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Abstract

In Magnetic Resonance (MR), hardware limitation, scanning time, and patient comfort often result 

in the acquisition of anisotropic 3D MR images. Enhancing image resolution is desired but has 

been very challenging in medical image processing. Super resolution (SR) reconstruction based on 

sparse representation and over-complete dictionary has been lately employed to address this 

problem; however, these methods require extra training sets, which may not be always available. 

This paper proposes a novel single anisotropic 3D MR image upsampling method via sparse 

representation and over-complete dictionary that is trained from in-plane high resolution slices to 

upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra 

training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show 

that the proposed method is more accurate than classical interpolation. When compared to a recent 

upsampling method based on the non-local means approach, the proposed method did not show 

improved results at low upsampling factors with simulated images, but generated comparable 

results with much better computational efficiency in clinical cases. Therefore, the proposed 

approach can be efficiently implemented and routinely used to upsample MR images in the out-of-

planes views for radiologic assessment and post-acquisition processing.

Index Terms

Magnetic resonance imaging; Over-complete dictionary; Super resolution reconstruction; Sparse 
representation

I. Introduction

Spatial resolution in magnetic resonance imaging (MRI) depends on multiple factors, but is 

limited by the MRI hardware, tissue relaxation times and image contrast requirements, 
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acquisition time, and patient comfort. In a trade-off to avoid prolonged scans to reduce the 

risk of subject motion and increase patient comfort, while maintaining high signal-to-noise 

ratio and contrast-to-noise ratio, many MRI scans are performed with relatively few slices 

but with rather large slice thickness. The acquired images often have higher in-plane 

resolution (i.e. in the phase-encoding and frequency-encoding dimensions) than the out-of-

plane resolution (or the slice-select direction, also referred to as through-plane dimension), 

thus have anisotropic voxels (i.e. rectangular voxels with one direction longer than the other 

two) that are longer in the slice select direction. This results in significant partial voluming 

effect (PVE) in the out-of-plane views. Such low resolution (LR) images pose limitations on 

the performance of voxel-wise analysis, image segmentation, and other post-processing 

algorithms. Standard interpolation methods, such as nearest neighbor, bilinear, bicubic, and 

B-spline interpolations, may be used to scale up the LR images, but result in blocky edges.

Super-resolution (SR) techniques have emerged as efficient methods to improve the 

resolution of images. The idea behind SR is to reconstruct a high resolution (HR) image as 

accurately as possible based on single or multiple low-resolution images. In 2001 and 2002, 

initial attempts were made to adopt SR algorithms from the computer vision community to 

medical imaging with a focus on MRI [1]. The MRI framework is particularly well adapted 

to the application of SR techniques because of the control one has over the acquisition 

process [2]. The SR methods have shown to improve the trade-off between resolution, 

signal-to-noise ratio (SNR) and acquisition time of specific MR imaging sequences [3].

SR reconstruction can be performed both in the frequency domain and the spatial domain. 

The frequency-domain SR methods are simple, but the observation models are limited to 

global translation motion and linear space invariant blur. Besides, it is difficult to utilize the 

spatial prior information. On the other hand, in the spatial-domain SR methods, more 

comprehensive generative models, and spatial prior information may be used to achieve 

improved reconstruction accuracy. In the following discussion we focus on SR MRI methods 

in the spatial domain.

Previously in MRI multiple images of the same subject with small shifts were acquired to 

reconstruct the HR image aiming to improve both the in-plane and out-of-plane resolution. 

In [4] the authors tried to improve the in-plane resolution. This method was questioned by 

[5] since the in-plane images obtained by shifting the field-of-view (FOV) involved the 

acquisition of the same points in k-space (i.e. spatial frequency domain, where information 

about the frequency of a signal and where it comes from in the patient is stored), which 

means they contained the same information. In [6] variable demodulation frequency was 

used to obtain shifted sampling in the image space for in-plane SR. In [7] the authors 

compared the combination of images acquired at the same sample points in k-space but 

shifted afterwards, and the combination of the same number of images acquired at shifted 

positions through changes in demodulation frequency. They found that the HR images 

obtained by the latter method contained additional details in the form of image features, 

suggesting that new information was added through a denser sampling of the point-spread 

function (PSF). This study confirmed that the in-plane resolution in MRI was dependent on 

the effective width of the PSF and the extent of the k-space sampling.
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Super-resolution in the out-of-plane directions of 2D MRI scans has been more promising as 

2D MR acquisition is governed by slice-selective excitation in the image domain and Fourier 

encoding is only performed in the phase and frequency encoding directions. Shifted, rotated, 

or orthogonal anisotropic slice acquisitions therefore naturally contain additional 

information that can be used in SR reconstruction. Greenspan et al. [1] applied SR method to 

combine several orthogonal 2D MRI acquisitions to improve the out-of-plane resolution. 

