios, manual modification to daily numbers and the
threshold were performed in some experiments, when needed.

The problem is then to perform estimation at each time step
when new measurements are reported until the “cutoff” day,
after which the goal is to predict the epidemic curve (which is
the number of infected population through time). The prediction
is performed using the estimated parameters of the SIR model
in the state vector. The predictive performance of the proposed
algorithm was compared with the “true” number of reported
cases obtained from the dataset, and also with the result of a
SIR curve fit obtained using an exhaustive search. The initial
number of particles was set to 6000 consisting of Ls = 5000
for the survived and spawned targets and Lb = 1000 for new
targets. The algorithm assumed partial knowledge of model pa-
rameters using β ∈ [0.1, 0.9] and υ ∈ [0.1, 0.9]. Disease transi-
tion probabilities were also selected based on real-world data
such that transition Geneva to Lausanne and Lausanne to Bern
has the highest probabilities assigned. More precise estimates
of these parameters could be obtained from detailed epidemio-
logical studies of an emerging epidemic. These estimates would
then simply be incorporated into models such as the one here.

The dataset files and implementation sources files in
MATLAB are available from https://prlab.um.ac.ir/index.php/
resources/.
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B. Prediction Performance

In the following set of results, prediction errors for the up-
coming observations at each cutoff day during the course of the
epidemic are calculated. The results are compared with the SIR
fit over the observations using an exhaustive search. Regression
and model fitting approaches are common in the biosurveillance
literature for comparison and validation [7], [45].

Fig. 1 compares the prediction results of the model and SIR
fit for different cutoff days. This figure serves to demonstrate the
prediction robustness of the proposed algorithm by filtering out
noisy data and incorporating prior knowledge into the model.
Although the predefined intervals for parameters β and γ were
the same, the fitted SIR curve suffers from imprecise predic-
tions and high fluctuations, especially during the early days of
monitoring.

C. Prior Knowledge in Early Prediction

As more observations become available, prior knowledge on
partially known model parameters is increased. The possible
similarity of epidemic waves (see Section II-B) would then help
improve early prediction when a new population is infected.

Fig. 2 displays estimation and prediction results after ten
days of monitoring the epidemic waves for selected cities. It is
observed that the 95% confidence interval area gets tighter in the
second and third wave. A subset of particles for Lausanne and
Bern are generated based on current estimates in Geneva and
Lausanne, respectively, using (15), which improves convergence
for these cities. In the second and third waves, the particles are
more concentrated in the vicinity of SIR fit.

Studying Fig. 2, one can make the observation that in ac-
cordance with our expectations, the estimation and prediction
results are more certain when prior knowledge of parameters β
and υ is gathered during the first wave. However, even when
the knowledge of these parameters is imprecise, the reported
cases corresponding to what we consider as the “true” number
of infected people (empty diamonds) are always enveloped by
predictions after a few days of monitoring.

D. Disease Transition Probabilities

Based on the prior knowledge of west–east direction of epi-
demic spread [26], [15], disease transition probabilities were
selected such that the first wave of influenza epidemic is more
probable to appear in Geneva. The epidemic would spread to
Lausanne with high probability and from there to the next city,
Bern. The following experiment studies the influence of the
predefined disease transition probabilities on the proposed al-
gorithm. In Fig. 3 the “true” observations for the first 40 days of
monitoring, together with state estimate of infected population
are displayed. The horizontal solid line is the event thresh-
old, determining which observations are fed to the filtering
algorithm.

Disease transition probabilities dictate the corresponding
population system in the randomly generated state vectors. In
this case, more state vectors for Geneva are generated.

Fig. 1. Prediction results for day 30, 35, and 40 for Lausanne. The bold and
thin dashed lines are the predicted curves for model and the SIR fit, respectively.

Since the set of the state vectors representing spontaneous
epidemics Γk contains more particles for Geneva, on days 8
and 9 the (manually modified) number of reported cases are not
detected as an ongoing epidemic and are ignored as false alarms
simply because the summation of the corresponding particle
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Fig. 2. Estimated epidemic curves and histograms of model parameters β and γ after ten days of monitoring in selected cities. Predicted curve and 95%
confidence intervals are displayed by solid and dashed lines, respectively. In the histograms, the vertical dashed line is the result of SIR fit over all observations.

