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Abstract—In the past decade, there has been a resurgence in6
the field of unobtrusive cardiomechanical assessment, through7
advancing methods for measuring and interpreting ballistocardio-8
gram (BCG) and seismocardiogram (SCG) signals. Novel instru-9
mentation solutions have enabled BCG and SCG measurement10
outside of clinical settings, in the home, in the field, and even in11
microgravity. Customized signal processing algorithms have led to12
reduced measurement noise, clinically relevant feature extraction,13
and signal modeling. Finally, human subjects physiology studies14
have been conducted using these novel instruments and signal pro-15
cessing tools with promising clinically relevant results. This paper16
reviews the recent advances in these areas of modern BCG and17
SCG research.18

Index Terms—Ballistocardiogram (BCG), cardiomechanical19
signals, noninvasive physiologic monitoring, seismocardiogram20
(SCG), ubiquitous health.21
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I. INTRODUCTION 22

A S detailed in the following sections, the ballistocardio- 23

gram (BCG) is a measurement of the recoil forces of the 24

body in reaction to cardiac ejection of blood into the vascula- 25

ture [1], while the seismocardiogram (SCG) represents the local 26

vibrations of the chest wall in response to the heartbeat [2]. 27

The BCG phenomenon was first observed in 1877 by Gordon, 28

with the finding that, as a subject would stand on a weighing 29

scale, the needle would vibrate synchronously to the subject’s 30

heartbeat [3]. Nearly 60 years later, Starr and colleagues created 31

an instrument in the form of a table with a mobile top surface 32

to measure the BCG in a repeatable scientific manner [1]. The 33

SCG was first observed by Bozhenko in 1961, and was first 34

applied in clinical studies 30 years later in 1991 by Salerno and 35

Zanetti [4]. Throughout the 1900s, both BCG and SCG signals 36

were heavily investigated and several publications appeared in 37

major scientific and clinical journals (e.g., [4]–[7]). However, 38

because of the advent of echocardiography and magnetic res- 39

onance imaging, and overly-cumbersome hardware, BCG and 40

SCG were largely abandoned by the medical community [8]. 41

Today, technological advancements largely simplify the mea- 42

surement and assessment of these signals and open new perspec- 43

tives in their clinical use. This paper reviews the instrumentation 44

and signal processing advances which have helped to propel 45

BCG and SCG into this revival. It also summarizes some of the 46

key human subjects studies performed recently that support the 47

use of BCG and SCG in extra-clinical applications. 48

II. DESCRIPTION OF BCG AND SCG SIGNALS 49

A. BCG Signal Description 50

At every heartbeat, the blood travelling along the vascular tree 51

produces changes in the body center of mass. Body micromove- 52

ments are then produced by the recoil forces to maintain the 53

overall momentum. The BCG is the recording of these move- 54

ments, can be measured as a displacement, velocity, or accelera- 55

tion signal, and is known to include movements in all three axes. 56

The longitudinal BCG is a measure of the head-to-foot deflec- 57

tions of the body, while the transverse BCG represents antero– 58

posterior (or dorso–ventral) vibrations. The original bed- and 59

table-based BCG systems focused on longitudinal BCG mea- 60

surements, representing what was supposed to be the largest 61

projection of the 3-D forces resulting from cardiac ejection 62

[1]. Table I summarizes modern BCG measurement systems 63

and their axes of measurement. Note that for some systems, 64

head-to-foot and dorso–ventral forces are unavoidably, mixed 65
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TABLE I
MODERN BCG SYSTEMS AND THEIR CORRESPONDING MEASUREMENT AXES

Modern BCG System Axis Comments / Challenges

Accel. (0g) All (3-D) - Needs reduced gravity
Accel. (1g) Head-to-foot - Placement affects signal shape

and amplitude
- Motion artifacts must be

detected and mitigated
Bed Head-to-foot or

Dorso-ventral
- Cross-axis coupling
- Changes in sleep position affect

signal quality / shape
Chair Head-to-foot or

Dorso-ventral
- Posture affects signal quality

and repeatability
Weighing Scale Head-to-foot - Posture affects signal quality

and repeatability
- Motion artifacts must be

detected and mitigated

together in the measurement, and this should be accounted for66

when interpreting results. However, in spite of the 3-D nature of67

the BCG, for a long period of time only the microdisplacements68

of the body along the longitudinal axis (head-to-foot) were con-69

sidered. Currently, BCG is mainly measured using a force plate70

or force sensor placed on a weighing scale or under the seat of a71

chair, with the subject in a vertical position. Modern approaches72

to BCG measurement are discussed below in Section III.73

It should be considered, however, that the gravity force and74

any contact of the body with external objects, including the75

floor and measuring devices, somewhat interferes with, or even76

impedes, the body displacement induced by the recoil forces.77

As a result, the BCG measurement on earth is always affected78

by some distortion. The ideal environment for assessing the79

BCG would be in microgravity settings, such as during space80

missions. Such experiments have been performed, and the re-81

sults described below confirm that in microgravity the whole82

body recoil forces (BCG) are significant in all three dimensions83

[9]–[12]. Modeling studies examining the cardiogenic traction84

forces of the aorta have confirmed this finding as well [13].85

B. SCG Signal Description86

SCG is the measure of the thoracic vibrations produced by the87

heart’s contraction and the ejection of blood from the ventricles88

into the vascular tree. Today, the SCG can readily be detected89

by placing a low-noise accelerometer on the chest. If a tri-axial90

accelerometer is used, SCG components are present in all three91

axes, each displaying a specific pattern [12], [14]. However, in92

the literature, the majority of studies on SCG only focus on the93

amplitude of the dorso–ventral component, although it is likely94

that additional biological information could be derived also from95

the analysis of the longitudinal and lateral SCG components, and96

from the analysis of the acceleration vector trajectory during97

the heart cycle. Unless the contrary is stated to be consistent98

with the prevalent literature only the dorso–ventral acceleration99

component of SCG will be considered in the remainder of this100

paper.101

C. BCG and SCG Waveforms102

For each heart contraction, a BCG and SCG waveform is gen-103

erated. Each waveform is characterized by several peaks and val-104

Fig. 1. Simultaneously acquired Lead II electrocardiogram (ECG); three-axis
seismocardiogram (SCG) with z indicating the dorso-ventral axis, x indicating
the right-to-left lateral axis, and y indicating the head-to-foot axis; ballisto-
cardiogram (BCG); impedance cardiogram (ICG); and arterial blood pressure
(ABP) measured at the finger, signals from one subject, illustrating the relative
timing and amplitude features of the signals.

leys reflecting specific events of the beating heart. Fig. 1 shows a 105

typical ECG, head-to-foot BCG, tri-axial SCG, impedance car- 106

diogram (ICG), and arterial blood pressure (ABP) measurement 107

from a healthy subject (data were collected with approval from 108

the Institutional Review Board, IRB, at the Georgia Institute 109

of Technology, and with written informed consent obtained). A 110

high-resolution, miniature accelerometer was used for the SCG 111

data collection (356A32, PCB Piezotronics, Depew, NY, USA), 112

and a modified weighing scale was used for the BCG recording 113

as described previously in [15]. The ECG and ICG waveforms 114

were measured using the BN-RSPEC and BN-NICO wireless 115

units (BIOPAC Systems, Inc., Goleta, CA, USA) interfaced to 116

the MP150WSW data acquisition hardware (BIOPAC Systems, 117

Inc., Goleta, CA, USA). The ABP was measured from the fin- 118

ger using the A2SYS Nexfin Monitor (Edwards Lifesciences, 119

Irvine, CA, USA). For this measurement, z corresponded to the 120

dorso–ventral, y to the head-to-foot, and x to the right-to-left 121

lateral components of the SCG. The labels of the peaks and val- 122

leys of the dorso–ventral components shown in this figure are 123

according to [16], [17]; for the BCG, the labels are according 124

to [1]. For the SCG, the labels correspond to the physiological 125

event they are believed to represent: MC, mitral valve closure; 126

IVC, isovolumetric contraction; AO, aortic valve opening; RE, 127

rapid ejection; AC, aortic valve closure; MO, mitral valve open- 128

ing; and RF, rapid filling. For the BCG, the labels of the waves 129

are not associated directly with underlying events, but rather 130

the current understanding is that the waveform represents the 131
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Fig. 2. Compilation of modern BCG and SCG acquisition hardware. (a) PVDF sensor installed into the bed for BCG measurements during sleep. (b) Tri-axial
SCG measurement system built into the MagIC-SCG vest for continuous recordings during normal activities of daily living. Modified from [14] with permission.
(c) Wearable 3-D BCG measurement hardware (Pneumocard) being used on board a parabolic flight for microgravity BCG measurements; Photo Credit: ESA.
(d) Weighing scale with built in circuitry for BCG measurement from a standing subject. (e) Flexible hardware for chest-mounted tri-axial SCG measurements.

combined mechanical pulse response of the vasculature and132

body to cardiac ejection of blood [18]. Note that, when the133

BCG is measured by a scale or force plate, the SCG and BCG134

units are not the same; the SCG records the accelerations of135

the chest wall, and is thus presented in units of milligram; the136

BCG represents the displacements of the center of mass of137

the subject on the weighing scale, which are then converted138

to units of force by the spring constant for the scale platform,139

and thus it is presented in units of Newtons. The mass that is140

accelerated for the SCG is not the same as the mass acceler-141

ated for the BCG; as such, the direct conversion of the BCG to142

acceleration units or the SCG to force units has not yet been143

elucidated.144

D. Importance of Sensor Location, Axis Selection145

and Orientation146

For both BCG and SCG, the measurement location has a sig-147

nificant bearing on the morphology, amplitude, and clinically148

relevant features of the signal. For the SCG, since it is a mea-149

sure of local vibrations, the precise location of the sensor on150

the chest impacts the measured signal [19]–[21]. A widely used151

placement has been on the sternum [14], [22], [23]. Pandia et al.152

found that the second heart sound was more pronounced when153

the SCG was measured on the left side of the chest compared154

to the sternum [19]. For BCG signals measured using an ac-155

celerometer, the same is true; an accelerometer placed on the156

foot will not measure the same BCG signal as one placed on157

the head, thus stressing the importance of a clear description of,158

and thoughtfulness regarding, the sensor location on the body.159

An additional crucial issue is the orientation of the acceleration 160

axis. BCG or SCG accelerations in the dorso–ventral direction 161

will not be identical to those in the lateral (right-to-left) or head- 162

to-foot direction; consequently, depending on the purpose of 163

the measurement the axis should be chosen accordingly or a 164

three-axis accelerometer should be used. 165

In spite of the major role played by the selection of the mea- 166

surement axes, the axes orientation, and the sensor location, 167

from the review of the existing literature it appears that infor- 168

mation on these aspects is often missing, making difficult the 169

understanding of the experimental setup and the interpretation 170

of results. Thus, as detailed in Section VI, a standardization 171

on these issues is deemed necessary, and in the meantime, it 172

is advisable that the above pieces of information are clearly 173

stated in any scientific communication dealing with BCG and 174

SCG. 175

III. INSTRUMENTATION: ENABLING UBIQUITOUS MONITORING 176

Fig. 2 shows a compilation of photos depicting several exam- 177

ples of modern BCG and SCG acquisition hardware, enabling 178

data acquisition in a variety of settings, including in bed, in 179

the home, outdoors, and in microgravity. These systems are 180

discussed below in detail. 181

A. Wearable BCG or SCG Systems 182

The primary advantage of wearable BCG or SCG mea- 183

surement systems is the possibility of obtaining data contin- 184

uously throughout normal daily living. Additionally, record- 185

ings with wearable systems can potentially be acquired in any 186
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environment; thus, providing an opportunity to assess a per-187

