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3D Needle Shape Estimation in TRUS-Guided
Prostate Brachytherapy Using 2D Ultrasound

Images
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Abstract—In this paper we propose an automated method
to reconstruct the 3D needle shape during needle insertion
procedures using only 2D transverse ultrasound (US) images.
Using a set of transverse US images, image processing and
random sample consensus (RANSAC) is used to locate the
needle within each image and estimate the needle shape. The
method is validated with an in-vitro needle insertion setup and
a transparent tissue phantom, where two orthogonal cameras
are used to capture the true 3D needle shape for verification.
Results showed that the use of at least 3 images obtained at 75%
of the maximum insertion depth or greater allows for maximum
needle shape estimation errors of less than 2 mm. In addition, the
needle shape can be calculated consistently as long as the needle
can be identified in 30% of the transverse US images obtained.
Application to permanent prostate brachytherapy (PPB) is also
presented, where the estimated needle shape is compared to
manual segmentation and sagittal US images. Our method is
intended to help assess needle placement during manual or robot-
assisted needle insertion procedures after the needle has been
inserted.

Index Terms—prostate, brachytherapy, ultrasound, needle,
estimation

I. INTRODUCTION

ULTRASOUND (US) imaging is widely used to guide
percutaneous needle insertion procedures because of its

accessibility, low-cost, non-ionizing nature, and real-time ca-
pability. These benefits come at the cost of image quality; US
images provide low soft-tissue contrast resolution compared to
modalities such as magnetic resonance imaging or computed
tomography. In addition, US images often contain speckle
artifacts, shadows, reverberations, and mirror image artifacts
that require proper interpretation to fully understand the image.
It is challenging for surgeons to perform complex tasks while
accounting for these imaging limitations, or for US-guided
robotic systems to distinguish US artifacts from intended
targets. For these reasons, needle segmentation and shape
estimation from US images is a challenging and important
research topic.
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Various research studies have been performed on automatic
object segmentation from 3D volumetric US images. Several
methods have implemented the Radon and Hough transforms.
For segmentation of surgical instruments, Novotny et al. [1]
used a graphics processing unit operated in parallel archi-
tecture to perform their Radon transform-based method in
real-time. Zhou et al. [2] and Qiu et al. [3] used a course-
fine search strategy to allow for fast implementation of the
3D Hough transform for segmentation of straight needles [4].
Qiu et al. [5] also used phase-grouping combined with either
least-squares or 3D Hough transform optimization for real-
time needle shape segmentation. Research on curved needle
segmentation from 3D US includes a generalized Radon
transform with Bezier curves [6], and the Hough transform
combined with ray casting and polynomial approximation
[7]. Alternatives to Radon/Hough transform-based methods
include difference imaging techniques [8], [9] or RANSAC
(random sample consensus)-based methods [10]–[12].

The above approaches make use of 3D volumetric US
images. Although some 3D US probes make use of 2D arrays
to provide real-time 3D US, the majority of current clinical
3D US machines rely on sweeping a 1D array to produce
a 3D volume. This technology is limited by slower frame
rates and bulkier transducers compared to 2D US machines
[13]. In addition, real-time 3D transrectal US (TRUS) probes
are costly and are currently not widely available for use in
clincal prostate brachytherapy. For this type of procedure, 2D
US imaging methods are simpler to implement and allow for
fast image processing capabilities.

Most 2D US needle segmentation methods require images
where the needle is visualized within the plane of the US
beams, as shown in Fig. 1a. These are referred to as sagittal
images [14]. Examples that use 2D sagittal US images include
work performed by Kaya et al. [15], [16], who combined
Gabor filtering and RANSAC to estimate linear needle shapes,
and work by Okazawa et al. [17], who used the Hough trans-
form to estimate curved needle shapes. In addition, Ayvaci
et al. [18] performed biopsy needle segmentation on TRUS
videos for use in MRI/TRUS fusion guided biopsy. Work
on needle tip tracking has been performed by Mathiassen et
al. [19], who developed an optical tracking system based on
intensity features in the images and Neubach et al. [20], who
used a 30◦ needle-probe setup to improve visualization of the
needle tip, and utilized image subtraction of subsequent frames
for their needle steering robot.

