Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation | IEEE Journals & Magazine | IEEE Xplore

Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation


Abstract:

Accurate vessel detection in retinal images is an important and difficult task. Detection is made more challenging in pathological images with the presence of exudates an...Show More

Abstract:

Accurate vessel detection in retinal images is an important and difficult task. Detection is made more challenging in pathological images with the presence of exudates and other abnormalities. In this paper, we present a new unsupervised vessel segmentation approach to address this problem. A novel inpainting filter, called neighborhood estimator before filling, is proposed to inpaint exudates in a way that nearby false positives are significantly reduced during vessel enhancement. Retinal vascular enhancement is achieved with a multiple-scale Hessian approach. Experimental results show that the proposed vessel segmentation method outperforms state-of-the-art algorithms reported in the recent literature, both visually and in terms of quantitative measurements, with overall mean accuracy of 95.62% on the STARE dataset and 95.81% on the HRF dataset.
Published in: IEEE Journal of Biomedical and Health Informatics ( Volume: 20, Issue: 4, July 2016)
Page(s): 1129 - 1138
Date of Publication: 01 June 2015

ISSN Information:

PubMed ID: 26054078

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.