son’s cardiovascular performance under various environmental188

settings or stressors.189

The sensor type used most often for wearable BCG or SCG190

measurements is an accelerometer, typically with three-axis191

measurement capability, that is mechanically coupled to the192

body with either adhesives, plastic mounting, or textiles. In193

2007, Castiglioni et al. tested the SCG assessment by an ex-194

ternal three-axis MEMS accelerometer placed on the left clavi-195

cle, connected to a smart garment with textile ECG electrodes,196

thus obtaining simultaneous tri-axial SCG and single-lead ECG197

recordings [24]. The concept was subsequently refined, and in198

2010, Di Rienzo et al. proposed an integrated vest equipped with199

sensors, the MagIC-SCG device, in which the accelerometer200

was inside the system electronics and placed in contact with the201

subject’s sternum [14]. Through this system, SCG was recorded202

over 24 h in ambulant subjects, while performing a variety of203

activities of normal daily living and beat-to-beat estimates of204

cardiac time intervals (CTIs) could be estimated [21]. Chuo205

et al. developed miniaturized hardware (55 × 15 × 3 mm) on206

a flexible substrate with adhesive backing for wireless tri-axial207

SCG recording from the sternum (also with a MEMS accelerom-208

eter) together with single-lead ECG and coarse single-point skin209

temperature via a thermistor [25]. Baevsky et al. developed a210

portable system, “Pneumocard,” for the assessment of the car-211

diac function of cosmonauts on board the International Space212

Station [26]. The system comprised a single-axis MEMS ac-213

celerometer placed at the apex of the heart for the recording of214

the SCG signal. Later, a three-axis MEMS accelerometer was215

added to the system for the recording of the BCG signal. The216

accelerometer was placed on the back of the subject, either at217

the center of mass or between the scapulae and its performance218

during the microgravity phases of parabolic flights was tested219

by Migeotte et al. [27]–[29].220

He et al. placed a tri-axial MEMS accelerometer for BCG221

measurement in a plastic mount over the ear, with auxiliary222

sensors include for ECG and / or photoplethysmogram (PPG)223

measurement, respectively, [30], [31]. Hyun et al. used an224

electromagnetic film (EMFi) patch to measure the vibrations225

of the chest wall in the dorso–ventral direction (transverse);226

however, it should be noted that the exact position on the227

chest for the measurement was not provided, and on the ba-228

sis of morphology, while the signal was called the BCG, it229

was likely rather an SCG [32]. Another notable approach—Q1 230

that is not exactly a wearable device, but provides some similar231

advantages—was demonstrated by Balakrishnan et al. with the232

head-to-foot (longitudinal) direction ballistocardiographic dis-233

placements of the head being captured and processed from video234

recordings [33].235

B. Weighing Scale BCG236

The first measurement of BCG on an electronic scale was237

demonstrated in 1990 by Jim Williams of Linear Technology, as238

described in his application note AN-43 [34]. Williams built an239

elegant circuit capable of measuring bodyweight with tremen-240

dous accuracy—4.5 g resolution up to 136 kg—and found mo-241

tion artifacts, and the BCG as the largest sources of noise for 242

his measurements. 243

The main advantage with weighing-scale-based BCG mea- 244

surement is that the subject is standing up for the measurement— 245

ironically, this is also the main disadvantage. While the standing 246

posture of the subject is ideal for ensuring that the measurement 247

is purely longitudinal, it also means the measurements are sus- 248

ceptible to motion artifacts and floor vibrations. This also places 249

a practical limit on the duration of the measurements, as the pa- 250

tient will likely only stand still on the scale for 30–60 s at a time at 251

most. Another key advantage of these systems is that they lever- 252

age the tremendous popularity of weighing scales, with more 253

than 80% of American households owning a scale, and multiple 254

companies developing new and improved “smart” scales with 255

enhanced capabilities. The scale is also used by heart failure pa- 256

tients at home to monitor increasing trends in their bodyweight, 257

which may be related to increased fluid retention [35], [36]. 258

With these potential advantages in mind, researchers have 259

rigorously investigated this mode of BCG measurement. Inan 260

et al. measured the mechanical frequency response of several 261

commercially available scales at various loads to determine if 262

the bandwidth was sufficient for BCG recording over a wide 263

range of bodyweight. For bodyweights up to 160 kg, they found 264

that the mechanical systems of most commercial scales have 265

a bandwidth exceeding 15 Hz, which is sufficient for BCG 266

measurement [15]. Note that for preserving the accuracy of 267

time interval detection from the BCG, such as the R–J interval 268

between the ECG and BCG, analog and digital low-pass filtering 269

operations should not use a cutoff frequency lower than 25 Hz 270

[37]. BCG measurement on a scale has also been successfully 271

demonstrated by Gonzalez-Landaeta et al. [38] and Shin et al. 272

[39], and in all studies the shape and amplitude of the signal is 273

very similar to the traditional BCG recordings taken by Starr 274

et al. nearly a century earlier [1]. 275

C. Bed-Based BCG Systems 276

BCG can be applied in evaluating the sleep stages and sleep 277

related disorders in more comfortable environment replacing 278

some functions done by polysomnography (PSG). Since BCG- 279

based technology does not require attaching electrodes on pa- 280

tient body surface, it has advantage over ECG of not disturb- 281

ing subject’s ordinary sleep behaviors in collecting data. BCG 282

measurement can be integrated with the subject’s sleeping en- 283

vironment using several types of sensors, the first of which was 284

a static charge sensitive bed by Alihanka et al. [40], and more 285

recently the following implementations: Pressure sensor in the 286

air mattress [41] or in pad [42], film-type force sensors [43] or 287

load cells in the legs of bed [44], microbend fiber optic BCG 288

sensor [45]–[47], EMFi sensors [48], piezoelectric film sensors 289

[49] or polyvinylidene fluoride (PVDF) sensors [50] in the mat- 290

tress pad, strain gauges [51], pneumatic [52], and hydraulic [53] 291

sensors. Some researchers have also proposed the use of sensor 292

arrays rather than single sensors to improve robustness [54], 293

[55]. As these sensors can usually provide the additional infor- 294

mation on respiration and body movement as well as heart beats, 295

this information can be incorporated with the BCG to generate 296
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sleep evaluating parameters more accurately, as well as other297

applications such as early warning in the general ward, or home298

monitoring, where rhythm and dynamics can be monitored over299

extended periods of time for predictive analytics.300

Sleep stages have mainly been classified into two levels slow301

wave sleep or non-slow wave sleep (SWS/non-SWS), or three302

levels (wake/REM/NREM) based on BCG. The earliest imple-303

mentation of BCG based sleep staging was by Watanabe and304

Watanabe [56]. Two stage classification between SWS and non-305

SWS was performed based on BCG with movement measured306

unobtrusively by a load cell installed bed [44]. Based on cal-307

culated heart rate variability (HRV) parameters, they achieved308

the mean agreement of 92.5% (kappa index of 0.62). Sleep effi-309

ciency was evaluated by detecting nocturnal awakening epochs310

in BCG measured using PVDF sensors on bed mattress [57],311

based on the principle that awakening during sleep is related312

with subtle changes in heart rate; thus, awakening epochs can313

be detected based on HRV parameters. They achieved the clas-314

sification accuracy of 97.4% (kappa index of 0.83) and 96.5%315

(kappa index of 0.81) and evaluated the sleep efficiency with316

absolute error of 1.08% and 1.44% for normal subjects and317

obstructive sleep apnea patients, respectively.318

Three stage classification (Wake/REM/NREM) of sleep has319

been derived using the analyses of spectral components of the320

heartbeats extracted from multichannel BCG based on EMFi321

sensors [58]. By applying a hidden Markov model only on BCG,322

they achieved a total accuracy of 79% (kappa index of 0.43)323

compared to clinical sleep staging from PSG. The performance324

was enhanced by combining the time variant-autoregressive325

model (TVAM) and wavelet discrete transform (WDT) with the326

quadratic (QD) or linear discriminant (LD) analysis [59]. The327

QD-TVAM algorithm achieved a total accuracy of 76.8% (kappa328

index of 0.55), while LD-WDT achieved a total accuracy of 79%329

(kappa index of 0.51). Although there was also a study done330

for sleep stage classification into four levels (wake/REM/deep331

sleep/light sleep) with ECG [60], four-level sleep stage clas-332

sification with BCG is not reported yet. With the ECG sig-333

nal, Tanida et al. classified the sleep stage with HRV analyzed334

for each 60-s epoch of ECG and calculated at three frequency335

band powers. Their results for minute-by minute agreement rate336

ranged from 32% to 72% with an average of 56% for ten healthy337

women.338

Sleep monitoring based on BCG technology has a potential to339

provide both continuous and longitudinal information on a sub-340

jects’ sleep quality and may take a role as a predictive screening341

method prior to the sleep studies based on PSG. It could also fill342

the gap among PSG of whole night examination and portable343

ambulatory PSG, which can be applied at home and simplified344

with, for example, a wrist worn movement sensor.345

D. Chair-Based BCG and SCG systems346

Chair-based systems have mainly used electromechanical347

film (EMFi) sensors based on piezoelectric transduction. Koivis-348

toinen et al. attached EMFi sensors to a chair to measure BCG349

signals from two seated subjects, and found the signal shape350

to be similar to other BCG measurements from the literature351

[61]. Walter et al. placed an EMFi mat in the cushion of the 352

driver’s seat in a car to measure the BCG for automatically 353

monitoring driver fitness [62]. These systems provide a means 354

for measuring BCG or SCG signals from patients who cannot 355

stand still on their own, minimize motion artifacts, and allow 356

the user to be comfortable during the measurement. The main 357

disadvantages for chair-based BCG recording are the reduction 358

of signal amplitude compared to measurements using table, bed, 359

or weighing scale systems, and the effects of postural changes 360

on signal quality. 361

IV. SIGNAL PROCESSING AND MODELING 362

A. Heartbeat Detection 363

Since heart rate is regulated by the autonomic nervous system, 364

the analysis of HRV is currently employed to obtain physiolog- 365

ical and clinical information on the level of sympathetic and 366

parasympathetic drive to the heart. Even though ECG is the 367

most widely used biological signal to evaluate heart rate dy- 368

namics, BCG may also be used. Due to its easier application for 369

monitoring in contrast to the inconvenience of attaching elec- 370

trodes to the skin in ECG measurement, BCG may facilitate the 371

assessment of heart rate dynamics in daily life [63]. 372

Heartbeats may be identified by the J-wave peak in the BCG 373

signal, i.e., the point of highest amplitude in the BCG waveform. 374

Heart rate is evaluated by measuring the interval between con- 375

secutive J-peaks, the J-J interval. As there are many algorithms 376

to detect the R-peak in ECG, there are also various methods to 377

detect the J-peaks or heart beat from BCG. Since BCG can be 378

measured in different settings with different type of sensors, the 379

peak-detection algorithm should be selected to optimize the per- 380

formance considering the characteristics of measured BCG. A 381

heartbeat detection algorithm which showed high performance 382

in R-peak detection from ECG can be applied with minor mod- 383

ification for J-peak detection. Generally the peak detection pro- 384

cedure is applied to select the highest value in amplitude as the 385

J-peak within the sliding window after some preprocessing to 386

increase signal-to-noise ratio (SNR) and to reject artifacts due 387

to motion or other interferences. 388

Choi et al. demonstrated increased detection performance 389

with a dedicated algorithm, which finds local peaks in four di- 390

vided subintervals within a period and selects the maximum 391

peak as J-peak from these local peaks with some rejection rules 392

[44]. Jansen et al. applied a detection method based on a “tem- 393

plate matching” rule by evaluating a correlation function in a 394

local moving window [64], a method which was further refined 395

and developed by Shin et al. [65]. Although this method requires 396

template design in its first stage, Shin et al. successfully applied 397

it to several types of BCG signals acquired from air mattress, 398

load cells, and EMFi sensors. The results showed 95.2% of sen- 399

sitivity and 94.8% of specificity in average for five subjects and 400

three types of BCG signals. Additional methods for heartbeat 401

detection from BCG signals include those which combine differ- 402

ent estimators [46], [66], [67], and methods which use wavelets 403

to preprocess the signal prior to peak detection [53], [68]. 404

Heart rate was estimated from the spectral domain specially 405

focusing on third harmonics especially in BCG signals acquired 406
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with fiber optic sensors [45]. The results showed an error less407