The results were encouraging. Many methods from the SR reconstruction literature have 

been adopted to improve the out-of-plane resolution of MRI to generate isotropic 

(symmetrical) voxels. Typical reconstruction-based algorithms used for SR MRI are error 

back-projection [8], maximum a posteriori (MAP) estimation [9] and projection into convex 

sets [10]. Obviously, SR methods that combine multiple LR images for resolution 

enhancement rely on an exact correspondence between images. This may be achieved using 

image registration. The reconstruction results are highly dependent upon original alignment 

of images or the registration accuracy. These techniques have evolved into complex 

algorithms that correct for motion at the slice level and combine the image information in a 

robust fashion in an application like fetal MRI [11].

In another, more common scenario, improving resolution through upsampling is desired 

where no additional scans are available. The single-frame SR reconstruction has emerged to 

address this problem, with the specific aim of estimating the best possible HR image from 

only one single LR image. These techniques are naturally compared to interpolation 

algorithms that are routinely used for image upsampling (e.g. nearest neighbor, bilinear, 

bicubic, B-spline, and windowed Sinc interpolations). While high-order B-spline and 

windowed Sinc kernel functions provide good, practical estimations of the ideal Sinc 

interpolator, all these techniques are bounded by fundamental performance limits as they do 

not use any prior knowledge about image structure or appearance in upsampling.

A recent trend in SR reconstruction is learning-based methods which exploit the natural 

redundancy and self-similarity of images. These methods have shown competitive results 

compared to high order interpolation. The two most successful classes of techniques in this 

category use Non-local Means (NLM) and Sparse Representations. The NLM method was 

first proposed in [12] for image denoising. In [13], [14], the NLM approach was adopted to 

SR reconstruction in MRI. A feature-based multi-modality approach was proposed and 

generated better results in [15]. Sparse representation, which has shown great promise in 

processing natural images, has also been successfully applied to single-image SR [16], [17]. 

In [18], the algorithm from [16], [17] were applied to single anisotropic 3D brain MR image, 

with a knowledge-driven patch selection criteria based on brain tissue segmentation.

Despite the overall satisfactory performance of the learning-based single-image SR methods, 

they require extra HR reference images and training sets, and are typically demanding on 

computational resources. These will significantly reduce the applicability of these 

techniques in clinical practice. Based on the above analysis, and to mitigate the limitations 

of the current techniques, this paper proposes a new approach to upsample a single 

anisotropic 3D MR image without extra training sets based on sparse representation and 

over-complete dictionary. The proposed method is compared with classical interpolation and 

a state-of-the-art NLM-based SR approach [13], which also does not require an HR 
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reference image but does not use the in-plane HR images either. Experiments were 

performed with both simulation and real clinical 3D brain MR images, showing that the 

proposed method achieves much better results than classical interpolation methods. In 

clinical MR images, this approach outperforms the NLM-based method both in terms of 

accuracy and the execution time and memory usage.

The rest of the paper is organized as follows. Section II provides a general formulation for 

SR reconstruction using sparse representation and over-complete dictionary. Section III 

describes the details of the proposed method. Extensive experimental results and analysis are 

presented in Section IV. Section V contains the concluding remarks.