Although sagittal US images can facilitate rapid visual-
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(a) Sagittal US Imaging (b) Transverse US Imaging

Fig. 1. Example showing the difference between a) sagittal US imaging and
b) transverse US imaging. Many clinical TRUS probes contain two transducer
arrays to allow for both sagittal and transverse US imaging.

ization of the needle, in practice it is difficult to align the
US transducer with the plane in which the needle deflects
[21]. Additionally, alignment may not always be possible; for
example, TRUS probes are limited to two degrees of freedom:
translation parallel to the TRUS probe, and rotation about its
sagittal axis. This limitation may prevent some needle shapes
from being properly visualized, considering that the needle can
deflect in any sagittal image plane, or even multiple planes
when rotation is introduced.

In contrast to sagittal US imaging, images obtained perpen-
dicular to the US transducer array, as in Fig. 1b, are known
as transverse or axial US images; we will use the former term
throughout the rest of this paper. Transverse imaging is widely
used in prostate brachytherapy for several reasons. It provides
surgeons with a consistent view of the prostate, regardless of
where the needle was inserted, unlike sagittal imaging where
the probe must be rotated after each insertion in order to locate
the needle. As a result, transverse images are often used for
pre-implant treatment planning and image registration during
prostate brachytherapy [22]. Prostate brachytherapy equipment
and software, such as the US stepper and the physical and
electronic template grids are also designed for transverse
imaging, making these type of images attractive for clincal
use. However, in transverse images, only a cross-section of
the needle is visible. Recent techniques have been developed
by Greer et al. [23] and Adebar et al. [24], which integrate
transverse US imaging with Doppler US for robotic needle
steering. A voice coil actuator was attached to the needle to
induce small vibrations that allow the needle to be seen in
Doppler US. As well, Vrooijink et al. [25], [26] developed
a method for real-time needle tip tracking using a motorized
US probe. Another technique developed by Yan et al. [27]
made use of difference imaging and shape-based level set
segmentation for needle shape identification using transverse
US images.

In this paper, we demonstrate a real-time needle segmen-
tation algorithm based on 2D transverse images. Our work is
an in-depth exploration of our initial feasibility assessment
performed in [28]. We implement modifications to handle
effects of needle rotation and use a-priori knowledge of the
needle’s initial position and orientation to reduce the number
of images required for the technique. As well, we test the algo-
rithm on both in-vitro phantom tissue experiments and in-vivo
prostate brachytherapy images. Unlike [23]–[26], our method

does not require the use of specialized needle attachments and
can be readily incorporated with current clinical equipment.
In contrast to [27], we used in-vivo prostate brachytherapy
images and a threshold-based RANSAC approach to cope with
the large amounts of noise and background objects present
within clinical images. We also explored the number and depth
at which the transverse images should be obtained for accurate
needle shape estimations. Using a series of transverse US
images, we apply image processing and a RANSAC algorithm
to estimate the entire needle shape from the base of the needle
to its tip. RANSAC has been successfully used for needle
segmentation applications in 3D US images [10]–[12] and
sagittal US images [15], but so far has not been applied to
multiple transverse US images using in-vivo images.

By incorporating known spatial constraints on the needle
along with a 3rd order polynomial approximation of the needle
shape, we can obtain reliable estimations of the entire needle
shape for clinical applications. Third-order polynomials have
been shown to provide a good approximation of surgical
needle shapes [11], [17], [23], [24], [29] and prevent unre-
alistic rippling effects caused by higher-order polynomials.
In addition, a low-order polynomial model is less computa-
tionally intensive for the RANSAC procedure compared to
more complex, physics-based models. At the same time, our
approach can cope with issues that complicate both manual
and automated transverse US needle segmentation, such as
cases where the acoustic shadows camouflage the needle [12],
or cases where the needle is difficult to distinguish from other
nearby hyperechoic objects.

Insertion experiments are carried out on phantom tissue
to validate our proposed method and to determine the depth
at which the images should be obtained as well as the
overall image quality necessary to obtain accurate estimates.
Analysis of clinical US images collected from human prostate
brachytherapy procedures using the proposed method is also
performed.

The rest of the paper is organized as follows. Section II
describes the process used to identify the needle within each
transverse US image. In Section III, the RANSAC algorithm
used to estimate the 3D needle shape is described. Section IV
details the experimental setup and the phantom tissue experi-
ments used to validate the accuracy of the proposed method.
Experimental results are discussed in Section V. In Section VI,
applications with clinical data are demonstrated and discussed.