than 0.34 beat/min in 2°min averaged heart rate. Heartbeat in-408

tervals were calculated with the cepstrum method, by applying409

FFT for short time windows including pair of consequent heart410

beats [48]. Relative error of the method was 0.35% for 15 night411

recordings with six normal subjects after rejecting movement412

artifacts. Since the results of heart beat detection are not per-413

fect, generally visual editing is required to correct the errors in414

peak detection for further application like HRV analysis. Multi-415

channel fusion techniques have also been demonstrated recently416

for BCG-based heartbeat detection [48], [69].417

Recently, Paalasmaa et al. [70] and Brueser et al. [71] both418

verified heartbeat detection algorithms on large datasets contain-419

ing hundreds of thousands of heartbeats recorded in uncontrolled420

environments. Paalasmaa et al. used hierarchical clustering to421

first infer a heartbeat shape from the recordings, then beat-to-422

beat intervals were found by determining positions at which this423

template best fit the signal. The mean beat-to-beat interval error424

was 13 ms from 46 subjects in the clinic, home, single bed, dou-425

ble bed, and with two sensor types. Brueser et al. demonstrated426

robust estimation of heartbeats for 33 subjects of which 25 were427

insomniacs, with a mean beat-to-beat interval error of 0.78%.428

Their method used three short-time estimators combined using a429

Bayesian approach to continuously estimate interbeat intervals.430

Automatic template learning approaches were also presented by431

Brueser et al. in 2011 with low error [51].432

Performance of HRV analysis using BCG measured on433

weighing scale-type load cell is evaluated in reference to the434

ECG during the resting and under each condition of Valsalva435

and postexercise sessions that induce cardiac autonomic rhythm436

changes [72]. Time domain, frequency domain, and nonlinear437

domain HRV parameters were evaluated on 15 healthy subjects438

to assess the cardiac autonomic modulation under each of these439

conditions. For all subjects and for all experimental sessions,440

HRV parameters calculated from BCG peak intervals are sta-441

tistically not different from those obtained from the reference442

ECG. The results showed high performance with relative errors443

of 5.0–6.0% and strong correlation of 0.97–0.98 in average for444

these three states compared with the results from ECG peaks.445

The errors were relatively high in HRV parameters reflecting the446

high-frequency characteristics of heart rates such as HF, LF/HF447

in the spectral analysis, pNN50 in time-domain analysis, and448

SD1 in nonlinear analysis. This is considered to be caused by449

the inaccuracy in detecting peak from the less sharp J-peak of450

BCG compared to the R-peak in ECG. HRV estimates with451

BCG have also been compared to the PPG, and the correlation452

between the two was found to be high [73]. Preliminary work453

was recently presented by Brueser et al. for unsupervised HRV454

estimation from BCG signals [74].455

B. Noise and Interference Reduction456

Several sources of noise and interference can potentially cor-457

rupt BCG and SCG measurements taken using modern systems.458

These include sensor and circuit noise [75], motion artifacts459

[15], [21], [76], [77], and floor vibrations (for standing BCG460

measurements) [78].461

Both BCG and SCG represent low-level signals that con- 462

tain very low-frequency information—this can lead to problems 463

with flicker (1/f) noise in the sensor interface circuit corrupt- 464

ing the measurements. Furthermore, many diseased subjects, 465

and elderly subjects, have smaller signal amplitudes compared 466

to the healthy young population [79]. The sensor and circuit 467

noise were characterized and reduced for weighing-scale-based 468

BCG systems using an ac-bridge amplifier approach [75]. This 469

approach led to a SNR improvement of 6 dB. 470

For ambulatory and standing subjects, motion artifacts present 471

the greatest potential obstacle to achieving reliable measure- 472

ments. Unlike bed or chair systems, where the subject stays 473

generally still for the measurement, postural sway, or ambulation 474

can create unwanted peaks or distortion in the measured signals. 475

Motion artifact detection for standing BCG measurements was 476

accomplished using auxiliary sensors as noise references; then, 477

gating the BCG signal based on the detection of excessive noise 478

[76], [80]. In one study, the noise reference was an extra strain 479

gauge added to the scale to detect postural sway [76]. In another 480

study, the rms power of the electromyogram signal from the feet, 481

indicating the presence of increased muscle contractions due to 482

excessive movement, was used as a noise gate for the BCG [80]. 483

Pandia et al. presented preliminary methods for cancelling mo- 484

tion artifacts in SCG signals from walking subjects, improving 485

overall heartbeat detection [77]. Di Rienzo et al. used an au- 486

tomatic selection of movement-free data segments from daily 487

recordings of SCG signals from ambulant subjects, followed by 488

an ECG triggered ensemble averaging to reduce signal noise 489

[21]. This enabled, for the first time, the assessment of systolic 490

time interval profiles during normal daily living. 491

BCG measurements taken in a direction orthogonal to 492

the plane of the floor can potentially be corrupted by floor 493

vibrations—this can particularly pose a challenge for measure- 494

ments taken on a vehicle [62] or plane [81]. Walter et al. instru- 495

mented the seat of a car with an EMFi mat to measure the BCG, 496

aiming to use the information to monitor driver fitness [62]. 497

However, with the engine turned on, the BCG was corrupted 498

by vibration artifacts and rendered unusable. Inan et al. used 499

an auxiliary sensor for vibration detection and adaptive noise 500

cancellation to cancel floor vibration artifacts in the BCG mea- 501

surement [78]. In this study, high-quality BCG measurements 502

were successfully demonstrated from a subject standing on a 503

bus with the engine turned on and idling. Additionally, it was 504

observed that low-noise SCG waveforms could be obtained in a 505

subject sitting in the metro, while a train was going by, with the 506

above mentioned ensemble averaging approach [21]. 507

C. Signal Modeling 508

Modeling of SCG and BCG provides a tool to better un- 509

derstand the genesis of waves in these signals and to simulate 510

their morphological changes with different myocardial abnor- 511

malities. Modeling of BCG goes back to the early years of 512

ballistocardiographic research [79]. 513

In most BCG recording systems, the recording device is quite 514

small compared to the human body and the platform on which 515

it rests. It is also far away from the heart in most cases; thus, 516



IE
EE

Pr
oo

f

INAN et al.: BALLISTOCARDIOGRAPHY AND SEISMOCARDIOGRAPHY: A REVIEW OF RECENT ADVANCES 7

Fig. 3. Schematic showing the subject (with mass, ms ) and the BCG recording
system (with mass, mb ) coupled by a spring dashpot system.

TABLE II
DESCRIPTIONS OF VARIABLES FOR SIGNAL MODELING

Variable Description

Fi n t Internal forces
β Damping constant
y Displacement or (in subscript) indicating

head-to-foot direction
ẏ Velocity
ÿ Acceleration
D Spring constant
ms Mass of subject
mb Mass of recording device

the volume of the heart has been neglected in such models. The517

heart has been modeled like a point source providing the flow518

to the circulation system model [82]. Such a model is in accor-519

dance with the classical definition of BCG to be resulted through520

movement of center of gravity of the body and platform. On the521

contrary, in SCG the recording device (i.e., accelerometer) is522

near the heart and the volume of the heart cannot be neglected523

in any model dealing with SCG or any other precordial vibra-524

tion signal. Thus, except for some preliminary efforts [83] SCG525

modeling has not been pursued by many researchers, probably526

because of the complications associated with such a model.527

In ballistocardiographic research, one can study the events528

within human body that cause its movement in space, regard-529

less of the recording device or to study the properties of in-530

struments recording them and how their record relates to the531

movement originating them. Both of these two approaches are532

briefly introduced.533

1) Modeling the Recording Device: During the early years534

of ballistocardiographic research, several different instruments535

were used to measure BCGs, from beds hanging from the ceiling536

[84] to tables strongly coupled to ground [1]. These instruments537

were giving different records from the same normal subjects. So,538

efforts were made to model the effect of these instruments on539

BCG morphology. Limiting ourselves to the head–foot direction540

the equation giving the components along the y-axis (Fig. 3,541

variables defined in Table II) reads:542

(Fint)y − βẏ − Dy = (ms + mb)ÿ. (1)

After sorting and substituting (Fint)y into msÿc (where ÿc is543

the acceleration of center of mass of body):544

(ms + mb)ÿ + βẏ + Dy = ms ÿc . (2)

From the above equation, three different classic types of 545

BCGs can be conceived based on the fact that which terms on 546

the left side of the above equation can be neglected. The first is 547

(ms + mb)ÿ = ms ÿc (3)

which means that the movement of bed and body is proportional 548

to the movement of the center of gravity. A good approximation 549

of this special case is when the ballistocardiograph is weakly 550

coupled to the environment such as ultralow frequency BCG 551

(ULF-BCG) systems. 552

The second type is when: 553

ẏ =
ms

β
ÿc (4)

which represents Nickersons’s low-frequency (LF) BCG and 554

the third type is when: 555

y =
ms + mb

β
ÿc (5)

which refers to the situation when BCG is strongly coupled to 556

its environment, which were categorized under high-frequency 557

BCG (HF-BCG). In other words, when the resonance frequency 558

of the BCG platform is much higher than heart frequency, then 559

its displacement is proportional to the internal acceleration of 560

body’s center of gravity. 561

From this theoretical evaluation, it is clear that very different 562

results will be obtained when one records any one aspect of 563

motion such as displacement or acceleration from each of the 564

three ideal types of ballistocardiographs [82]. However, there is 565

a fourth category of classical BCGs, which are the direct body 566

recordings based on AHA consensus paper on BCG terminol- 567

ogy [85]. Direct body BCGs were always criticized for their 568

inconsistencies [82]. 569

2) Modeling the Internal Forces: Starr started on BCG mod- 570

eling, where arteries were segmented into 3-cm long pieces and 571

mass of blood in the aortic segment closest to the aortic valve 572

was multiplied by acceleration, derived from cardiac ejection 573

curve, to calculate force. This was repeated when the blood 574

volume shifted to the next segment [82]. 575

A more comprehensive model of human systemic arterial 576

tree with distributed properties was constructed in early 1960s 577

by Starr and Noordergraaf [82] and was improved later on by 578

Westerhof et al. [86]. This model was based on the fact that, 579

when using ULF systems, in which the body was free to move in 580

space in the head–foot axis, it was observed that the body moved 581

first footward and then headward during the cardiac cycle. This 582

was explained as a movement to counteract the displacement of 583

the blood mass, that, shortly after the onset of systole, is first 584

driven headward out of the heart to distend the great vessels, 585

and later footward, as the pulse wave spreads peripherally and 586

blood accumulates at a great distance from the heart in the more 587

peripheral vessels. 588

The model divided the arterial tree in 115 segments and cal- 589

culated the position of the body’s center of gravity in the lon- 590

gitudinal direction yc(t), as a function of time, by numerical 591

integration of the products of the excess masses of each segment 592

during the interval t, and the distance yi between the centre of 593
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each segment and the reference plane. Noordergraaf’s model594

was successful in quantitatively predicting the amplitudes of595

ULF BCG waves and in giving an explanation for the origin of596

the main peaks. The model was verified on the data acquired597

from an astronaut in MIR station [87], where by using the lon-598

gitudinal BCG recorded in space the model could be used to599

derive the aortic flow.600

V. HUMAN SUBJECTS STUDIES WITH MODERN SYSTEMS601

A. Correlation Studies With Healthy Subjects602

Originally, BCG and SCG were proposed as diagnostic tools603

for the clinic—for example, a patient would lie on a Starr BCG604

table, the recording would be printed on a strip chart, and the605

physician would read the recording to make a diagnosis regard-606

ing the patient’s cardiovascular health [1], [5]. However, the607

large intersubject variability in the signals hampered this ap-608

proach, particularly given the limited tools available at that time609

for signal analysis. On the contrary, studies have shown that the610

intrasubject variability in the signals over serial measurements611

is actually low [15]—except in the presence of changing cardio-612

vascular health. For this reason, in the past decade the BCG and613

SCG have been proposed as tools for monitoring changes in the614

same patient’s health overtime. Then, the subject is his/her own615

control, and intersubject variability is no longer an obstacle.616

To uncover the clinical relevance of BCG and SCG signal fea-617

tures, and to pave the way for future studies with clinical popula-618

tions, several researchers conducted human subjects studies with619

a healthy population using modern instrumentation and analysis620

tools. These studies were mainly designed with a noninvasive621

protocol for altering the hemodynamics and timing intervals of622

the heart—such as exercise, Valsalva maneuver, whole-body tilt623

testing, or lower body negative pressure (LBNP)—then, com-624

paring the changes in the BCG or SCG waveform to changes in625

a reference standard measurement, such as impedance cardiog-626

raphy (ICG) or Doppler ultrasound.627

For both BCG and SCG signals the amplitude (or rms power)628

components have been shown to modulate with changes in left629

ventricular function—in particular, changes in stroke volume630

(SV) or cardiac output (CO). Castiglioni et al. measured clav-631

icular SCG signals before and immediately after exercise and632

compared the percent changes in the peak-to-peak amplitude of633

the SCG to changes in CO as measured by the finometer model634

flow method, finding a strong correlation for four data points635

taken from four subjects [24]. Inan et al. further demonstrated636

that the changes in rms power resulting from exercise, mea-637

sured during 10 min of recovery time, were strongly correlated638

to changes in CO measured by Doppler ultrasound for 275 data639

points taken from nine subjects [88]. Tavakolian etal. trained a640

neural network to estimate SV from SCG parameters and tested641

this classifier on a separate testing dataset, finding an average642

correlation coefficient of 0.61, and Bland–Altman agreement643

limits (95% confidence) of +7.4mL, −7.6mL for 4900 heart-644

beats analyzed from eight participants [16]. It is important to645

note that these error bands are larger than what would be needed646

for absolute volume estimation using the SCG; however, this647

may be of interest for future research.648

Many researchers have also examined the time intervals both 649

within the signals themselves, and between BCG / SCG sig- 650

nal features and other physiological measurements (e.g., ECG 651

or PPG), to form a relationship between these timing inter- 652

vals to more well-known parameters [e.g., preejection period 653

(PEP), pulse transit time (PTT), or left ventricular ejection time 654

(LVET)]. The time interval between the ECG R-wave peak and 655

the BCG J-wave peak has been proposed as a surrogate for the 656

PEP—a measure of the IVC period of the heart and an index of 657

cardiac contractility [30], [89]. These authors used the Valsalva 658

maneuver and/or whole body tilt testing to modulate the PEP 659

by changing the autonomic balance between parasympathetic 660

and sympathetic drive, and compared the R-J interval to the 661

PEP measured using ICG. Etemadi et al. demonstrated a strong 662

correlation (R2 = 0.86) between the R-J interval and the PEP 663

for 2126 heartbeats across ten subjects performing the Valsalva 664

maneuver [89]. He et al. showed similar results for one example 665

subject with both the Valsalva maneuver and whole-body tilt 666

testing [30]. Tavakolian etal. proposed the interval between the 667

ECG Q-wave and the SCG AO-point as a surrogate for PEP, and 668

found strong correlation between this interval and PEP measure- 669

ment using ICG and Doppler ultrasound in 25 subjects [16]. 670

Researchers have also attempted to extract data from the BCG 671

relating to blood pressure (BP), leveraging the known relation- 672

ship between pulse wave velocity estimated using PTT, and 673

Pinheiro et al. suggested the use of BCG and PPG for PTT esti- 674

mation [90]. Shin et al. compared the R-J interval of the BCG, 675

modulated using the Valsalva maneuver, to beat-by-beat sys- 676

tolic BP (SBP) measurements taken using the Finapres system, 677

finding a strong correlation [39]. Nevertheless, Casanella et al. 678

found that, in case of hemodynamic changes induced by paced 679

respiration, this correlation between R-J interval and SBP was 680

dependent on the subject and was not always observed [91]. 681

Winokur et al. found, for one example subject, that the time 682

interval between the BCG and the PPG signal, both measured 683

at the ear, were correlated to PTT, and could thus be used to 684

estimate BP [31]. 685

Another important interval is the duration of systolic ejection, 686

the LVET, as it provides an indication of what percentage of the 687

cardiac cycle is being devoted to ejection compared to filling. 688

Tavakolian et al. used LBNP to simulate hemorrhage, and found 689

that LVET measurements taken using SCG were significantly 690

different at various stages of LBNP, and correlates with the 691

LBNP levels (R = 0.90) for 32 subjects [92]. Di Rienzo et al. 692

found that with exercise LVET changes measured using wear- 693

able SCG are in line with the changes reported in the literature 694

and obtained by traditional laboratory techniques [21], [93]. 695

B. Clinical Findings From Patients 696

With Cardiovascular Disease 697

Modern ballistocardiography and seismocardiography sys- 698

tems may be capable of monitoring slow, longitudinal changes 699

in cardiac function associated with a number of cardiovascu- 700

lar diseases. Timely noninvasive detection of subtle changes in 701

cardiac pathophysiology may one day enable daily drug dosage 702

adjustments, thus reducing costly and morbid rehospitalizations 703
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[94]. At this moment, the feasibility of this approach is investi-704