II. FORMULATION

We begin our journey with a description of the theory behind SR reconstruction. The SR 

problem can be mathematically stated as:

(1)

Where Xh is the original HR image, D is the down-sampling operator, B is the blurring 

operator, G is geometric transformation, ν is an additive noise, Yl is the LR image. Equation 

(1) means the observed LR image Yl is the downsampled, blurred, transformed and noisy 

version of Xh. The goal of this problem is to recover Xh as accurately as possible based on 

the LR observation Yl. This is an ill-posed problem and has no unique solution, so we need 

regularizers to obtain a unique optimal solution for this problem. Since we perform the 

analysis at the level of small patches, ensuring to make use of the image redundancy, the 

formulation is rewritten in the following form:

(2)

Where  and  are patches respectively extracted from the LR and HR images at location 

k.  is with size (n × s) × (n × s) and  is with size n × n, s is the upsampling scale. νk is 

the noise on the patch k. Without loss of generality, (2) can be written as

(3)

The assumption of pattern redundancy of MR images means information can be sparsely 

coded. A patch can be sparsely represented by α over the dictionary A, namely:

(4)
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(5)

 and  mean the number of non-zeros in vector  or  is much 

smaller than the sparsity sp, which is the number of the atoms of Ah and Al we use to 

represent the  and .

According to (3) and (4), we can get , that is , where 

ε is related to noise νk. So  which means  can be represented by sparse 

representation  over dictionary MkAh. So LR dictionary and HR dictionary can share the 

same sparse representation, i.e. . Both LR and HR dictionaries are over-complete, 

with more atoms than signal dimensions, allowing to represent a wide range of signal 

phenomena.

Supported by the above theory, the SR method based on sparse representation and over-

complete dictionary is defined as follows: LR and HR dictionaries are trained from the 

training set. Then the observed LR image is sparsely represented over the trained LR 

dictionary. As assumed above, the sparse representations of the LR and HR image are the 

same, so based on the obtained sparse representation and trained HR dictionary, HR image is 

reconstructed. The above model based on sparse representation can also be referred as sparse 

land. This model constructs a connection between HR patches and the corresponding LR 

patches, which is exploited to recover the HR image.

III. Proposed Method

A. Motivations

For the SR reconstruction of single anisotropic 3D MR image based on over-complete 

dictionary, one key point is the construction of relevant learning database, i.e. the training 

set. But sometimes no extra training set is provided. To solve this problem, we should 

construct the training set from the anisotropic 3D MR image itself.

The more similar the observed LR image is to the training examples, the better 

reconstruction results we may obtain. Furthermore, the training set should include HR 

images and their corresponding LR images to learn the relationship between them. So the 

training examples should be HR and similar to the out-of-plane slices of anisotropic 3D MR 

image. It has been proven in [19] that the local self-similarity of anatomical features occurs 

both within the same plane and across the planes. That means the out-of-plane patches are 

similar to the in-plane patches. Meanwhile, the in-plane slices from anisotropic 3D MR 

image are HR. This is the rationale behind constructing the training set based on the in-plane 

patches.

Based on the above analysis, this paper utilizes in-plane HR patches from anisotropic 3D 

MR image to construct the training set for the over-complete dictionaries.
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B. The Proposed Algorithm

The proposed SR method includes two main phases: training and reconstruction. The 

procedure is shown in Algorithm 1. The details are described in the following.

Algorithm 1

The proposed Super-resolution approach.

Input:

Io: Single anisotropic 3D MR image with a slice dimension a ×
b and c slices.

s: In-plane to out-of-plane resolution ratio.

n: Size of patches extracted from LR images.

o: The overlap of LR patches.

Output:

Iu: Upsampled isotropic 3D MR image with size a × b × (c ×
s).

Step 1 Dictionary training

Step 1.1 Training set construction

1.
Collect in-plane HR 2D slices , j = 1,2, …, c with size a × b from Io, where 

.

2.
Produce the corresponding LR images , j = 1,2, …, c via averaging the near 

srows or columns.

3. Extract overlapped patches  and , where k 

is the location of the patches,  means extract the HR/LR patches from 

corresponding HR/LR slices at location k.  is with size (n × s) × (n × s),  is 

with size n × n, overlapped voxels number for  and  are respectively (o × s) 

and o.

The patch pairs  construct the training set.

Step 1.2 Pre-processing

1. Remove the low-frequencies from , and extract features  from 

, filters = {G,GT,L,LT}, where G = [1,0,−1], L = 

[1,0,−2,0,1]/2.

2. Perform dimensionality reduction by principal component analysis (PCA) over 

.