II. LOCATING NEEDLE POINT CANDIDATES

During permanent prostate brachytherapy (PPB), transverse
US images of the needle embedded in tissue resemble Fig. 2.
The needle appears as a hyperechoic object often followed
by a comet-tail artifact [14]. Other hyperechoic objects may
be visible in addition to the needle. For example, in Fig. 2,
gel inserted into the urethra causes it to appear brighter than
the needle itself, which allows the urethra to be used for
landmarking purposes. Since planning is often performed with
the urethra aligned in the centre of the ultrasound images, it
is a useful landmark to identify during prostate brachytherapy
and helps with identification of the prostate. In addition,
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Fig. 2. An example of the needle appearance in a 2D transverse US image
obtained during PPB. The needle is circled in white and extraneous objects
are circled in black. The ROI is shown on the right.

brachytherapy seeds and imaging noise can produce bright US
intensities similar to the intensities caused by the needle. A
study done by Wen et al. [30] showed that brachytherapy seeds
could be segmented using similar techniques used in needle
segmentation. Therefore, image processing must be performed
to differentiate the needle from other hyperechoic objects or
noise. Doing so involves defining a region of interest (ROI) and
applying image enhancement techniques. It is assumed that all
of the transverse US images used in the analysis were obtained
along the needle, and correspond to either the needle shaft
or the needle tip. This is confirmed by looking for a special
double reflection feature that corresponds to the needle tip
known as a “hamburger” signature before the transvere images
are obtained from the US machine. As well, it is assumed
that the depth of the needle within the tissue is also known.
This is confirmed by recording the depth of the needle tip
observed from the US machine before the transverse images
are obtained.

A. Definition of the Region of Interest (ROI)

An example of a manual PPB setup is shown in Fig. 3. A
template grid is used in the procedure to guide the needle
towards the intended target [22]. An example showing the
template grid superimposed on a transverse US image is shown
in Fig. 2.

A dynamic region of interest (ROI) algorithm is used,
based on methods proposed in [20], [27]. First, a large ROI
is selected in order to initially locate the needle, based on
the template grid insertion location and the expected needle
deflection at the initial depth of the transverse US images. This
initial ROI for the in-vitro experiments was chosen as a 30 mm
by 10 mm window and the ROI for the in-vivo patient study
described in Section VI was chosen as a 10 mm by 10 mm
window. This variation was due to the a-priori knowledge of
typical needle deflections observed for each case. The initial
ROI for one of the clinical US images is shown and magnified
in Fig. 2. This ROI is applied to the first three consecutive US
images nearest to the needle base, and needle point candidates
are identified within the images using the method described
in Section II-C. The needle location is then estimated using

Fig. 3. An example of a typical PPB setup. A stepper operated by the surgeon
controls the depth of the US probe. A template grid is used to guide the needle
towards the intended target during the procedure.

the method described in Section III. If less than 30% of the
expected needle point candidates are identified in the set of
three images, the initial ROI is used again in the next set of
three US images. Otherwise, the ROI is updated every three
US images, which provides a fair trade-off between estimation
accuracy and processing time. The updated ROI’s are smaller
than the originals (a 10 mm x 10 mm window for the in-vitro
images and a 5 mm x 5 mm window for the in-vivo images),
which further reduces the amount of extraneous background
objects located within the ROI. The updated ROI is centered
around the needle location in the most recent image.

B. Contrast Enhancement

An intensity transformation T (r) is applied to the ROI to
improve contrast between the needle and the background. The
transformation is

T (r) = rmin + (rmax − rmin)
(

r − rlow
rhigh − rlow

)γ
(1)

where r, rmin, rmax, rlow, rhigh represent normalized
intensity values in the range [0, 1]. Here 0 represents the
color black and 1 represents the color white. The values of
r correspond to the pixel intensities contained in the original
image. The range [rmin, rmax] defines the minimum and
maximum intensities desired in the transformed image. The
values rlow and rhigh define saturation thresholds. Through
equation (1), pixels in the ROI having intensities less than rlow
are given the intensity rmin in the transformed ROI. Likewise,
pixels with intensities larger than rhigh are given the intensity
rmax.

For our purposes, the desired spectrum is chosen to span
[0, 1] and the values rlow and rhigh are set to 10% and
100% of the maximum intensity values present within the
original ROI, respectively, causing a single-sided saturation
of the (dark) background pixels. The value of γ specifies the
shape of the exponential curve that maps the intensity values
from the original ROI to the transformed ROI [31]. We set
γ > 1 in order to apply additional weight towards lower
intensity pixels, allowing for increased contrast between the
needle and background. This combination of ROI and con-
trast enhancement yields consistent results, especially for the
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(a) Original Image (b) Intensity Transform (c) Anisotropic Diffu-
sion

Fig. 4. Comparison between a) the original image and b) the result after
applying the intensity transform and the anisotropic diffusion filter. Back-
ground noise is suppressed while the high contrast between the needle and
background is retained.

standard distances used in prostate brachytherapy (typically
less than 50 mm between the needle and the US probe).