gated by the ongoing LAPTOP-HF study which, however, uses705

an implantable right atrial pressure sensor coupled to a mobile706

device that allows daily automatic dosage adjustment [95].707

Fortunately, the basis for the SCG’s clinical utility was begun708

in 1990 with the initial use of high sensitivity, LF accelerometers709

to measure precordial vibrations [96]. Significant features of the710

SCG waveform were identified and associated with key events711

in the cardiac cycle [17]. This allowed the accurate measurement712

of these features (e.g., ACs and MOs) using one sensor, greatly713

simplifying the calculation of CTIs.714

A large body of work exists on the utility and efficacy of715

CTIs [97], [98]. This knowledge combined with the ability to716

make accurate, repeatable quantitative measurements using the717

SCG resulted in the ability to conduct clinically relavent cross-718

sectional studies. Subsequently, clinical studies were undertaken719

to determine if the SCG could be used to identify changes in the720

SCG waveform resulting from myocardial ischemia [99].721

The SCG’s clinical utility in enhancing the diagnostic out-722

come of a graded exercise stress test was first shown in [100]. A723

large multicenter study demonstrated that when the combined724

results of the ECG and SCG were used, the predictive accuracy725

of detecting physiologically significant coronary artery disease726

was increased significantly over the results of the ECG alone [7].727

The introduction in the early 1990s of lightweight (<25g)728

accelerometers, whose working range extended below 1 Hz,729

made possible other clinical settings for the SCG. The SCG730

as a magnetic-field-compatible alternative to the electrocardio-731

gram for cardiac stress monitoring [101] was made possible732

using a newly introduced light weight piezoelectric accelerom-733

eter (336C, PCB Piezotronics, Depew, NY, USA).734

The SCG was used to measure CTI’s during atrial, ventricular,735

and biventricular pacing, as compared to normals [102]. One of736

the studies objectives was to determine the utility of the SCG737

in cardiac resynchronization therapy (CRT). This study was the738

first to use 3 SCG traces for analysis, i.e., one accelerometer739

was placed on the xyphoid process, a second over the apex at740

the fourth intercostal, and a third on the right carotid pulse.741

In 1994, the SCG was used to make accurate longitudinal742

measurements in a study of the effects of elgodiphine on cardiac743

hemodynamics [103]. In a sports medicine application, exercise744

capacity was evaluated using the SCG [104]. A more extensive745

review of the SCG is available in [105].746

As a note of interest, the combined patient population of747

the myocardial ischemia studies [7], [100] is close to 2000748

and consists of both healthy and disease subjects. All the raw749

data were recorded with the same instrumentation (SCG 2000,750

SeisMed Instruments, Minneapolis, MN, USA) associated with751

these datasets are complete patient demographics. A project752

is underway to make the raw data available on the PhysioNet753

website for study by interested researchers [105].754

More recent findings with BCG and SCG further support that755

the signals have great potential in allowing proactive cardiac756

disease management without a costly implantable device. How-757

ever, despite stated clinical and/or physiologic motivations, the758

overwhelming majority of modern BCG/SCG findings continue759

to be from healthy subjects [106]–[108]. Notable exceptions in-760

clude a bed-mounted BCG system for automated detection of 761

atrial fibrillation [109], the observation of reduced signal ampli- 762

tude in the setting of premature atrial or ventricular contractions 763

[15], and the reduction of signal consistency in heart failure 764

patients concordant with worsening clinical outcome [110]. 765

One particular subset of patients is particularly well suited for 766

study using cardiomechanical signals, those undergoing CRT. 767

CRT patients have abnormal cardiac conduction causing in a 768

significant delay between the pumping action of the various 769

chambers of the heart. CRT involves precisely adjusting the 770

timing of a multichamber pacemaker to reduce or remove these 771

delays. Such timing is difficult to ascertain using available tech- 772

nologies, spawning the field of “CRT optimization.” Researchers 773

recently demonstrated the benefits of intracardiac acceleration 774

monitoring in performing CRT optimization [111], a finding 775

preliminarily corroborated by BCG findings as well [8]. 776

C. 3-D Ballistocardiography and Microgravity Studies 777

As the sections on instrumentation earlier in this review have 778

indicated, measurements of BCG (in particular) are constrained 779

by the coupling of the body to the ground, a direct result of the 780

influence of gravity. As such, full 3-D recordings of the BCG 781

are difficult in the terrestrial environment, and much of the focus 782

has been on accelerations in the coronal plane (the XY plane as 783

defined in the section on measurement axes). 784

Given this limitation, it is therefore not surprising that the 785

idea of measuring the BCG in a subject in free-fall (weightless- 786

ness, zero-G, microgravity) was an obvious target of investiga- 787

tion. The first such experiment was performed in the 1960s in 788

parabolic flight, with the subject strapped into a “tub,” which 789

was itself instrumented to record the BCG [9]. Despite the lim- 790

ited periods of microgravity available (typically �20 s) and the 791

subject restraints, recordings of good quality were obtained. 792

Spaceflight represents the other obvious environment in 793

which the “true” 3-D BCG can be recorded. The earliest record- 794

ings were made by the Soviets on Saluyt-6 [10] and consisted of 795

a series of five recordings were performed in two crew members 796

of a long duration mission on days 46, 71, 98, 133, and 175. 797

A piezoelectric sensor, attached close to the center of mass, 798

recorded ballistic forces in the feet-to-head axis during breath 799

holding experiments. Individual changes were seen during the 800

mission with maximum amplitude of the IJ wave occurring on 801

day 133. Measurements were also made during the Spacelab-1 802

mission aboard the Space Shuttle in 1983 [112]. These exper- 803

iments were conducted in two subjects at two occasions dur- 804

ing this short duration spaceflight and showed an increase of 805

the overall systolic accelerations along the longitudinal axis in 806

microgravity. 807

Perhaps the best-analyzed dataset of the BCG in spaceflight 808

came from measurements made during the Spacelab D-2 mis- 809

sion in 1993. During that flight, extra time became available (due 810

to an extension of the overall mission length), and an experiment 811

was hastily conceived, approved, implemented, and performed 812

to measure 3-D BCG in a free-floating subject. Parenthetically, 813

this may be one of the fastest spaceflight experiments ever de- 814

veloped with the time from concept, to collection of the data 815
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Fig. 4. Subject in D-2 shown wearing the snuggly-fitting suit incorporating a
respiratory inductance plethysmograph and ECG. Photo Credit: NASA.

(including approval of an institutional review board) was only816

4–5 days, surely some sort of record. The experiment utilized817

data from a free-floating subject instrumented with an ECG818

and wearing a snuggly fitting suit that measured respiratory819

motion using an impedance plethysmograph (see Fig. 4). This820

instrumentation was a part of the Anthrorack series of human821

studies managed by the European Space Agency. The second822

cruicial piece of instrumentation was a set of high-fidelity tri-823

axial accelerometer that were attached to the vehicle and used824

for measuring the accelerations imparted by crew activity in825

the Spacelab. The sensor package was detached from the ve-826

hicle and taped to the lumbar region of the subject, near to827

the (presumed) center of mass. Data were then recorded as828

the subject remained stationary and free floated in the center829

of the Spacelab, providing a continuous recording, free of in-830

terruptions of 146 s. In order to synchronize the two separate831

data streams, collisions with the Spacelab structure, which dis-832

rupted signals in both data streams, were used as posthoc event833

source [11].834

The data from the D-2 study and some subsequent studies835

provided valuable insight into several aspects of the BCG. In836

particular there were four major conclusions derived from this837

dataset.838

1) Lung volume greatly influences the accelerations839

recorded, especially in the longitudinal (head-to-foot)840

body axis (see Fig. 5), with the implication being that841

there is better coupling between the heart and the body in842

the longitudinal axis at higher lung volumes [11]. Inter-843

estingly, the actual direction of respiratory motion (mid844

inspiration versus mid expiration) had only minimal in-845

fluence of the BCG.846

2) Data derived from short periods of microgravity in847

parabolic flight are largely equivalent to data obtained848

in sustained microgravity [113].849

3) The BCG has a plane of symmetry that is primarily sagit-850

tal. This suggests that 2-D recordings performed in a851

supine subject (i.e., coronal recordings) fail to capture852

a significant portion of the effect of the blood ejection on853

the body, complicating their interpretation [113].854

Fig. 5. The 3-D BCG recorded in spaceflight in a free-floating subject, at the
end of a normal expiration (dashed lines, functional residual capacity, FRC), and
at the end of a normal inspiration (solid lines, FRC + tidal volume). From [11].

4) The accelerations that are recording in a 2-D system are 855

only modestly correlated with the true 3-D accelerations 856

that actually occur, again complicating their interpretation 857

[113]. 858

BCG flight experiments were also an integral part of the 859

Russian cardiovascular research program for the orbital sta- 860

tion MIR. BCG along the head-to-foot direction was measured 861

in three crew members during the second MIR mission in 862

1988 and compared to SCG recordings. Significant changes 863

of the BCG amplitudes (HI, IJ, JK) during the long-term flight 864

were described together with large inter individual differences. 865

The first true 3-D-BCG recordings were made during the sixth 866

MIR mission in 1990 in two crew members on flight days 56 867

and 110. Three new piezoelectric sensors were used placed 868

in perpendicular planes in a small cylindrical box with a di- 869

ameter of 40 mm and a height of 20 mm. The sensitivity of 870

the sensor was 20 mV/m/s2. The sensor was placed between 871

the scapulae using rubber belts and a metallic plate. The spe- 872

cial amplifier (BCG-3) was connected to the recording unit 873

“Gamma-1,” and the data were transmitted telemetrically to 874

the ground station. In summary, no dramatic changes in the vec- 875

tor sum were detected. Maximum forces ranged from 5.85 to 876

10.18 N. However, profound individual changes of the shape, 877

amplitude, and timing of the BCG, especially in the lateral 878

and dorso–ventral plane have been found. Finally, combined 879

BCG and SCG measurements have been made every month 880

in space during the 14 months space flight of Valeri Poljakov, 881
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15th to 17th MIR missions (Russian–Austrian flight experiment882

“Pulstrans”) [114].883

VI. STANDARDS AND OPEN ISSUES884

A. Need For a Standardization885

From the analysis of the literature, it appears that important886

methodological aspects concerning BCG and SCG analysis are887

still characterized by a certain level of ambiguity. These include888

1) Definitions of BCG and SCG Signals: In the literature, the889

definition of BCG and SCG is not univocal and the “BCG” term890

is even sometimes used for SCG signals.891

2) Nomenclature: Since BCG and SCG waveforms are892

mostly different (although they might have some common fea-893

tures to be investigated) it is reasonable to use a specific nomen-894

clature for defining peaks and valleys of each signal. The preva-895

lent annotation for BCG was proposed by Starr et al. [1], for896

SCG by Crow et al. [17]. However, there are some disagree-897

ments on these annotations, and in some instances, SCG peaks898

are termed with the BCG annotation.899

3) Indication of Site of Measurement, Characteristics of sen-900

sor, Sensor Axis Orientation: These pieces of information are901

crucial for data comparison and interpretation, but unfortunately902

are not invariably reported in scientific communications.903

A standardization or at least a common position on the above904

issues would greatly facilitate the understanding and comparison905

of published results, the exchange of data, and the design of new906

experimental protocols in this area.907

B. Open Issues908

A number of open issues remain to be addressed in this field to909

improve the understanding and applicability of BCG and SCG910

signals. Hereafter, we provide just a short list of these issues.911

1) The biological meaning of BCG and SCG deflections not912

yet annotated and their clinical relevance.913

2) Possible common features of the BCG and SCG signals.914

3) Further parameters derivable from the analysis of the BCG915

and SCG 3-D vectors.916

4) Effects of respiration, posture, right ventricle, and sensor917

adherence on the signal waveform/quality.918

5) How to facilitate the use of these signals in clinical prac-919

tice?920

6) Reference values for healthy and diseased subjects for921

both types of signals, and for a wide range of body922

types/sizes, and ages.923

VII. CONCLUSION AND AREAS FOR FUTURE INVESTIGATION924

The recent advances in the BCG and SCG field indicate the925

strong potential of these measurements to address wide vari-926

ety of clinical needs, in particular monitoring or trending the927

cardiomechanical health of patients outside of the clinic. Both928

BCG and SCG measurements can be taken using inexpensive929

and unobtrusive sensors, making them ideally suited, for exam-930

ple, for home monitoring of chronic diseases. Nevertheless, to931

maximize our ability to interpret these signals, the physiological932

origins of both signals must be studied further and elucidated. 933

Furthermore, there is a need to be able to map each measure- 934

ment modality to another using cardiovascular and mechanical 935

modeling of the body, such that any BCG or SCG waveform 936

amplitude, timing, or morphology measured using one modal- 937

ity can be translated quantitatively to another. For example, 938

if a bed-based recording in the dorso–ventral axis yielded a 939

peak BCG J-wave amplitude of 2 N, system modeling tools are 940

needed to compare this to a corresponding J-wave amplitude 941

measured using a weighing scale. Finally, an extensive, open 942

database of BCG and SCG signals, processing tools, and even 943

microprocessor code needs to be made available to massively 944

expand the capability of researchers around the world to inves- 945

tigate these signals, use them in their own settings, and grow the 946

field from a niche into an established technique, routinely used 947

in clinical practice. 948
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Abstract—In the past decade, there has been a resurgence in6
the field of unobtrusive cardiomechanical assessment, through7
advancing methods for measuring and interpreting ballistocardio-8
gram (BCG) and seismocardiogram (SCG) signals. Novel instru-9
mentation solutions have enabled BCG and SCG measurement10
outside of clinical settings, in the home, in the field, and even in11
microgravity. Customized signal processing algorithms have led to12
reduced measurement noise, clinically relevant feature extraction,13
and signal modeling. Finally, human subjects physiology studies14
have been conducted using these novel instruments and signal pro-15
cessing tools with promising clinically relevant results. This paper16
reviews the recent advances in these areas of modern BCG and17
SCG research.18
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I. INTRODUCTION 22