Step 1.3 Dictionary training: Based on the processed training set, train over-complete 

dictionary Al and sparse representation  for  by K singular value decomposition 
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(K-SVD) algorithm companied with orthogonal matching pursuit (OMP) method, so that 

. Then obtain corresponding Ah for HR patches based on , to satisfy 

.

Step 2 Isotropic 3D MR image reconstruction Step

Step 2.1 Pre-processing

1. Interpolate each image of  with a slice dimension a × c to the 

destination size  using bicubic interpolation algorithm by factor s.

2. Cut every LR slice  into patches  with size n × n and overlapped voxels o.

3. Extract features  from  by the method used in the training phase.

4. Dimensionality reduction is performed again by PCA over .

Step 2.2 Reconstruction: For each , i = 1,2, …, b,

1. Sparse code  by OMP method using the trained LR dictionary Al, and get 

the corresponding sparse representations .

2. Recover the HR patches  by multiplying  and HR dictionary Ah.

3. Add low frequency to HR patches.

4. Merge the HR patches by averaging the overlapped parts, and get the final 

reconstructed slice . Iu is the 2D slice stack of .

1) Dictionary Training Phasek: The dictionary training stage can be divided into three 

parts: training set construction, image pre-processing, sparse representation and dictionary 

training.

a. Training Set Construction: The training set is constructed by the HR in-plane slices. 

When constructing the training set, we obtain the corresponding LR images by averaging 

adjacent rows or columns. This simulates PVE (Partial Volume Effects) as a consequence of 

LR image acquisition. Besides, we cut the images into small patches to form the training set. 

This process is to utilize the redundancy of the images and reduce the computation time.

b. Image Pre-Processing: We subtract low frequency information from HR patches and 

extract the structure features for each patch, so that the dictionary represents image textures 

rather than absolute intensity. Here, the low frequency is the mean pixel value, which is the 

same with the LR patches. As mentioned before, the HR image loses its high-frequency 

information through the acquisition process, and our task is to recover the high-frequency 

information. That is why we use the high frequency features as the examples to train the 

dictionary. Another pre-processing operation is dimensionality reduction over the feature 

vectors by PCA. This simultaneously reduces computations and improves the reconstruction 

accuracy.
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c. Dictionary Training and Sparse Representation: The dictionary and the corresponding 

sparse representation encode the connection between the LR patches and the corresponding 

HR patches. Based on this connection the HR patches can be reconstructed. The objective of 

this step is to express the LR patches by dictionary and sparse representation as accurately as 

possible based on the sparsity prior. This is an optimization problem which can be 

mathematically expressed in the following way:

(6)

An efficient algorithm is needed to obtain the best Al and . In this paper, we choose K-

SVD [20] to train the dictionary for the sparse representation. The K-SVD algorithm is an 

efficient iterative method that alternates between sparse coding based on the current 

dictionary and updating the dictionary atoms to better fit the examples. This method is 

generalized from the K-means clustering process. It is flexible and can work with any 

pursuit method. In this paper, we use the OMP (orthogonal matching pursuit) [21] algorithm 

as it is simple and only involves the computation of inner products of matrices.

2) Up-sampling LR Anisotropic 3D MR Image: Based on the HR and LR dictionaries 

trained from the anisotropic 3D image itself, we up-sample the image through the following 

steps. Firstly, feature extraction and dimensionality reduction are performed again as in the 

dictionary training phase. The next step is reconstruction. For each , we get the sparse 

code  for  by OMP method using the trained LR dictionary Al based on (6). 

Because HR patches and corresponding LR patches share the same sparse representation, we 

can get the HR patches by multiplying  and the trained HR dictionary Ah. In the 

training phase, we subtract low frequency from the HR patches. Therefore, the recovered HR 

patches so far do not contain the low frequency information. We should add the low 

frequency to the reconstructed HR patches. In this method, we process small patches not the 

whole image, so we should connect all the small patches into the whole image. The final HR 

image is constructed by solving the following minimization problem with respect to :

(7)

where Rk means an extractor to extract patches at location k from high frequency resulting 

image, . The extracted patches should be as close as possible to the reconstructed 

patches . This problem can be solved by the following equation:
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(8)

It is equivalent to putting  in their proper location, averaging the overlap regions, and 

adding the low frequency content of  to generate the final image .