To reduce computation time, we end the image processing
stage at this point. For applications where computational
complexity is not an issue, we have found that the anisotropic
diffusion filter developed by Perona et al. [32] reduces the
majority of the background noise present in the ROI. The
anisotropic diffusion technique is an adaptive filter that pri-
oritizes intra-region smoothing over inter-region smoothing,
thereby reducing noise while preserving edge details. This
allows for the suppression of noise within the ROI while
retaining the stark contrast between the hyperechoic needle
cross-section and the background. Figure 4 shows a com-
parison between the original ROI, the result after applying
contrast enhancement, and the result after applying both con-
trast enhancement and the anisotropic diffusion filter. More
recent filtering techniques used in the literature such as
speckle reducing anistropic diffusion [33] or detail preserving
anisotropic diffusion [34] were considered, but the advantages
they provide are not applicable for our purposes of needle
enhancement in transverse US images.

C. Candidate Needle Point Identification

After all image processing steps have been performed, a
cumulative histogram of the pixel intensities in the ROI is
obtained. The histogram is used to determine an intensity
threshold α that corresponds to the n brightest pixels in the
ROI, where n is defined by:

n =
βA

rdxrdy
(2)

where A is the area of the needle cross-section in mm2, rdx
and rdy are the height and width in mm of a single pixel, and
β is a tunable parameter to account for deterioration of the
needle shape in the US image due to scattering and diffraction.
In our work, we selected β to be 0.75 based on emperical
results, meaning that 75% of the needle is expected to be
visible in the US image. Pixels with intensities larger than α
are considered as candidate needle points within the transverse
US images and these candidate needle points are identified for
each transverse image obtained along the needle. A flowchart
showing the image processing steps is shown in Fig. 5.

Fig. 5. Flowchart summary of image processing procedure. For each trans-
verse image, the ROI is applied, and image processing is used to locate needle
point candidates. Every three images, RANSAC is applied to the needle point
candidates and the results are used to update the ROI. The process continues
until all images have been analyzed.

Note that equation (2) provides a liberal estimate of the
candidate needle points, since needle visibility is not yet taken
into account. At this stage, it is difficult to determine which,
if any, of the candidate needle points should be considered
as outliers. A robust RANSAC-based method for detecting
outliers based on the relative positions of the candidate needle
points within each image along with the corresponding needle
visibility in each image is described in the following section.

III. NEEDLE SHAPE ESTIMATION USING RANSAC

There has been a variety of research performed in the
area of needle steering during percutaneous needle insertion
procedures [35]–[37]. Needle steering techniques exploit the
fact that a needle with a bevelled tip follows a curved trajectory
during insertion. Rotating the needle causes the position of the
bevelled tip to change, which changes the needle’s trajectory.
Based on observation of the steering techniques employed in
our patient study, it is assumed that the needle rotates at most
once during the insertion process. Therefore, we use a third-
order polynomial to estimate the needle beginning from the
template grid and ending at the needle tip.

The needle shape estimation algorithm used in this paper
is composed of two steps: 1) fit the needle point candidates
using RANSAC, and 2) optimize the solution to the previous
step via a weighted least squares regression.

A. Fitting the Needle Point Candidates using RANSAC

RANSAC is a robust model-fitting algorithm developed by
Fischler and Bolles to smoothen data containing a significant
proportion of gross errors [38]. For example, in our case,
calcifications, brachytherapy seeds, and microbubbles can pro-
duce false needle point candidates within the ROI defined in
Section II. If these objects are not intelligently removed, they
can greatly influence the curve fit generated by a method such
as Ordinary Least Squares Regression. The RANSAC Toolbox
developed in [39] is used for implementation of the proposed
algorithm.

We apply RANSAC multiple times so that the ROI de-
scribed in II-A can be constantly updated. For every three US
images, a new RANSAC procedure will be applied, and the
needle point candidates identified from previous applications
are carried forward.
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The fundamental concept behind RANSAC involves itera-
tively sampling the minimum number of data points required
for model estimation and comparing this estimation to the
entire set of data points. A good model estimation corresponds
to the model which fits the largest proportion of the data.
Assume we have a model M with k solvable, free parameters.
As well, assume we have a set S containing N > k data points.
A random selection of k points from S are sampled and used
to solve for M . In our case, S refers to the combined set
of needle point candidates identified in the transverse images
analyzed so far, and M is the needle shape model. The needle
shape model used for our work is defined by the following
equations:

x(d) = a3d
3 + a2d

2 + a1d+ a0 (3)

y(d) = b3d
3 + b2d

2 + b1d+ b0 (4)
z(d) = d (5)

The value d represents the depth with respect to the grid
template. The values (a3, a2, a1, a0) and (b3, b2, b1, b0) are the
free parameters of the needle shape model. The (x, y, z) axes
are defined in Figure 6 with the coordinate frame origin at the
intersection of the needle and the face of the grid template.

