Extracting Various Classes of Data From Biological Text Using the Concept of Existence Dependency | IEEE Journals & Magazine | IEEE Xplore

Extracting Various Classes of Data From Biological Text Using the Concept of Existence Dependency


Abstract:

One of the key goals of biological natural language processing (NLP) is the automatic information extraction from biomedical publications. Most current constituency and d...Show More

Abstract:

One of the key goals of biological natural language processing (NLP) is the automatic information extraction from biomedical publications. Most current constituency and dependency parsers overlook the semantic relationships between the constituents comprising a sentence and may not be well suited for capturing complex long-distance dependences. We propose in this paper a hybrid constituency-dependency parser for biological NLP information extraction called EDCC. EDCC aims at enhancing the state of the art of biological text mining by applying novel linguistic computational techniques that overcome the limitations of current constituency and dependency parsers outlined earlier, as follows: 1) it determines the semantic relationship between each pair of constituents in a sentence using novel semantic rules; and 2) it applies a semantic relationship extraction model that extracts information from different structural forms of constituents in sentences. EDCC can be used to extract different types of data from biological texts for purposes such as protein function prediction, genetic network construction, and protein-protein interaction detection. We evaluated the quality of EDCC by comparing it experimentally with six systems. Results showed marked improvement.
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 19, Issue: 6, November 2015)
Page(s): 1918 - 1928
Date of Publication: 19 January 2015

ISSN Information:

PubMed ID: 25616086

Contact IEEE to Subscribe

References

References is not available for this document.