IV. Experiments

To demonstrate the advantages of the proposed approach, we conducted extensive 

experiments. This section has been divided into 4 parts. The first part describes 

implementation details including the selection of the parameters in the proposed SR 

reconstruction process. In the second part we introduce the experimental data sets. Then, in 

part 3, we talk about the quantitative and qualitative evaluation methods. Finally, in part 4 

we have compared the proposed method with classical interpolation and a state-of-the-art 

upsampling method based on the Non-Local Means approach [13] to demonstrate the 

superiority and impact of the proposed method. Based on the results of experiments, we 

analyze how the slice thickness, noise, and pathology affect the accuracy of the proposed 

method.

A. Implementation Details

All algorithms were implemented in MATLAB R2014a, running on a Windows machine 

with 2 3.10 GHZ Intel Core i5 CPUs and 4.00GBytes of RAM. Since the proposed 

methodology may be implemented in a number of different manners, we clarify the 

following implementation details: K-SVD was chosen as the dictionary training method and 

OMP as the sparse representation method; Based on Table I and Table II, which present the 

reconstruction results of simulated axial T2W MR image with 2mm slice thickness, in a 

trade-off between accuracy and efficiency, we always used 3 × 3 LR patches with 1 pixel 

overlap between adjacent patches, corresponding to (3 × scale) × (3 × scale) patches with 

overlap of (1 × scale) for the HR patches. Feature extraction was done using gradient and 

Laplacian filters. For initial upsampling we used bicubic interpolation; for the dictionary 

training phase, 40 iterations was experimentally found to provide a good trade-off between 

the efficiency and accuracy; number of dictionary atoms and the maximum sparsity for the 

sparse representation were set to 512 and 3, respectively, following [16].

B. Brain MR Data Sets

To validate the proposed method, a synthetic dataset and several real MR images were used. 

Various simulated T2-weighted (T2W) brain MR images were obtained from the publicly 

available BrainWeb database [22], including normal and pathologic (multiple sclerosis) MR 

images, non-noisy and noisy ones. The HR T2W volumes had 181 × 217 × 181 voxels with 

a resolution of 1 mm × 1 mm × 1 mm. Different percentage noise (0%, 1%, 3%, 5%, 7% and 

9%) levels were used to investigate the noise influence. The noise in the simulated images 

has Rayleigh statistics in the background and Rician statistics in the signal regions. The 

“percent noise” number represents the percent ratio of the standard deviation of the Gaussian 
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white noise versus the signal for a reference tissue. For T2W images, the reference tissue is 

CSF (Cerebrospinal Fluid).

To test the proposed approach on real clinical data, three FSE (Fast Spin Echo) T2W brain 

MR images were collected, with different slice-selection directions but for the same subject. 

Those three-plane MR images all had a slice thickness of 2.0 mm, and a pixel size of 

0.46875 mm × 0.46875 mm. The axial slice stacks had a slice dimension of 408 × 512 and 

80 slices, the coronal scan had a slice dimension of 408 × 512 and 100 slices, while the 

sagittal scan had a slice dimension of 512 × 512 and 83 slices.

C. Evaluation Method

To quantitatively and qualitatively evaluate the performance of the proposed method over 

different brain data sets, we introduce four different methods in this section for two 

scenarios:

1) Images with ground truth—In the experiments, if we have an original HR image, 

considered as the ground truth, comparing the reconstruction with the original image is a 

good way to evaluate the results. The following two performance metrics are calculated 

when the ground truth is available:

Peak Signal-to-Noise Ratio (PSNR) is defined as:

(9)

Where MSE(Xo, Xh) stands for means square error, quantifies the pixel intensity difference 

between the original HR image Xo and the corresponding SR reconstruction Xh, using 

.  and  are the image intensity at location k, d is 

the dynamic range of the intensity value, i.e. d = max(Xo) − min(Xo). Typically, the PSNR 

values are between 25 dB and 50 dB. A higher value of PSNR indicates a better performance 

of the reconstruction method.