Fig. 3. Influence of epidemic transition probability in model behavior. Empty circles, diamonds and squares are “true” number of reported cases for Bern, Geneva,
and Lausanne, respectively. The filled marks represent model estimated number of reported cases and the horizontal solid line is the threshold. The epidemic is
expected to start in Geneva and from there spread to Lausanne and Bern.

weights (Nk ) is not greater than 1, until the third report on day
10. Comparing with the algorithm behavior on day 18, a single
report for Geneva is estimated as an epidemic and is tracked
during the following days.

Once an ongoing epidemic is detected in a city, detection
sensitivity is increased for its neighbors as more particles are
generated, representing target birth through spatial spread with
Bk |k−1 in (16). This is the case of the first report of Lausanne
on day 26 and also the sixth report of Bern on day 36.

E. Spatial Information

In this section, the effects of spatial information in prediction
results are studied. To this end, a comparison of the predic-
tion accuracy and confidence of the proposed algorithm with a
version of the algorithm with no spatial information (zero dis-
ease transition probability) and also a similar approach based
on a single target (no spatial information) particle filter [16], is
provided.
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Fig. 4. Prediction results and confidence interval after 40 days of monitoring
in city Bern; (a) proposed algorithm, (b) proposed algorithm with no spatial
information provided and (c) single target particle filter implementation with no
spatial information as in [16]. Marks and symbols as in Fig. 2.

Fig. 5. (a) Epidemic peak intensity im ax and (b) duration d for cutoff days 34–
52 in reported cases of city of Bern together with the confidence intervals. The
results are averaged over ten runs of the algorithm. Parameter values obtained
by fitting a SIR curve to data of the epidemic wave are shown with the horizontal
line.

With disease transition probabilities defined beforehand, prior
knowledge on SIR model parameters in form of range values
are acquired during the monitoring phase. This improves the
prediction results by providing a set of starting points in the
search space of the problem for the newly infected areas.

As depicted in Fig. 4, the confidence interval is tighter and the
predicted parameters are more concentrated around the “right”
answer in the proposed algorithm as opposed to the other two
methods.

By ignoring disease transition probabilities [see Fig. 4(b)],
the prior knowledge on SIR model parameters is lost. It can be
observed that the confidence margin in this case is larger and
the histogram of predicted parameters display a wide range of
possibilities. This is also true for any similar algorithm without
this kind of prior knowledge as shown in Fig. 4(c).
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F. Peak Duration and Intensity Prediction

Prediction performance of epidemic duration and peak inten-
sity is studied in the final set of results (see Fig. 5). For the
epidemic in Bern, d = 56 and imax = 0.1. At each cutoff day,
intensity is computed using the approximate formulae from The-
orem 2.1 in [46] under the assumption that initial susceptible
population s0 ≈ 1 and initial infected population i0 ≈ 0.

imax ≈ 1 − ρ−1 + ρ−1 log(ρ−1) (27)

where ρ = β
γ (see Section III-A). Parameters γ and β are esti-

mated from the observations available up to the cutoff day (cur-
rent estimate of the state vector). The duration of the epidemic is
calculated by measuring the size of an SIR curve simulation us-
ing the estimated β and γ. The results further show that duration
and intensity are reasonably acceptable, even in short periods
of observation. The uncertainty in estimation decreases as more
observations become available.

VI. CONCLUSION

In this paper, we proposed an algorithm for estimation and
prediction of epidemic outbreaks formulated in the context of
multitarget nonlinear filtering, based on the set of observations
of the number of infected people in loosely coupled population
systems. The epidemic progression in time is modeled using
the classical compartmental SIR model. While an independent
set of SIR parameters is used to model the epidemic dynamics
within each area, the proposed framework is capable of model-
ing spatial information as well. This is carried out by defining
a set of transition probabilities between each pair of monitored
geographical areas. Prediction and estimation results for newly
infected areas also benefit from early convergence by narrow-
ing the range of possible model parameters based on epidemic
behavior in neighboring areas. The algorithm, implemented as a
particle-PHD filter, provides continuous estimation of the state
of all epidemics, including the infected population and the par-
tially known parameters of the SIR model for every population
system. Experimental results show that the proposed framework
can be useful in providing timely prediction of the epidemic peak
and duration when the uncertainty in prior knowledge of model
parameters is limited.

The proposed method is rather a conceptual solution for a
new biosurveillance and still at its early stages of development.
Further research is concerned with practical problems regard-
ing its operational deployment. For instance, there is a potential
challenge in selecting more complicated epidemic models and
also incorporating population migration patterns (variable pop-
ulation). Our future work would involve a generalization of the
proposed framework to include more realistic criterions with
regards to known ecological and biological features of animal
and human populations.
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