Because the needle is being inserted through the grid
template, equations (2)-(4) can be simplified by incorporating
the insertion location information into the model. In this work,
the grid template is positioned to be exactly perpendicular
to the ultrasound transducer and the calculated needle shape
axes are aligned with the grid template. If the template is
not perpendicular to the ultrasound transducer, a coordinate
transformation matrix would be required to transform the
image frames to the grid template frame before continuing
with the procedure. This can be easily calculated if the position
of the template with respect to the transducer is known. We
assume the portion of the needle passing through the grid
template holes is constrained to be approximately parallel to
the z-axis. These constraints and the simplified model are
summarized below:

x(0) = x0, y(0) = y0, ẋ(0) = 0, ẏ(0) = 0 (6)

x(d) = a3d
3 + a2d

2 + x0 (7)

y(d) = b3d
3 + b2d

2 + y0 (8)

where ẋ(d) and ẏ(d) represent the first derivatives of equa-
tions (2)-(3). Equation (4) remains unchanged. In our case,
equations (6)-(7) require k = 2 samples from S to solve for
the free parameters. Let us refer to this parameterized model
as M1.

The values (xi,j , yi,j , di,j) identify the 3D coordinates of
the ith needle point candidate found within the jth transverse
image. The pair (xi,j , yi,j) refers to point i’s spatial coor-
dinates within the jth transverse image and di,j refers to the
depth of point i with respect to the grid template.

After solving for M1, we identify the subset of points in
S that adequately satisfies M1. This subset is known as the
consensus set CS1 corresponding to M1. CS1 is determined
from

Fig. 6. Diagram showing ei,2 for the ith point in the data set S.

CS1 = {(xi,j , yi,j , di,j)|ei,j(di,j) < τ} (9)

where

ei,j(di,j) =
√
(xp2(di,j)− xi,j)2 + (yp2(di,j)− yi,j)2 (10)

The value τ specifies the inlier tolerance. We selected τ to
be 0.635 mm, which is equal to the radius of an 18-gauge
brachytherapy needle. The residual error ei,j between the point
i and the model M1 is used to identify the needle points that
satisfy the model.

Next, a new iteration is performed, where the model is
re-parameterized using a new random sample of k points to
obtain M2 and calculate the corresponding consensus set CS2.
This procedure is performed a minimum of Nc times, and a
cost function is evaluated for each model and consensus set
pair. The M-Estimator Sample Consensus (MSAC) technique
developed by Torr et al. [40] is used to identify the model that
minimizes the cost function

C =

NI∑
j=1

nj∑
i=1

f(ei), f(ei) =

{
ei, ei < ε
ε, ei ≥ ε

(11)

where NI is the total number of transverse images analyzed
so far, nj is the number of needle point candidates in the jth

image, and ε is the cost function termination threshold. The
consensus sets are ranked according to the inverse of their cost
function magnitude. Once the change in the cost function for
the highest ranked consensus set becomes smaller than ε, and
at least Nc consensus sets have been obtained, the process
terminates.

At this point, a subset of the original needle point candidates
has been identified; this subset excludes false positives. An
initial curve fit describing the needle shape has also been
identified. To summarize the RANSAC procedure thus far: two
randomly-selected points from the data set are used to fit the
needle shape model. Next, a consensus set is found, which
includes needle point candidates that adequately satisfy the
fitted model. Then, the quality of the model and corresponding
consensus set is evaluated using MSAC. This is performed
until a model with sufficient quality has been identified.
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B. Optimize Results