A S detailed in the following sections, the ballistocardio- 23

gram (BCG) is a measurement of the recoil forces of the 24

body in reaction to cardiac ejection of blood into the vascula- 25

ture [1], while the seismocardiogram (SCG) represents the local 26

vibrations of the chest wall in response to the heartbeat [2]. 27

The BCG phenomenon was first observed in 1877 by Gordon, 28

with the finding that, as a subject would stand on a weighing 29

scale, the needle would vibrate synchronously to the subject’s 30

heartbeat [3]. Nearly 60 years later, Starr and colleagues created 31

an instrument in the form of a table with a mobile top surface 32

to measure the BCG in a repeatable scientific manner [1]. The 33

SCG was first observed by Bozhenko in 1961, and was first 34

applied in clinical studies 30 years later in 1991 by Salerno and 35

Zanetti [4]. Throughout the 1900s, both BCG and SCG signals 36

were heavily investigated and several publications appeared in 37

major scientific and clinical journals (e.g., [4]–[7]). However, 38

because of the advent of echocardiography and magnetic res- 39

onance imaging, and overly-cumbersome hardware, BCG and 40

SCG were largely abandoned by the medical community [8]. 41

Today, technological advancements largely simplify the mea- 42

surement and assessment of these signals and open new perspec- 43

tives in their clinical use. This paper reviews the instrumentation 44

and signal processing advances which have helped to propel 45

BCG and SCG into this revival. It also summarizes some of the 46

key human subjects studies performed recently that support the 47

use of BCG and SCG in extra-clinical applications. 48

II. DESCRIPTION OF BCG AND SCG SIGNALS 49

A. BCG Signal Description 50

At every heartbeat, the blood travelling along the vascular tree 51

produces changes in the body center of mass. Body micromove- 52

ments are then produced by the recoil forces to maintain the 53

overall momentum. The BCG is the recording of these move- 54

ments, can be measured as a displacement, velocity, or accelera- 55

tion signal, and is known to include movements in all three axes. 56

The longitudinal BCG is a measure of the head-to-foot deflec- 57

tions of the body, while the transverse BCG represents antero– 58

posterior (or dorso–ventral) vibrations. The original bed- and 59

table-based BCG systems focused on longitudinal BCG mea- 60

surements, representing what was supposed to be the largest 61

projection of the 3-D forces resulting from cardiac ejection 62

[1]. Table I summarizes modern BCG measurement systems 63

and their axes of measurement. Note that for some systems, 64

head-to-foot and dorso–ventral forces are unavoidably, mixed 65

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



IE
EE

Pr
oo

f

2 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 00, 2014

TABLE I
MODERN BCG SYSTEMS AND THEIR CORRESPONDING MEASUREMENT AXES

Modern BCG System Axis Comments / Challenges

Accel. (0g) All (3-D) - Needs reduced gravity
Accel. (1g) Head-to-foot - Placement affects signal shape

and amplitude
- Motion artifacts must be

detected and mitigated
Bed Head-to-foot or

Dorso-ventral
- Cross-axis coupling
- Changes in sleep position affect

signal quality / shape
Chair Head-to-foot or

Dorso-ventral
- Posture affects signal quality

and repeatability
Weighing Scale Head-to-foot - Posture affects signal quality

and repeatability
- Motion artifacts must be

detected and mitigated

together in the measurement, and this should be accounted for66

when interpreting results. However, in spite of the 3-D nature of67

the BCG, for a long period of time only the microdisplacements68

of the body along the longitudinal axis (head-to-foot) were con-69

sidered. Currently, BCG is mainly measured using a force plate70

or force sensor placed on a weighing scale or under the seat of a71

chair, with the subject in a vertical position. Modern approaches72

to BCG measurement are discussed below in Section III.73

It should be considered, however, that the gravity force and74

any contact of the body with external objects, including the75

floor and measuring devices, somewhat interferes with, or even76

impedes, the body displacement induced by the recoil forces.77

As a result, the BCG measurement on earth is always affected78

by some distortion. The ideal environment for assessing the79

BCG would be in microgravity settings, such as during space80

missions. Such experiments have been performed, and the re-81

sults described below confirm that in microgravity the whole82

body recoil forces (BCG) are significant in all three dimensions83

[9]–[12]. Modeling studies examining the cardiogenic traction84

forces of the aorta have confirmed this finding as well [13].85

B. SCG Signal Description86

SCG is the measure of the thoracic vibrations produced by the87

heart’s contraction and the ejection of blood from the ventricles88

into the vascular tree. Today, the SCG can readily be detected89

by placing a low-noise accelerometer on the chest. If a tri-axial90

accelerometer is used, SCG components are present in all three91

axes, each displaying a specific pattern [12], [14]. However, in92

the literature, the majority of studies on SCG only focus on the93

amplitude of the dorso–ventral component, although it is likely94

that additional biological information could be derived also from95

the analysis of the longitudinal and lateral SCG components, and96

from the analysis of the acceleration vector trajectory during97

the heart cycle. Unless the contrary is stated to be consistent98

with the prevalent literature only the dorso–ventral acceleration99

component of SCG will be considered in the remainder of this100

paper.101

C. BCG and SCG Waveforms102

For each heart contraction, a BCG and SCG waveform is gen-103

erated. Each waveform is characterized by several peaks and val-104

Fig. 1. Simultaneously acquired Lead II electrocardiogram (ECG); three-axis
seismocardiogram (SCG) with z indicating the dorso-ventral axis, x indicating
the right-to-left lateral axis, and y indicating the head-to-foot axis; ballisto-
cardiogram (BCG); impedance cardiogram (ICG); and arterial blood pressure
(ABP) measured at the finger, signals from one subject, illustrating the relative
timing and amplitude features of the signals.

leys reflecting specific events of the beating heart. Fig. 1 shows a 105

typical ECG, head-to-foot BCG, tri-axial SCG, impedance car- 106

diogram (ICG), and arterial blood pressure (ABP) measurement 107

from a healthy subject (data were collected with approval from 108

the Institutional Review Board, IRB, at the Georgia Institute 109

of Technology, and with written informed consent obtained). A 110

high-resolution, miniature accelerometer was used for the SCG 111

data collection (356A32, PCB Piezotronics, Depew, NY, USA), 112

and a modified weighing scale was used for the BCG recording 113

as described previously in [15]. The ECG and ICG waveforms 114

were measured using the BN-RSPEC and BN-NICO wireless 115

units (BIOPAC Systems, Inc., Goleta, CA, USA) interfaced to 116

the MP150WSW data acquisition hardware (BIOPAC Systems, 117

Inc., Goleta, CA, USA). The ABP was measured from the fin- 118

ger using the A2SYS Nexfin Monitor (Edwards Lifesciences, 119

Irvine, CA, USA). For this measurement, z corresponded to the 120

dorso–ventral, y to the head-to-foot, and x to the right-to-left 121

lateral components of the SCG. The labels of the peaks and val- 122

leys of the dorso–ventral components shown in this figure are 123

according to [16], [17]; for the BCG, the labels are according 124

to [1]. For the SCG, the labels correspond to the physiological 125

event they are believed to represent: MC, mitral valve closure; 126

IVC, isovolumetric contraction; AO, aortic valve opening; RE, 127

rapid ejection; AC, aortic valve closure; MO, mitral valve open- 128

ing; and RF, rapid filling. For the BCG, the labels of the waves 129

are not associated directly with underlying events, but rather 130

the current understanding is that the waveform represents the 131
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Fig. 2. Compilation of modern BCG and SCG acquisition hardware. (a) PVDF sensor installed into the bed for BCG measurements during sleep. (b) Tri-axial
SCG measurement system built into the MagIC-SCG vest for continuous recordings during normal activities of daily living. Modified from [14] with permission.
(c) Wearable 3-D BCG measurement hardware (Pneumocard) being used on board a parabolic flight for microgravity BCG measurements; Photo Credit: ESA.
(d) Weighing scale with built in circuitry for BCG measurement from a standing subject. (e) Flexible hardware for chest-mounted tri-axial SCG measurements.

combined mechanical pulse response of the vasculature and132

body to cardiac ejection of blood [18]. Note that, when the133

BCG is measured by a scale or force plate, the SCG and BCG134

units are not the same; the SCG records the accelerations of135

the chest wall, and is thus presented in units of milligram; the136

BCG represents the displacements of the center of mass of137

the subject on the weighing scale, which are then converted138

to units of force by the spring constant for the scale platform,139

and thus it is presented in units of Newtons. The mass that is140

accelerated for the SCG is not the same as the mass acceler-141

ated for the BCG; as such, the direct conversion of the BCG to142

acceleration units or the SCG to force units has not yet been143

elucidated.144

D. Importance of Sensor Location, Axis Selection145

and Orientation146

For both BCG and SCG, the measurement location has a sig-147

nificant bearing on the morphology, amplitude, and clinically148

relevant features of the signal. For the SCG, since it is a mea-149

sure of local vibrations, the precise location of the sensor on150

the chest impacts the measured signal [19]–[21]. A widely used151

placement has been on the sternum [14], [22], [23]. Pandia et al.152

found that the second heart sound was more pronounced when153

the SCG was measured on the left side of the chest compared154

to the sternum [19]. For BCG signals measured using an ac-155

celerometer, the same is true; an accelerometer placed on the156

foot will not measure the same BCG signal as one placed on157

the head, thus stressing the importance of a clear description of,158

and thoughtfulness regarding, the sensor location on the body.159

An additional crucial issue is the orientation of the acceleration 160

axis. BCG or SCG accelerations in the dorso–ventral direction 161

will not be identical to those in the lateral (right-to-left) or head- 162

to-foot direction; consequently, depending on the purpose of 163

the measurement the axis should be chosen accordingly or a 164

three-axis accelerometer should be used. 165

In spite of the major role played by the selection of the mea- 166

surement axes, the axes orientation, and the sensor location, 167

from the review of the existing literature it appears that infor- 168

mation on these aspects is often missing, making difficult the 169

understanding of the experimental setup and the interpretation 170

of results. Thus, as detailed in Section VI, a standardization 171

on these issues is deemed necessary, and in the meantime, it 172

is advisable that the above pieces of information are clearly 173

stated in any scientific communication dealing with BCG and 174

SCG. 175

III. INSTRUMENTATION: ENABLING UBIQUITOUS MONITORING 176

Fig. 2 shows a compilation of photos depicting several exam- 177

ples of modern BCG and SCG acquisition hardware, enabling 178

data acquisition in a variety of settings, including in bed, in 179

the home, outdoors, and in microgravity. These systems are 180

discussed below in detail. 181

A. Wearable BCG or SCG Systems 182

The primary advantage of wearable BCG or SCG mea- 183

surement systems is the possibility of obtaining data contin- 184

uously throughout normal daily living. Additionally, record- 185

ings with wearable systems can potentially be acquired in any 186
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environment; thus, providing an opportunity to assess a per-187