Structural Similarity Image Metric (SSIM) [23]: It measures the similarity between two 

images, with a definition that is more consistent with the human visual perception of image 

quality. Under the assumption that human visual perception is highly adapted to extracting 

structural information from a scene, SSIM is formulated as:

(10)

Where μo and μh are the mean intensity of images Xo and Xh, respectively; σo and σh are the 

standard deviation of images Xo and Xh, which are estimates of the signal contrast; σoh is 

the covariance of Xo and Xh, C1 = (K1L)2 and C2 = (K2L)2, K1 ≪ 1 and K2 ≪ 1 are small 
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constants and L is the dynamic range of the intensity values. In this paper we use K1 = 0.01 

and K2 = 0.03. SSIM values are between 0 and 1, where a higher value indicates the better 

reconstruction results.

2) Images without ground truth—In reality, for example in clinical data, no original 

HR reference image is available, so we cannot evaluate the reconstruction results by 

comparing the similarity with a ground truth image. Alternative methods to evaluate the 

results are as follows:

Visual inspection: visual assessment of images is also a precious method to compare and 

judge the benefit of proposed methods; however, it is obviously a subjective method, and 

also may not be easy when large datasets should be evaluated and compared. In this paper, 

we display several 2D reconstructed slices and evaluate the slices by viewing the image 

details.

Intensity profile: the intensity profile of an image is the set of intensity values taken from 

regularly spaced points along a line segment or multiline path in an image. The fundamental 

problem of SR reconstruction can be stated as restoring some high-frequency information 

(like edges) that has been lost during the acquisition process. An effective SR reconstruction 

technique should be able to recover these high-frequencies. Intensity profile can show 

intensity value changes at the interfaces between different tissues, thus may be used as a 

surrogate measure of how edge features appear and are distinguished in the image. We also 

evaluate the reconstruction results of our clinical MR experiments based on image intensity 

profiles in this paper.

D. Experimental Results and Analysis

In this part, we compare our proposed method with classical interpolation algorithms and a 

state-of-the-art single-image SR approach on both simulated database and real medical 

image. Furthermore, we analyze the influence of different factors to the proposed method 

based on the experiment results.

1) Comparison with Classical Interpolation Methods—To evaluate the efficacy of 

the proposed method, we perform comparisons with classical interpolation algorithms, 

including the nearest neighbor, bilinear, bicubic, B-spline interpolation. Different MR 

images have various features: different slice thickness, noise and lesions. So we compared 

the proposed method with the classical interpolation method on 3D T2W MR images with 

different features respectively.

Firstly, we constructed a down-sampled version of a normal non-noisy simulated HR T2w 

image. Axial slice stacks with different slice thickness (2 mm, 3 mm, 4 mm, 5 mm, 6 mm 

and 7 mm) were simulated. Adjacent slices were averaged to produce different slice 

thicknesses. This simulates the Partial Volume Effect (PVE). PVE increases as the slice 

thickness increases. For example, three adjacent slices along the Z direction were averaged 

into one slice to simulate an anisotropic acquisition at 1 mm × 1 mm × 3 mm resolution. The 

slice thickness became 3 mm and the matrix size was 180 × 216 × 60. The out-of-plane 

slices were reconstructed based on the dictionary trained from the in-plane slices in the axial 
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direction. These simulated LR 3D MR images were upsampled to 1 mm × 1 mm × 1 mm. To 

see the relative degree of improvements, in this section we report the results of comparing 

the classic interpolation algorithm and the proposed method over normal non-noisy axial 2D 

slice stacks with slice thickness of 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm. Table III shows 

that the bicubic and B-spline interpolations generate very similar results and the proposed 

method generates the best results in terms of both PSNR and SSIM values. The 

improvements achieved in these metrics by using the proposed method are comparable to the 

amount of improvement obtained from higher-order interpolation methods (bicubic and B-

spline) as compared to the nearest neighbor interpolation. This indicates major 

improvements. The PSNR/SSIM values obtained from the proposed method are 31.555 dB/

0.9849 in 2 mm and 26.791 dB/0.9544 in 3 mm. The PSNR/SSIM values drop rapidly as the 

slice thickness increases from 2 mm to 3 mm. The reason for the influences is that the up-

sampling scalar increases as the slice becomes thicker. The limitation of most SR algorithms 

is that their performance deteriorates quickly when the magnification factor is only 

moderately large.