The needle shape identified using the RANSAC procedure
necessarily passes through at least 2 points as a result of Sec-
tion III-A. We optimize the curve fit by applying a weighted
least squares regression to the consensus set identified using
the RANSAC algorithm. This is performed by minimizing the
error estimates

sx =

NI∑
j=1

nj,CS∑
i=1

wi,j(xp2(di,j)− xi,j)2 (12)

sy =

NI∑
j=1

nj,CS∑
i=1

wi,j(yp2(di,j)− yi,j)2 (13)

wi,j =
(q − p)(ri,j − rmin,CS)
rmax,CS − rmin,CS

+ p (14)

where nj,CS is the number of data points in the jth transverse
image of the consensus set, sx and sy are the error estimates
with respect to x and y respectively, and wi,j is the weighting
applied to the ith data point of the jth image. The value
ri,j represents the intensity of the corresponding data point
in the consensus set after the contrast enhancement steps
described in Section II-B have been applied, rmin,CS and
rmax,CS represents the minimum and maximum intensities
within the consensus set respectively, and [p, q] defines the
desired range of the weighting values. Equations (12)-(14) give
greater weighting to higher intensity pixels, which are more
likely to correspond to the needle. For simplicity, the maxi-
mum intensity was given a weight of 1.0 and the minimum
intensity was given a weight of 0.5. After the weighted least
squares regression is applied to the data set, we obtain a 3D
approximation of the needle shape starting from the template
grid and ending at the most recent transverse image analyzed.

Note that the RANSAC procedure is applied multiple times
in order to update the ROI between each application. In the
first application of the RANSAC procedure, only the three
transverse US images nearest to the needle base are analyzed,
and inliers are obtained for each of these images. In the second
application of RANSAC, the ROI is adjusted based on the most
recent estimation of the needle location, and a new RANSAC
procedure is applied to the next three transverse US images
with the inliers from the previous application being carried
forward and the outliers being removed. This process repeats
until all of the transverse US images have been analyzed.

The result is a 3D curve representing the needle shape
beginning from the grid template and ending at the needle tip.
An example is shown in Fig. 7, where the inliers and outliers
represent true and false needle point candidates respectively,
and the optimized curve fit is the needle shape obtained from
equations (11)-(13).

IV. EXPERIMENTAL SETUP

The setup used to validate the proposed method is shown
in Fig. 8a, and a sketch of setup mechanics is shown in
Fig. 8b. An 18-gauge, bevel-tipped brachytherapy needle
model PSS1820EZ (Worldwide Medical Technologies, Ox-
ford, CT, USA) is manually inserted through a stabilizing

Fig. 7. 3D needle shape estimation using the proposed method. The inliers
represent the consensus set found using the RANSAC algorithm and the
optimized curve fit is found through weighted least squares regression.

(a) Photograph of experimental setup

(b) Setup mechanics

Fig. 8. a) The experimental setup and b) depiction of the setup mechanics.
The US transducer is attached to a translating platform, which is manually
adjusted to obtain axial slices of the embedded needle every 5 mm of depth.

template grid to a depth of 125 mm in a transparent tissue
phantom created using a plastisol formula of two parts plastisol
to one part plastic softener (M-F Manufacturing Company,
Fort Worth, TX, USA). During insertion, the needle is man-
ually rotated 90◦ at approximately half of the maximum
insertion depth to simulate clinical practice. A layer of US
gel is applied to the top of the tissue phantom to ensure
the US transducer probe makes appropriate contact with the
tissue. A single-degree-of-freedom (DOF) translating platform
is used to move the US probe. A mechanical holder is used
to secure a linear US transducer model 4DL14-5/38 (Analogic
Ultrasound, Richmond, BC, Canada) to the translating stage.
The stage is manually positioned to allow for the collection of
transverse US images of the needle every 5 mm along the z-
axis, starting from a depth of 5 mm, mirroring clinical practice.

A total of 25 transverse images are collected along the nee-
dle length using a SonixTouch Ultrasound System (Analogic
Ultrasound, Richmond, BC, Canada). As well, two XCD-SX90
cameras (Sony, Park Ridge, NJ, USA) are used to capture the
true 3D needle shape. One camera is mounted above the setup
to obtain a view of the (x, z) plane and the second camera is
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mounted at the side to obtain a view of the (y, z) plane.
Needle segmentation from the camera images is performed

using MATLAB. Points corresponding to the needle are
manually identified in the images obtained from the two
cameras and a third-order polynomial in each of the (x, z)
and (y, z) planes is used to obtain the 3D curve fit. This
manually segmented needle shape is used for verification of
the RANSAC algorithm results obtained from Section III.

V. RESULTS & DISCUSSION

Two separate tests using the in-vitro US images obtained
with the setup described in Section IV are performed. The
first test explored the optimal depths to obtain the transverse
US images. The second test explored how the quality of the
US images affected the needle shape estimation.