son’s cardiovascular performance under various environmental188

settings or stressors.189

The sensor type used most often for wearable BCG or SCG190

measurements is an accelerometer, typically with three-axis191

measurement capability, that is mechanically coupled to the192

body with either adhesives, plastic mounting, or textiles. In193

2007, Castiglioni et al. tested the SCG assessment by an ex-194

ternal three-axis MEMS accelerometer placed on the left clavi-195

cle, connected to a smart garment with textile ECG electrodes,196

thus obtaining simultaneous tri-axial SCG and single-lead ECG197

recordings [24]. The concept was subsequently refined, and in198

2010, Di Rienzo et al. proposed an integrated vest equipped with199

sensors, the MagIC-SCG device, in which the accelerometer200

was inside the system electronics and placed in contact with the201

subject’s sternum [14]. Through this system, SCG was recorded202

over 24 h in ambulant subjects, while performing a variety of203

activities of normal daily living and beat-to-beat estimates of204

cardiac time intervals (CTIs) could be estimated [21]. Chuo205

et al. developed miniaturized hardware (55 × 15 × 3 mm) on206

a flexible substrate with adhesive backing for wireless tri-axial207

SCG recording from the sternum (also with a MEMS accelerom-208

eter) together with single-lead ECG and coarse single-point skin209

temperature via a thermistor [25]. Baevsky et al. developed a210

portable system, “Pneumocard,” for the assessment of the car-211

diac function of cosmonauts on board the International Space212

Station [26]. The system comprised a single-axis MEMS ac-213

celerometer placed at the apex of the heart for the recording of214

the SCG signal. Later, a three-axis MEMS accelerometer was215

added to the system for the recording of the BCG signal. The216

accelerometer was placed on the back of the subject, either at217

the center of mass or between the scapulae and its performance218

during the microgravity phases of parabolic flights was tested219

by Migeotte et al. [27]–[29].220

He et al. placed a tri-axial MEMS accelerometer for BCG221

measurement in a plastic mount over the ear, with auxiliary222

sensors include for ECG and / or photoplethysmogram (PPG)223

measurement, respectively, [30], [31]. Hyun et al. used an224

electromagnetic film (EMFi) patch to measure the vibrations225

of the chest wall in the dorso–ventral direction (transverse);226

however, it should be noted that the exact position on the227

chest for the measurement was not provided, and on the ba-228

sis of morphology, while the signal was called the BCG, it229

was likely rather an SCG [32]. Another notable approach—Q1 230

that is not exactly a wearable device, but provides some similar231

advantages—was demonstrated by Balakrishnan et al. with the232

head-to-foot (longitudinal) direction ballistocardiographic dis-233

placements of the head being captured and processed from video234

recordings [33].235

B. Weighing Scale BCG236

The first measurement of BCG on an electronic scale was237

demonstrated in 1990 by Jim Williams of Linear Technology, as238

described in his application note AN-43 [34]. Williams built an239

elegant circuit capable of measuring bodyweight with tremen-240

dous accuracy—4.5 g resolution up to 136 kg—and found mo-241

tion artifacts, and the BCG as the largest sources of noise for 242

his measurements. 243

The main advantage with weighing-scale-based BCG mea- 244

surement is that the subject is standing up for the measurement— 245

ironically, this is also the main disadvantage. While the standing 246

posture of the subject is ideal for ensuring that the measurement 247

is purely longitudinal, it also means the measurements are sus- 248

ceptible to motion artifacts and floor vibrations. This also places 249

a practical limit on the duration of the measurements, as the pa- 250

tient will likely only stand still on the scale for 30–60 s at a time at 251

most. Another key advantage of these systems is that they lever- 252

age the tremendous popularity of weighing scales, with more 253

than 80% of American households owning a scale, and multiple 254

companies developing new and improved “smart” scales with 255

enhanced capabilities. The scale is also used by heart failure pa- 256

tients at home to monitor increasing trends in their bodyweight, 257

which may be related to increased fluid retention [35], [36]. 258

With these potential advantages in mind, researchers have 259

rigorously investigated this mode of BCG measurement. Inan 260

et al. measured the mechanical frequency response of several 261

commercially available scales at various loads to determine if 262

the bandwidth was sufficient for BCG recording over a wide 263

range of bodyweight. For bodyweights up to 160 kg, they found 264

that the mechanical systems of most commercial scales have 265

a bandwidth exceeding 15 Hz, which is sufficient for BCG 266

measurement [15]. Note that for preserving the accuracy of 267

time interval detection from the BCG, such as the R–J interval 268

between the ECG and BCG, analog and digital low-pass filtering 269

operations should not use a cutoff frequency lower than 25 Hz 270

[37]. BCG measurement on a scale has also been successfully 271

demonstrated by Gonzalez-Landaeta et al. [38] and Shin et al. 272

[39], and in all studies the shape and amplitude of the signal is 273

very similar to the traditional BCG recordings taken by Starr 274

et al. nearly a century earlier [1]. 275

C. Bed-Based BCG Systems 276

BCG can be applied in evaluating the sleep stages and sleep 277

related disorders in more comfortable environment replacing 278

some functions done by polysomnography (PSG). Since BCG- 279

based technology does not require attaching electrodes on pa- 280

tient body surface, it has advantage over ECG of not disturb- 281

ing subject’s ordinary sleep behaviors in collecting data. BCG 282

measurement can be integrated with the subject’s sleeping en- 283

vironment using several types of sensors, the first of which was 284

a static charge sensitive bed by Alihanka et al. [40], and more 285

recently the following implementations: Pressure sensor in the 286

air mattress [41] or in pad [42], film-type force sensors [43] or 287

load cells in the legs of bed [44], microbend fiber optic BCG 288

sensor [45]–[47], EMFi sensors [48], piezoelectric film sensors 289

[49] or polyvinylidene fluoride (PVDF) sensors [50] in the mat- 290

tress pad, strain gauges [51], pneumatic [52], and hydraulic [53] 291

sensors. Some researchers have also proposed the use of sensor 292

arrays rather than single sensors to improve robustness [54], 293

[55]. As these sensors can usually provide the additional infor- 294

mation on respiration and body movement as well as heart beats, 295

this information can be incorporated with the BCG to generate 296
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sleep evaluating parameters more accurately, as well as other297

applications such as early warning in the general ward, or home298

monitoring, where rhythm and dynamics can be monitored over299

extended periods of time for predictive analytics.300

Sleep stages have mainly been classified into two levels slow301

wave sleep or non-slow wave sleep (SWS/non-SWS), or three302

levels (wake/REM/NREM) based on BCG. The earliest imple-303

mentation of BCG based sleep staging was by Watanabe and304

Watanabe [56]. Two stage classification between SWS and non-305

SWS was performed based on BCG with movement measured306

unobtrusively by a load cell installed bed [44]. Based on cal-307

culated heart rate variability (HRV) parameters, they achieved308

the mean agreement of 92.5% (kappa index of 0.62). Sleep effi-309

ciency was evaluated by detecting nocturnal awakening epochs310

in BCG measured using PVDF sensors on bed mattress [57],311

based on the principle that awakening during sleep is related312

with subtle changes in heart rate; thus, awakening epochs can313

be detected based on HRV parameters. They achieved the clas-314

sification accuracy of 97.4% (kappa index of 0.83) and 96.5%315

(kappa index of 0.81) and evaluated the sleep efficiency with316

absolute error of 1.08% and 1.44% for normal subjects and317

obstructive sleep apnea patients, respectively.318

Three stage classification (Wake/REM/NREM) of sleep has319

been derived using the analyses of spectral components of the320

heartbeats extracted from multichannel BCG based on EMFi321

sensors [58]. By applying a hidden Markov model only on BCG,322

they achieved a total accuracy of 79% (kappa index of 0.43)323

compared to clinical sleep staging from PSG. The performance324

was enhanced by combining the time variant-autoregressive325

model (TVAM) and wavelet discrete transform (WDT) with the326

quadratic (QD) or linear discriminant (LD) analysis [59]. The327

QD-TVAM algorithm achieved a total accuracy of 76.8% (kappa328

index of 0.55), while LD-WDT achieved a total accuracy of 79%329

(kappa index of 0.51). Although there was also a study done330

for sleep stage classification into four levels (wake/REM/deep331

sleep/light sleep) with ECG [60], four-level sleep stage clas-332

sification with BCG is not reported yet. With the ECG sig-333

nal, Tanida et al. classified the sleep stage with HRV analyzed334

for each 60-s epoch of ECG and calculated at three frequency335

band powers. Their results for minute-by minute agreement rate336

ranged from 32% to 72% with an average of 56% for ten healthy337

women.338

Sleep monitoring based on BCG technology has a potential to339

provide both continuous and longitudinal information on a sub-340

jects’ sleep quality and may take a role as a predictive screening341

method prior to the sleep studies based on PSG. It could also fill342

the gap among PSG of whole night examination and portable343

ambulatory PSG, which can be applied at home and simplified344

with, for example, a wrist worn movement sensor.345

D. Chair-Based BCG and SCG systems346

Chair-based systems have mainly used electromechanical347

film (EMFi) sensors based on piezoelectric transduction. Koivis-348

toinen et al. attached EMFi sensors to a chair to measure BCG349

signals from two seated subjects, and found the signal shape350

to be similar to other BCG measurements from the literature351

[61]. Walter et al. placed an EMFi mat in the cushion of the 352

driver’s seat in a car to measure the BCG for automatically 353

monitoring driver fitness [62]. These systems provide a means 354

for measuring BCG or SCG signals from patients who cannot 355

stand still on their own, minimize motion artifacts, and allow 356

the user to be comfortable during the measurement. The main 357

disadvantages for chair-based BCG recording are the reduction 358

of signal amplitude compared to measurements using table, bed, 359

or weighing scale systems, and the effects of postural changes 360

on signal quality. 361

IV. SIGNAL PROCESSING AND MODELING 362

A. Heartbeat Detection 363

Since heart rate is regulated by the autonomic nervous system, 364

the analysis of HRV is currently employed to obtain physiolog- 365

ical and clinical information on the level of sympathetic and 366

parasympathetic drive to the heart. Even though ECG is the 367

most widely used biological signal to evaluate heart rate dy- 368

namics, BCG may also be used. Due to its easier application for 369

monitoring in contrast to the inconvenience of attaching elec- 370

trodes to the skin in ECG measurement, BCG may facilitate the 371

assessment of heart rate dynamics in daily life [63]. 372

Heartbeats may be identified by the J-wave peak in the BCG 373

signal, i.e., the point of highest amplitude in the BCG waveform. 374

Heart rate is evaluated by measuring the interval between con- 375

secutive J-peaks, the J-J interval. As there are many algorithms 376

to detect the R-peak in ECG, there are also various methods to 377

detect the J-peaks or heart beat from BCG. Since BCG can be 378

measured in different settings with different type of sensors, the 379

peak-detection algorithm should be selected to optimize the per- 380

formance considering the characteristics of measured BCG. A 381

heartbeat detection algorithm which showed high performance 382

in R-peak detection from ECG can be applied with minor mod- 383

ification for J-peak detection. Generally the peak detection pro- 384

cedure is applied to select the highest value in amplitude as the 385

J-peak within the sliding window after some preprocessing to 386

increase signal-to-noise ratio (SNR) and to reject artifacts due 387

to motion or other interferences. 388

Choi et al. demonstrated increased detection performance 389

with a dedicated algorithm, which finds local peaks in four di- 390

vided subintervals within a period and selects the maximum 391

peak as J-peak from these local peaks with some rejection rules 392

[44]. Jansen et al. applied a detection method based on a “tem- 393

plate matching” rule by evaluating a correlation function in a 394

local moving window [64], a method which was further refined 395

and developed by Shin et al. [65]. Although this method requires 396

template design in its first stage, Shin et al. successfully applied 397

it to several types of BCG signals acquired from air mattress, 398

load cells, and EMFi sensors. The results showed 95.2% of sen- 399

sitivity and 94.8% of specificity in average for five subjects and 400

three types of BCG signals. Additional methods for heartbeat 401

detection from BCG signals include those which combine differ- 402

ent estimators [46], [66], [67], and methods which use wavelets 403

to preprocess the signal prior to peak detection [53], [68]. 404

Heart rate was estimated from the spectral domain specially 405

focusing on third harmonics especially in BCG signals acquired 406
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with fiber optic sensors [45]. The results showed an error less407