It is clear that the 0% noise case is an idealization of the real MR image acquisition. To 

compare the classic interpolation method and proposed method on noisy 3D MR images, 

another experiment was performed on T2W simulated MR images from BrainWeb with 

different noise levels (0%, 1%, 3%, 5%, 7% and 9%). Noisy axial MR images with voxel 

size 1 mm × 1 mm × 2 mm and matrix size 180 × 216 × 90 were simulated. The resolution 

in the slice-selected direction is improved based on the trained dictionary. The results are 

shown in Table IV. In addition, similar experiment is repeated using the MS (Multiple 

Sclerosis) T2W MR images, as shown in Table V. Again, the proposed method obtains the 

best results in all cases, including the noisy and pathological images. The PSNR/SSIM 

values drop as the noise level increases.

Experiments were also performed on real clinical data. Axial 2D slice stacks (voxel size: 

0.46875 mm × 0.46875 mm × 2.0 mm) was up-sampled to 1 mm × 1 mm × 1 mm using 

bicubic interpolation and the proposed method. In Fig. 1, a visual comparison of the results 

is shown. One can see that the reconstruction using the proposed approach shows a better 

anatomical content. A close up of the image clearly shows the reconstruction using the 

proposed method is significantly less blocky and blurry. The proposed method is visually 

superior in particular near the image edges.

2) Comparison with Non-Local Means SR method—Furthermore, as mentioned 

before, we compared the proposed method with a recent SR method based on NLM (Non-

local Means) without a reference image [13]. This technique was also shown to outperform 

the standard interpolation methods. First, simulated normal non-noisy axial 2D slice stacks, 

with 2 mm-7 mm slice thickness, were up-sampled by NLM and the proposed method. The 

results can be observed in Table VI. For slice thickness of 2 mm and 3 mm, the NLM 

method performs slightly better than the proposed approach. That is because the NLM 

algorithm optimizes the reconstruction results by mean preservation constraint, which has 

not been implemented in our proposed method. Although this step could have slightly 

improved the accuracy of our proposed method, it is time-consuming. Considering the trade-

off between accuracy and computation cost, we omit this optimization step to make the 
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proposed method more suitable for clinical applications. In addition, those two methods 

generate very similar results at higher upsampling factors (i.e. for slice thicknesses of 4 mm, 

5 mm, 6 mm, and 7 mm). In general, the PSNR/SSIM values drop rapidly as the slice 

thickness increases.

Next we reconstructed normal and noisy axial 2D slice stacks with 2 mm slice thickness by 

NLM and the proposed method. Table VII shows that the NLM method generates slightly 

better results when the simulated MR images have 0%, 1% and 3% noise. However, when 

the noise percentages are 5%, 7% and 9%, the proposed method generates comparable 

results as NLM does. Again, the PSNR/SSIM values drop as the noise level increases.

Based on the above two experiments, we conclude that the proposed method generates 

results that are comparable to the NLM approach in clinical cases. In clinical applications, 

the in-plane and out-plane resolution ratio of FSE T2W images is often bigger than 3, which 

means that the anisotropic MR images should be upsampled into isotropic volumes by a 

factor of 3 or more. The noise percentage is also usually more than 3%. The proposed 

method is therefore, practically as effective as the NLM method, but is more efficient.

To verify our conclusion, the NLM and the proposed methods were respectively applied to 

clinical FSE T2W MR images, including axial, coronal and sagittal scans. The detail 

information of the clinical MR images were discussed in Section IV-B. The results are 

displayed in Fig. 2, 3, and 4. Visual comparison shows that these two methods generate 

similar results, and our proposed method generates slightly shaper intensity profiles which 

indicate better delineation of image edge features. Table VIII shows that our proposed 

method needs significantly less computation time and memory than the NLM method. 

Average computation time for the proposed method was about 2.9 minutes whereas the 

average computation time for NLM was 6 minutes. Moreover, average peak memory for the 

proposed method was about 107 Mb, while the average peak memory for the NLM was 

245Mb in this experiment. Overall, we conclude that the proposed method outperforms 

NLM over the clinical MR images.

3) Impact of the training set size—Based on the idea of the proposed method, the 

training set is extracted from the LR 3D MR image itself, i.e. from the HR in-plane slices. 