A. Effects of Image Depth on Needle Shape Estimation

The model described in Section III requires at least two
different transverse images in order to characterize the needle
shape. The 25 transverse images obtained from the experiment
are grouped into subsets ranging from 3 successive slices
to 25 successive slices, resulting in a total of 276 different
image sets. For this stage of analysis, only successive slices
were investigated in order to limit the number of image set
combinations explored. The depth of the final slice is recorded
for each image set, along with the “depth differential”, which
is found by subtracting the maximum transverse image depth
from the minimum transverse image depth. As well, for each
image set, the residual error between the estimated needle
shape obtained using the proposed method and the measured
needle shape obtained using the camera images is calculated.
This error is calculated every 0.01 mm along the needle and the
average error is reported. Associated contour plots are shown
in Fig. 9, where the maximum resultant error plot is shown in
panel a) and the average resultant error plot is shown in panel
b).

The contour plots show the needle shape error associated
with each image set, where each image set is identified by its
final slice depth, and its depth differential. The best results
are those in dark blue, while poor results are those in dark
red. The optimal combinations of depth differential and final
slice depth for the maximum error contour plots are outlined in
Fig. 9a. Needle shape errors of 2 mm or less are obtained when
the final slice occurs at a depth of at least 95 mm, roughly
75% of the maximum insertion depth. Additionally, the depth
differential has a significantly smaller effect on needle shape
error than does the depth of the final slice. In general, as
the depth of the final slice increases, the maximum needle
shape error decreases, regardless of the depth differential. The
exception occurs for very small depth differentials of less than
10 mm, which corresponds to image sets containing less than
3 images. There is likely not enough information contained
in such small image sets to accurately characterize the needle
shape.

The average error contour plot from Fig. 9b demonstrates
that the overall needle shape estimation can be determined
with an average error of 1 mm or less when the final slice

(a) Maximum resultant error

(b) Average resultant error

Fig. 9. Contour plots showing the a) maximum error and b) average
error obtained for each of the 276 transverse image sets. Example point P
demonstrates the specific transverse image set whose final slice ends at 100
mm and contains a depth differential of 60 mm. Optimal combinations of
depth differential and final slice depth are highlighted.

occurs at a depth of at least 80 mm, regardless of depth
differential. Again, the exception occurs for depth differentials
of 10 mm or smaller. As well, the optimal results cover a larger
area than those from Fig. 9a, demonstrating that the average
needle shape error is quite robust with respect to the final slice
depth.

The results overall demonstrate that the smallest errors
are obtained with transverse image sets containing depth
differentials of at least 10 mm, corresponding to 3 transverse
slices, and where the final slice depth is at least 75% of the
maximum depth.

B. Effects of Image Quality on Needle Shape Estimation

In clinical transverse US images, there are a variety of
complications that affect identification of the needle. For
example, in our patient study, of the 615 images obtained,
the needle could be precisely identified through manual seg-
mentation in 412 images, 67% of the total number. Of the
remaining 33%, we found four major causes hindering needle
identification: 1) the needle is not visible, 2) the needle image
is distorted, 3) there are additional needle-like objects nearby,
4) a hyperechoic object is visible, but it does not have needle-
like characteristics. An example of each case is shown in
Fig. 10. Potential needle pixels identified using a simple
thresholding algorithm are also highlighted in the figure,
demonstrating how these issues adversely affect automated
thresholding algorithms.

Transverse images where the needle cannot be clearly
identified by traditional methods are denoted as “confounding”
images. A method was developed to test the capabilities of
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(a) Hidden (b) Distorted (c) Multiple (d) Unclear

Fig. 10. Samples of ROI’s demonstrating four major issues affecting needle
identification. In a) the needle blends in with the surrounding tissue. In b) the
needle can be seen, but its shape is distorted (elongated in this case). In c)
there are two hyperechoic objects in the ROI. In d) a hyperechoic object is
partially visible, but it is unclear whether it belongs to the needle.