than 0.34 beat/min in 2°min averaged heart rate. Heartbeat in-408

tervals were calculated with the cepstrum method, by applying409

FFT for short time windows including pair of consequent heart410

beats [48]. Relative error of the method was 0.35% for 15 night411

recordings with six normal subjects after rejecting movement412

artifacts. Since the results of heart beat detection are not per-413

fect, generally visual editing is required to correct the errors in414

peak detection for further application like HRV analysis. Multi-415

channel fusion techniques have also been demonstrated recently416

for BCG-based heartbeat detection [48], [69].417

Recently, Paalasmaa et al. [70] and Brueser et al. [71] both418

verified heartbeat detection algorithms on large datasets contain-419

ing hundreds of thousands of heartbeats recorded in uncontrolled420

environments. Paalasmaa et al. used hierarchical clustering to421

first infer a heartbeat shape from the recordings, then beat-to-422

beat intervals were found by determining positions at which this423

template best fit the signal. The mean beat-to-beat interval error424

was 13 ms from 46 subjects in the clinic, home, single bed, dou-425

ble bed, and with two sensor types. Brueser et al. demonstrated426

robust estimation of heartbeats for 33 subjects of which 25 were427

insomniacs, with a mean beat-to-beat interval error of 0.78%.428

Their method used three short-time estimators combined using a429

Bayesian approach to continuously estimate interbeat intervals.430

Automatic template learning approaches were also presented by431

Brueser et al. in 2011 with low error [51].432

Performance of HRV analysis using BCG measured on433

weighing scale-type load cell is evaluated in reference to the434

ECG during the resting and under each condition of Valsalva435

and postexercise sessions that induce cardiac autonomic rhythm436

changes [72]. Time domain, frequency domain, and nonlinear437

domain HRV parameters were evaluated on 15 healthy subjects438

to assess the cardiac autonomic modulation under each of these439

conditions. For all subjects and for all experimental sessions,440

HRV parameters calculated from BCG peak intervals are sta-441

tistically not different from those obtained from the reference442

ECG. The results showed high performance with relative errors443

of 5.0–6.0% and strong correlation of 0.97–0.98 in average for444

these three states compared with the results from ECG peaks.445

The errors were relatively high in HRV parameters reflecting the446

high-frequency characteristics of heart rates such as HF, LF/HF447

in the spectral analysis, pNN50 in time-domain analysis, and448

SD1 in nonlinear analysis. This is considered to be caused by449

the inaccuracy in detecting peak from the less sharp J-peak of450

BCG compared to the R-peak in ECG. HRV estimates with451

BCG have also been compared to the PPG, and the correlation452

between the two was found to be high [73]. Preliminary work453

was recently presented by Brueser et al. for unsupervised HRV454

estimation from BCG signals [74].455

B. Noise and Interference Reduction456

Several sources of noise and interference can potentially cor-457

rupt BCG and SCG measurements taken using modern systems.458

These include sensor and circuit noise [75], motion artifacts459

[15], [21], [76], [77], and floor vibrations (for standing BCG460

measurements) [78].461

Both BCG and SCG represent low-level signals that con- 462

tain very low-frequency information—this can lead to problems 463

with flicker (1/f) noise in the sensor interface circuit corrupt- 464

ing the measurements. Furthermore, many diseased subjects, 465

and elderly subjects, have smaller signal amplitudes compared 466

to the healthy young population [79]. The sensor and circuit 467

noise were characterized and reduced for weighing-scale-based 468

BCG systems using an ac-bridge amplifier approach [75]. This 469

approach led to a SNR improvement of 6 dB. 470

For ambulatory and standing subjects, motion artifacts present 471

the greatest potential obstacle to achieving reliable measure- 472

ments. Unlike bed or chair systems, where the subject stays 473

generally still for the measurement, postural sway, or ambulation 474

can create unwanted peaks or distortion in the measured signals. 475

Motion artifact detection for standing BCG measurements was 476

accomplished using auxiliary sensors as noise references; then, 477

gating the BCG signal based on the detection of excessive noise 478

[76], [80]. In one study, the noise reference was an extra strain 479

gauge added to the scale to detect postural sway [76]. In another 480

study, the rms power of the electromyogram signal from the feet, 481

indicating the presence of increased muscle contractions due to 482

excessive movement, was used as a noise gate for the BCG [80]. 483

Pandia et al. presented preliminary methods for cancelling mo- 484

tion artifacts in SCG signals from walking subjects, improving 485

overall heartbeat detection [77]. Di Rienzo et al. used an au- 486

tomatic selection of movement-free data segments from daily 487

recordings of SCG signals from ambulant subjects, followed by 488

an ECG triggered ensemble averaging to reduce signal noise 489

[21]. This enabled, for the first time, the assessment of systolic 490

time interval profiles during normal daily living. 491

BCG measurements taken in a direction orthogonal to 492

the plane of the floor can potentially be corrupted by floor 493

vibrations—this can particularly pose a challenge for measure- 494

ments taken on a vehicle [62] or plane [81]. Walter et al. instru- 495

mented the seat of a car with an EMFi mat to measure the BCG, 496

aiming to use the information to monitor driver fitness [62]. 497

However, with the engine turned on, the BCG was corrupted 498

by vibration artifacts and rendered unusable. Inan et al. used 499

an auxiliary sensor for vibration detection and adaptive noise 500

cancellation to cancel floor vibration artifacts in the BCG mea- 501

surement [78]. In this study, high-quality BCG measurements 502

were successfully demonstrated from a subject standing on a 503

bus with the engine turned on and idling. Additionally, it was 504

observed that low-noise SCG waveforms could be obtained in a 505

subject sitting in the metro, while a train was going by, with the 506

above mentioned ensemble averaging approach [21]. 507

C. Signal Modeling 508

Modeling of SCG and BCG provides a tool to better un- 509

derstand the genesis of waves in these signals and to simulate 510

their morphological changes with different myocardial abnor- 511

malities. Modeling of BCG goes back to the early years of 512

ballistocardiographic research [79]. 513

In most BCG recording systems, the recording device is quite 514

small compared to the human body and the platform on which 515

it rests. It is also far away from the heart in most cases; thus, 516
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Fig. 3. Schematic showing the subject (with mass, ms ) and the BCG recording
system (with mass, mb ) coupled by a spring dashpot system.

TABLE II
DESCRIPTIONS OF VARIABLES FOR SIGNAL MODELING

Variable Description

Fi n t Internal forces
β Damping constant
y Displacement or (in subscript) indicating

head-to-foot direction
ẏ Velocity
ÿ Acceleration
D Spring constant
ms Mass of subject
mb Mass of recording device

the volume of the heart has been neglected in such models. The517

heart has been modeled like a point source providing the flow518

to the circulation system model [82]. Such a model is in accor-519

dance with the classical definition of BCG to be resulted through520

movement of center of gravity of the body and platform. On the521

contrary, in SCG the recording device (i.e., accelerometer) is522

near the heart and the volume of the heart cannot be neglected523

in any model dealing with SCG or any other precordial vibra-524

tion signal. Thus, except for some preliminary efforts [83] SCG525

modeling has not been pursued by many researchers, probably526

because of the complications associated with such a model.527

In ballistocardiographic research, one can study the events528

within human body that cause its movement in space, regard-529

less of the recording device or to study the properties of in-530

struments recording them and how their record relates to the531

movement originating them. Both of these two approaches are532

briefly introduced.533

1) Modeling the Recording Device: During the early years534

of ballistocardiographic research, several different instruments535

were used to measure BCGs, from beds hanging from the ceiling536

[84] to tables strongly coupled to ground [1]. These instruments537

were giving different records from the same normal subjects. So,538

efforts were made to model the effect of these instruments on539

BCG morphology. Limiting ourselves to the head–foot direction540

the equation giving the components along the y-axis (Fig. 3,541

variables defined in Table II) reads:542

(Fint)y − βẏ − Dy = (ms + mb)ÿ. (1)

After sorting and substituting (Fint)y into msÿc (where ÿc is543

the acceleration of center of mass of body):544

(ms + mb)ÿ + βẏ + Dy = ms ÿc . (2)

From the above equation, three different classic types of 545

BCGs can be conceived based on the fact that which terms on 546

the left side of the above equation can be neglected. The first is 547

(ms + mb)ÿ = ms ÿc (3)

which means that the movement of bed and body is proportional 548

to the movement of the center of gravity. A good approximation 549

of this special case is when the ballistocardiograph is weakly 550

coupled to the environment such as ultralow frequency BCG 551

(ULF-BCG) systems. 552

The second type is when: 553

ẏ =
ms

β
ÿc (4)

which represents Nickersons’s low-frequency (LF) BCG and 554

the third type is when: 555

y =
ms + mb

β
ÿc (5)

which refers to the situation when BCG is strongly coupled to 556

its environment, which were categorized under high-frequency 557

BCG (HF-BCG). In other words, when the resonance frequency 558

of the BCG platform is much higher than heart frequency, then 559

its displacement is proportional to the internal acceleration of 560

body’s center of gravity. 561

From this theoretical evaluation, it is clear that very different 562

results will be obtained when one records any one aspect of 563

motion such as displacement or acceleration from each of the 564

three ideal types of ballistocardiographs [82]. However, there is 565

a fourth category of classical BCGs, which are the direct body 566

recordings based on AHA consensus paper on BCG terminol- 567

ogy [85]. Direct body BCGs were always criticized for their 568

inconsistencies [82]. 569

2) Modeling the Internal Forces: Starr started on BCG mod- 570

eling, where arteries were segmented into 3-cm long pieces and 571

mass of blood in the aortic segment closest to the aortic valve 572

was multiplied by acceleration, derived from cardiac ejection 573

curve, to calculate force. This was repeated when the blood 574

volume shifted to the next segment [82]. 575

A more comprehensive model of human systemic arterial 576

tree with distributed properties was constructed in early 1960s 577

by Starr and Noordergraaf [82] and was improved later on by 578

Westerhof et al. [86]. This model was based on the fact that, 579

when using ULF systems, in which the body was free to move in 580

space in the head–foot axis, it was observed that the body moved 581

first footward and then headward during the cardiac cycle. This 582

was explained as a movement to counteract the displacement of 583

the blood mass, that, shortly after the onset of systole, is first 584

driven headward out of the heart to distend the great vessels, 585

and later footward, as the pulse wave spreads peripherally and 586

blood accumulates at a great distance from the heart in the more 587

peripheral vessels. 588

The model divided the arterial tree in 115 segments and cal- 589

culated the position of the body’s center of gravity in the lon- 590

gitudinal direction yc(t), as a function of time, by numerical 591

integration of the products of the excess masses of each segment 592

during the interval t, and the distance yi between the centre of 593
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each segment and the reference plane. Noordergraaf’s model594

was successful in quantitatively predicting the amplitudes of595

ULF BCG waves and in giving an explanation for the origin of596

the main peaks. The model was verified on the data acquired597

from an astronaut in MIR station [87], where by using the lon-598

gitudinal BCG recorded in space the model could be used to599

derive the aortic flow.600

V. HUMAN SUBJECTS STUDIES WITH MODERN SYSTEMS601

A. Correlation Studies With Healthy Subjects602

Originally, BCG and SCG were proposed as diagnostic tools603

for the clinic—for example, a patient would lie on a Starr BCG604

table, the recording would be printed on a strip chart, and the605

physician would read the recording to make a diagnosis regard-606

ing the patient’s cardiovascular health [1], [5]. However, the607

large intersubject variability in the signals hampered this ap-608

proach, particularly given the limited tools available at that time609

for signal analysis. On the contrary, studies have shown that the610

intrasubject variability in the signals over serial measurements611

is actually low [15]—except in the presence of changing cardio-612

vascular health. For this reason, in the past decade the BCG and613

SCG have been proposed as tools for monitoring changes in the614

same patient’s health overtime. Then, the subject is his/her own615

control, and intersubject variability is no longer an obstacle.616

To uncover the clinical relevance of BCG and SCG signal fea-617

tures, and to pave the way for future studies with clinical popula-618

tions, several researchers conducted human subjects studies with619

a healthy population using modern instrumentation and analysis620

tools. These studies were mainly designed with a noninvasive621

protocol for altering the hemodynamics and timing intervals of622

the heart—such as exercise, Valsalva maneuver, whole-body tilt623

testing, or lower body negative pressure (LBNP)—then, com-624

paring the changes in the BCG or SCG waveform to changes in625

a reference standard measurement, such as impedance cardiog-626

raphy (ICG) or Doppler ultrasound.627

For both BCG and SCG signals the amplitude (or rms power)628

components have been shown to modulate with changes in left629

ventricular function—in particular, changes in stroke volume630

(SV) or cardiac output (CO). Castiglioni et al. measured clav-631

icular SCG signals before and immediately after exercise and632

compared the percent changes in the peak-to-peak amplitude of633

the SCG to changes in CO as measured by the finometer model634

flow method, finding a strong correlation for four data points635

taken from four subjects [24]. Inan et al. further demonstrated636

that the changes in rms power resulting from exercise, mea-637

sured during 10 min of recovery time, were strongly correlated638

to changes in CO measured by Doppler ultrasound for 275 data639

points taken from nine subjects [88]. Tavakolian etal. trained a640

neural network to estimate SV from SCG parameters and tested641

this classifier on a separate testing dataset, finding an average642

correlation coefficient of 0.61, and Bland–Altman agreement643

limits (95% confidence) of +7.4mL, −7.6mL for 4900 heart-644

beats analyzed from eight participants [16]. It is important to645

note that these error bands are larger than what would be needed646

for absolute volume estimation using the SCG; however, this647

may be of interest for future research.648

Many researchers have also examined the time intervals both 649

within the signals themselves, and between BCG / SCG sig- 650

nal features and other physiological measurements (e.g., ECG 651

or PPG), to form a relationship between these timing inter- 652

vals to more well-known parameters [e.g., preejection period 653

(PEP), pulse transit time (PTT), or left ventricular ejection time 654

(LVET)]. The time interval between the ECG R-wave peak and 655

the BCG J-wave peak has been proposed as a surrogate for the 656

PEP—a measure of the IVC period of the heart and an index of 657

cardiac contractility [30], [89]. These authors used the Valsalva 658

maneuver and/or whole body tilt testing to modulate the PEP 659

by changing the autonomic balance between parasympathetic 660

and sympathetic drive, and compared the R-J interval to the 661

PEP measured using ICG. Etemadi et al. demonstrated a strong 662

correlation (R2 = 0.86) between the R-J interval and the PEP 663

for 2126 heartbeats across ten subjects performing the Valsalva 664

maneuver [89]. He et al. showed similar results for one example 665

subject with both the Valsalva maneuver and whole-body tilt 666

testing [30]. Tavakolian etal. proposed the interval between the 667

ECG Q-wave and the SCG AO-point as a surrogate for PEP, and 668

found strong correlation between this interval and PEP measure- 669

ment using ICG and Doppler ultrasound in 25 subjects [16]. 670

Researchers have also attempted to extract data from the BCG 671

relating to blood pressure (BP), leveraging the known relation- 672

ship between pulse wave velocity estimated using PTT, and 673

Pinheiro et al. suggested the use of BCG and PPG for PTT esti- 674

mation [90]. Shin et al. compared the R-J interval of the BCG, 675

modulated using the Valsalva maneuver, to beat-by-beat sys- 676

tolic BP (SBP) measurements taken using the Finapres system, 677

finding a strong correlation [39]. Nevertheless, Casanella et al. 678

found that, in case of hemodynamic changes induced by paced 679

respiration, this correlation between R-J interval and SBP was 680

dependent on the subject and was not always observed [91]. 681

Winokur et al. found, for one example subject, that the time 682

interval between the BCG and the PPG signal, both measured 683

at the ear, were correlated to PTT, and could thus be used to 684

estimate BP [31]. 685

Another important interval is the duration of systolic ejection, 686

the LVET, as it provides an indication of what percentage of the 687

cardiac cycle is being devoted to ejection compared to filling. 688

Tavakolian et al. used LBNP to simulate hemorrhage, and found 689

that LVET measurements taken using SCG were significantly 690

different at various stages of LBNP, and correlates with the 691

LBNP levels (R = 0.90) for 32 subjects [92]. Di Rienzo et al. 692

found that with exercise LVET changes measured using wear- 693

able SCG are in line with the changes reported in the literature 694

and obtained by traditional laboratory techniques [21], [93]. 695

B. Clinical Findings From Patients 696

With Cardiovascular Disease 697

Modern ballistocardiography and seismocardiography sys- 698

tems may be capable of monitoring slow, longitudinal changes 699

in cardiac function associated with a number of cardiovascu- 700

lar diseases. Timely noninvasive detection of subtle changes in 701

cardiac pathophysiology may one day enable daily drug dosage 702

adjustments, thus reducing costly and morbid rehospitalizations 703
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[94]. At this moment, the feasibility of this approach is investi-704