There are two choices to construct the training set: one is to select all the HR in-plane slices 

as the training examples, so the training set size is related to the number of slices; the other 

is to select only part of them to construct the training set. To test how the training set size 

impact the proposed method performance, we selected all the HR slices and randomly 

extracted part of the HR slices (including 80%, 60%, 40% and 20%) from the in-plane 

direction to construct the training set respectively. The reconstruction results of non-noisy 

axial 3D MR based on training sets of different size have been shown in Fig. 5, 6, 7. We 

repeated the experiments 10 times and calculated the average. Based on the results, we 

observed the PSNR and SSIM values decrease slightly as the training set size reduces, while 

the training time drops rapidly. This shows that the algorithm is robust to the training set 

size. But when the slice thickness is 7mm, if 20% of the available data were extracted, the 

proposed method is worse than the classic interpolation method (bicubic method). That is 

because while slice thickness increasing, the available data decreases rapidly. If part of the 
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available data were extracted, the training set would be extremely small. That will affect the 

performance of the proposed method. Therefore in practice, to ensure the best performance, 

all available HR slices from the in-plane direction should be extracted to train the dictionary, 

which is already very efficient and fast than the state-of-art algorithm (NLM method).

V. Conclusion

This paper presents a novel SR approach towards single anisotropic 3D MR image 

reconstruction based on sparse representation and over-complete dictionary without extra 

training sets. We train the dictionary from the in-plane HR slices. Our proposed method 

outperforms the classical interpolation algorithms. Furthermore, the proposed SR approach 

is compared with a recent single MR image SR method based on the NLM approach. 

Experiments show both methods can generate similar results in clinical applications, but our 

proposed algorithm is more efficient than the NLM-based method in terms of computation 

time and memory usage. The proposed approach may be used as an efficient method for 

upsampling anisotropic MR images in the out-of-plane dimensions.
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Fig. 1. 
Clinical axial slice stacks reconstruction using bicubic interpolation and the proposed 

method
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Fig. 2. 
Reconstruction using NLM and the proposed method over axial slices stacks
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Fig. 3. 
Reconstruction using NLM and the proposed method over coronal slices stacks
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Fig. 4. 
Reconstruction using NLM and the proposed method over sagittal slices stacks
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Fig. 5. 
PSNR value of the reconstruction results based on training set with different sizes
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Fig. 6. 
SSIM value of the reconstruction results based on training set with different sizes
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Fig. 7. 
Training time of training set with different sizes.
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Table I

Reconstruction results using the proposed method over different patch sizes

Patch Size 3×3 5×5 7×7 9×9

PSNR(dB) 31.5719 31.2039 30.8332 30.6010

SSIM 0.9845 0.9830 0.9802 0.9784

Time(s) 466.2860 142.3267 81.7516 57.4088
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Table II

Reconstruction results using the proposed method based on 3×3 patch over different overlap pixels

overlap 0 1 2

PSNR(dB) 31.1907 31.5719 31.7358

SSIM 0.9830 0.9845 0.9850

Time(s) 192.8939 466.2860 1701.6480

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 November 01.
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Table VI

Reconstruction results using the proposed method and NLM over non-noisy MR images

Slice
Thickness

2 mm 3 mm

PSNR SSIM PSNR SSIM

NLM 33.2143 0.9899 27.7150 0.9629

Proposed Method 31.5550 0.9849 26.7908 0.9544

Slice
Thickness

4 mm 5 mm

PSNR SSIM PSNR SSIM

NLM 24.8521 0.9239 22.9371 0.8768

Proposed Method 24.3551 0.9174 22.8025 0.8793

Slice Thickness

6 mm 7 mm

PSNR SSIM PSNR SSIM

NLM 21.7449 0.8333 20.6463 0.7852

Proposed Method 21.6345 0.8382 20.6349 0.7950
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Table VII

Reconstruction results using the proposed method and NLM over noisy MR images

Noise
Percentage

0% 1%

PSNR SSIM PSNR SSIM

NLM 33.4947 0.9901 33.2515 0.9776

Proposed Method 31.6016 0.9846 31.5370 0.9729

Noise
Percentage

3% 5%

PSNR SSIM PSNR SSIM

NLM 31.6812 0.9312 29.8899 0.8880

Proposed Method 30.5816 0.9251 29.2708 0.8837

Noise
Percentage

7% 9%

PSNR SSIM PSNR SSIM

NLM 28.3897 0.8562 27.1382 0.8312

Proposed Method 28.0463 0.8535 26.9405 0.8295
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