gated by the ongoing LAPTOP-HF study which, however, uses705

an implantable right atrial pressure sensor coupled to a mobile706

device that allows daily automatic dosage adjustment [95].707

Fortunately, the basis for the SCG’s clinical utility was begun708

in 1990 with the initial use of high sensitivity, LF accelerometers709

to measure precordial vibrations [96]. Significant features of the710

SCG waveform were identified and associated with key events711

in the cardiac cycle [17]. This allowed the accurate measurement712

of these features (e.g., ACs and MOs) using one sensor, greatly713

simplifying the calculation of CTIs.714

A large body of work exists on the utility and efficacy of715

CTIs [97], [98]. This knowledge combined with the ability to716

make accurate, repeatable quantitative measurements using the717

SCG resulted in the ability to conduct clinically relavent cross-718

sectional studies. Subsequently, clinical studies were undertaken719

to determine if the SCG could be used to identify changes in the720

SCG waveform resulting from myocardial ischemia [99].721

The SCG’s clinical utility in enhancing the diagnostic out-722

come of a graded exercise stress test was first shown in [100]. A723

large multicenter study demonstrated that when the combined724

results of the ECG and SCG were used, the predictive accuracy725

of detecting physiologically significant coronary artery disease726

was increased significantly over the results of the ECG alone [7].727

The introduction in the early 1990s of lightweight (<25g)728

accelerometers, whose working range extended below 1 Hz,729

made possible other clinical settings for the SCG. The SCG730

as a magnetic-field-compatible alternative to the electrocardio-731

gram for cardiac stress monitoring [101] was made possible732

using a newly introduced light weight piezoelectric accelerom-733

eter (336C, PCB Piezotronics, Depew, NY, USA).734

The SCG was used to measure CTI’s during atrial, ventricular,735

and biventricular pacing, as compared to normals [102]. One of736

the studies objectives was to determine the utility of the SCG737

in cardiac resynchronization therapy (CRT). This study was the738

first to use 3 SCG traces for analysis, i.e., one accelerometer739

was placed on the xyphoid process, a second over the apex at740

the fourth intercostal, and a third on the right carotid pulse.741

In 1994, the SCG was used to make accurate longitudinal742

measurements in a study of the effects of elgodiphine on cardiac743

hemodynamics [103]. In a sports medicine application, exercise744

capacity was evaluated using the SCG [104]. A more extensive745

review of the SCG is available in [105].746

As a note of interest, the combined patient population of747

the myocardial ischemia studies [7], [100] is close to 2000748

and consists of both healthy and disease subjects. All the raw749

data were recorded with the same instrumentation (SCG 2000,750

SeisMed Instruments, Minneapolis, MN, USA) associated with751

these datasets are complete patient demographics. A project752

is underway to make the raw data available on the PhysioNet753

website for study by interested researchers [105].754

More recent findings with BCG and SCG further support that755

the signals have great potential in allowing proactive cardiac756

disease management without a costly implantable device. How-757

ever, despite stated clinical and/or physiologic motivations, the758

overwhelming majority of modern BCG/SCG findings continue759

to be from healthy subjects [106]–[108]. Notable exceptions in-760

clude a bed-mounted BCG system for automated detection of 761

atrial fibrillation [109], the observation of reduced signal ampli- 762

tude in the setting of premature atrial or ventricular contractions 763

[15], and the reduction of signal consistency in heart failure 764

patients concordant with worsening clinical outcome [110]. 765

One particular subset of patients is particularly well suited for 766

study using cardiomechanical signals, those undergoing CRT. 767

CRT patients have abnormal cardiac conduction causing in a 768

significant delay between the pumping action of the various 769

chambers of the heart. CRT involves precisely adjusting the 770

timing of a multichamber pacemaker to reduce or remove these 771

delays. Such timing is difficult to ascertain using available tech- 772

nologies, spawning the field of “CRT optimization.” Researchers 773

recently demonstrated the benefits of intracardiac acceleration 774

monitoring in performing CRT optimization [111], a finding 775

preliminarily corroborated by BCG findings as well [8]. 776

C. 3-D Ballistocardiography and Microgravity Studies 777

As the sections on instrumentation earlier in this review have 778

indicated, measurements of BCG (in particular) are constrained 779

by the coupling of the body to the ground, a direct result of the 780

influence of gravity. As such, full 3-D recordings of the BCG 781

are difficult in the terrestrial environment, and much of the focus 782

has been on accelerations in the coronal plane (the XY plane as 783

defined in the section on measurement axes). 784

Given this limitation, it is therefore not surprising that the 785

idea of measuring the BCG in a subject in free-fall (weightless- 786

ness, zero-G, microgravity) was an obvious target of investiga- 787

tion. The first such experiment was performed in the 1960s in 788

parabolic flight, with the subject strapped into a “tub,” which 789

was itself instrumented to record the BCG [9]. Despite the lim- 790

ited periods of microgravity available (typically �20 s) and the 791

subject restraints, recordings of good quality were obtained. 792

Spaceflight represents the other obvious environment in 793

which the “true” 3-D BCG can be recorded. The earliest record- 794

ings were made by the Soviets on Saluyt-6 [10] and consisted of 795

a series of five recordings were performed in two crew members 796

of a long duration mission on days 46, 71, 98, 133, and 175. 797

A piezoelectric sensor, attached close to the center of mass, 798

recorded ballistic forces in the feet-to-head axis during breath 799

holding experiments. Individual changes were seen during the 800

mission with maximum amplitude of the IJ wave occurring on 801

day 133. Measurements were also made during the Spacelab-1 802

mission aboard the Space Shuttle in 1983 [112]. These exper- 803

iments were conducted in two subjects at two occasions dur- 804

ing this short duration spaceflight and showed an increase of 805

the overall systolic accelerations along the longitudinal axis in 806

microgravity. 807

Perhaps the best-analyzed dataset of the BCG in spaceflight 808

came from measurements made during the Spacelab D-2 mis- 809

sion in 1993. During that flight, extra time became available (due 810

to an extension of the overall mission length), and an experiment 811

was hastily conceived, approved, implemented, and performed 812

to measure 3-D BCG in a free-floating subject. Parenthetically, 813

this may be one of the fastest spaceflight experiments ever de- 814

veloped with the time from concept, to collection of the data 815
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Fig. 4. Subject in D-2 shown wearing the snuggly-fitting suit incorporating a
respiratory inductance plethysmograph and ECG. Photo Credit: NASA.

(including approval of an institutional review board) was only816

4–5 days, surely some sort of record. The experiment utilized817

data from a free-floating subject instrumented with an ECG818

and wearing a snuggly fitting suit that measured respiratory819

motion using an impedance plethysmograph (see Fig. 4). This820

instrumentation was a part of the Anthrorack series of human821

studies managed by the European Space Agency. The second822

cruicial piece of instrumentation was a set of high-fidelity tri-823

axial accelerometer that were attached to the vehicle and used824

for measuring the accelerations imparted by crew activity in825

the Spacelab. The sensor package was detached from the ve-826

hicle and taped to the lumbar region of the subject, near to827

the (presumed) center of mass. Data were then recorded as828

the subject remained stationary and free floated in the center829

of the Spacelab, providing a continuous recording, free of in-830

terruptions of 146 s. In order to synchronize the two separate831

data streams, collisions with the Spacelab structure, which dis-832

rupted signals in both data streams, were used as posthoc event833

source [11].834

The data from the D-2 study and some subsequent studies835

provided valuable insight into several aspects of the BCG. In836

particular there were four major conclusions derived from this837

dataset.838

1) Lung volume greatly influences the accelerations839

recorded, especially in the longitudinal (head-to-foot)840

body axis (see Fig. 5), with the implication being that841

there is better coupling between the heart and the body in842

the longitudinal axis at higher lung volumes [11]. Inter-843

estingly, the actual direction of respiratory motion (mid844

inspiration versus mid expiration) had only minimal in-845

fluence of the BCG.846

2) Data derived from short periods of microgravity in847

parabolic flight are largely equivalent to data obtained848

in sustained microgravity [113].849

3) The BCG has a plane of symmetry that is primarily sagit-850

tal. This suggests that 2-D recordings performed in a851

supine subject (i.e., coronal recordings) fail to capture852

a significant portion of the effect of the blood ejection on853

the body, complicating their interpretation [113].854

Fig. 5. The 3-D BCG recorded in spaceflight in a free-floating subject, at the
end of a normal expiration (dashed lines, functional residual capacity, FRC), and
at the end of a normal inspiration (solid lines, FRC + tidal volume). From [11].

4) The accelerations that are recording in a 2-D system are 855

only modestly correlated with the true 3-D accelerations 856

that actually occur, again complicating their interpretation 857

[113]. 858

BCG flight experiments were also an integral part of the 859

Russian cardiovascular research program for the orbital sta- 860

tion MIR. BCG along the head-to-foot direction was measured 861

in three crew members during the second MIR mission in 862

1988 and compared to SCG recordings. Significant changes 863

of the BCG amplitudes (HI, IJ, JK) during the long-term flight 864

were described together with large inter individual differences. 865

The first true 3-D-BCG recordings were made during the sixth 866

MIR mission in 1990 in two crew members on flight days 56 867

and 110. Three new piezoelectric sensors were used placed 868

in perpendicular planes in a small cylindrical box with a di- 869

ameter of 40 mm and a height of 20 mm. The sensitivity of 870

the sensor was 20 mV/m/s2. The sensor was placed between 871

the scapulae using rubber belts and a metallic plate. The spe- 872

cial amplifier (BCG-3) was connected to the recording unit 873

“Gamma-1,” and the data were transmitted telemetrically to 874

the ground station. In summary, no dramatic changes in the vec- 875

tor sum were detected. Maximum forces ranged from 5.85 to 876

10.18 N. However, profound individual changes of the shape, 877

amplitude, and timing of the BCG, especially in the lateral 878

and dorso–ventral plane have been found. Finally, combined 879

BCG and SCG measurements have been made every month 880

in space during the 14 months space flight of Valeri Poljakov, 881
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15th to 17th MIR missions (Russian–Austrian flight experiment882

“Pulstrans”) [114].883

VI. STANDARDS AND OPEN ISSUES884

A. Need For a Standardization885

From the analysis of the literature, it appears that important886

methodological aspects concerning BCG and SCG analysis are887

still characterized by a certain level of ambiguity. These include888

1) Definitions of BCG and SCG Signals: In the literature, the889

definition of BCG and SCG is not univocal and the “BCG” term890

is even sometimes used for SCG signals.891

2) Nomenclature: Since BCG and SCG waveforms are892

mostly different (although they might have some common fea-893

tures to be investigated) it is reasonable to use a specific nomen-894

clature for defining peaks and valleys of each signal. The preva-895

lent annotation for BCG was proposed by Starr et al. [1], for896

SCG by Crow et al. [17]. However, there are some disagree-897

ments on these annotations, and in some instances, SCG peaks898

are termed with the BCG annotation.899

3) Indication of Site of Measurement, Characteristics of sen-900

sor, Sensor Axis Orientation: These pieces of information are901

crucial for data comparison and interpretation, but unfortunately902

are not invariably reported in scientific communications.903

A standardization or at least a common position on the above904

issues would greatly facilitate the understanding and comparison905

of published results, the exchange of data, and the design of new906

experimental protocols in this area.907

B. Open Issues908

A number of open issues remain to be addressed in this field to909

improve the understanding and applicability of BCG and SCG910

signals. Hereafter, we provide just a short list of these issues.911

1) The biological meaning of BCG and SCG deflections not912

yet annotated and their clinical relevance.913

2) Possible common features of the BCG and SCG signals.914

3) Further parameters derivable from the analysis of the BCG915

and SCG 3-D vectors.916

4) Effects of respiration, posture, right ventricle, and sensor917

adherence on the signal waveform/quality.918

5) How to facilitate the use of these signals in clinical prac-919

tice?920

6) Reference values for healthy and diseased subjects for921

both types of signals, and for a wide range of body922

types/sizes, and ages.923

VII. CONCLUSION AND AREAS FOR FUTURE INVESTIGATION924

The recent advances in the BCG and SCG field indicate the925

strong potential of these measurements to address wide vari-926

ety of clinical needs, in particular monitoring or trending the927

cardiomechanical health of patients outside of the clinic. Both928

BCG and SCG measurements can be taken using inexpensive929

and unobtrusive sensors, making them ideally suited, for exam-930

ple, for home monitoring of chronic diseases. Nevertheless, to931

maximize our ability to interpret these signals, the physiological932

origins of both signals must be studied further and elucidated. 933

Furthermore, there is a need to be able to map each measure- 934

ment modality to another using cardiovascular and mechanical 935

modeling of the body, such that any BCG or SCG waveform 936

amplitude, timing, or morphology measured using one modal- 937

ity can be translated quantitatively to another. For example, 938

if a bed-based recording in the dorso–ventral axis yielded a 939

peak BCG J-wave amplitude of 2 N, system modeling tools are 940

needed to compare this to a corresponding J-wave amplitude 941

measured using a weighing scale. Finally, an extensive, open 942

database of BCG and SCG signals, processing tools, and even 943

microprocessor code needs to be made available to massively 944

expand the capability of researchers around the world to inves- 945

tigate these signals, use them in their own settings, and grow the 946

field from a niche into an established technique, routinely used 947

in clinical practice. 948
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