(a) Maximum Error (b) Precision

Fig. 11. Effects of confounding slices on a) maximum error and b) precision.
The number of confounding slices was varied from 0 to 9. In a), the mean
and standard error obtained as a result of 100 simulations are plotted. In b)
the precision over the course of 100 simulations is plotted.

our proposed algorithm to withstand the occurrence of these
confounding images, specifically the type demonstrated in
Fig. 10a where the needle cannot be identified at all. Based on
the results of Section V-A along with the fact that the prostate
typically spans 45-60 mm in length, we selected the final 10
images obtained during the experiment described in Section IV
to test the proposed algorithm. Confounding images were
simulated by replacing one of the actual transverse US images
with a blank image containing “false” needle point candidates
placed randomly within the ROI. The image chosen to be
replaced was randomized as well. The number of false needle
point candidates to be inserted was selected as the average
number of needle point candidates found in the remaining
“true” images of the needle. Each false needle point candidate
had the maximum intensity value in the grayscale range for
simplicity. Simulations were performed to test the effects
of 0 confounding images up to 9 confounding images. For
each case, 100 simulations were performed and the effects on
needle shape accuracy and simulation precision were recorded.
A graph demonstrating the effects of confounding slices on
needle shape accuracy is shown in Fig. 11a. The simulation
precision represents the percentage of false needle point can-
didates included within the consensus set, and is shown in
Fig. 11b.

Based on the results, the proposed algorithm can function
sufficiently up to and including 7 confounding images, making
it very robust to problems encountered in clinical US images.
After this point, Fig. 11b shows that the precision degrades
rapidly, which adversely affects the needle shape accuracy.
Note that our proposed algorithm requires a minimum of
2 transverse images to operate properly. However, based on
the results of Fig. 11, it appears that the use of 3 or more

“relevant” transverse images obtained within 50 mm of the
needle tip allows for more consistent needle shape estimations.
Assuming that 33% of clinical transverse US images will have
one of the issues demonstrated in Fig. 10, an average of 5
images would be necessary to obtain accurate results in clinical
settings. This is a conservative estimate, since our proposed
algorithm is robust against issues such as multiple or distorted
needle-like objects that inhibit manual needle segmentation.

VI. APPLICATIONS TO PROSTATE BRACHYTHERAPY

In this section, we discuss application of the proposed
method to PPB.

A. Clinical Setup

A group of 17 patients undergoing PPB participated in
our study1. Sample statistics of the patients are shown in
Table I. Transverse US images are obtained during the PPB
procedures, which are used as inputs to the proposed method.
For each patient, 1 to 4 needles are used for the study, yielding
49 needles in total. An experienced brachytherapy surgeon
captured a set of 2D transverse US images for each inserted
needle using a TRUS probe, Type 8848 (BK Medical, Peabody,
MA, USA). The images are captured at 5 mm intervals using a
manually operated Civco Classic Stepper (Civco, Orange City,
IA, USA). The images are spaced as such in order to match the
template grid spacing, which is 5 mm both horizontally and
vertically. This is a well-established clinical geometry used
in prostate brachytherapy equipment and for seed placement
planning. The images begin at the needle tip and span the
entire prostate, resulting in a set of 10 to 13 images, depending
on the length of the patient’s prostate. In order to locate the
needle tip, the surgeon monitored the US near the prostate
base and looked for a “hamburger” signature, a special double
reflection artifact that is caused by the bevelled needle tip. A
2D sagittal US image is also obtained for each needle and
is used to compare the results from the proposed method for
verification. Each sagittal image captured a 50 mm to 60 mm
needle segment which included the needle tip. The 3D needle
shape was calculated using the steps outlined in Section V and
its 2D projection in the sagittal image plane is compared to
the sagittal US image obtained by the surgeon.

B. Projection of 3D Needle Shape onto Sagittal Image Plane

Before the 3D needle shape estimated using the proposed
algorithm can be compared to the sagittal image obtained
clinically, we must first project the needle shape estimate
onto the sagittal image plane. Because the TRUS probe is
cylindrical, all sagittal imaging planes pass directly through the
center of the probe. The probe’s cross-sectional radius is 9.3
mm, and so the center of the probe can be easily determined
in the US image. Next, we estimate the angle of the sagittal
image plane for each of the transverse US images, denoted as
θj , where j refers to the index of the transverse image. An

1Approval for this study granted by the Alberta Cancer Research ethics
committee under file number 25837
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TABLE I
PATIENT SAMPLE STATISTICS

Number of Patients 17

Age
Median: 63
Range: 51-69

Gleason Score
6: 12 (70.6%)
7: 5 (29.4%)

Pretreatment PSA [ng/mL]
Median: 8.3
Range: 3-12.9

Cancer Stage

T1c: 7 (41.1%)
T2a: 8 (47.1%)
T2b: 1 (5.9%)
T2c: 1 (5.9%)

Risk Category
Low: 8 (47.1%)

Intermediate: 9 (52.9%)

Fig. 12. Demonstration of the sagittal image plane angle estimated from a
transverse US image.

example for a single transverse US image is shown in Figure
12. θj can be calculated as

θj =


arctan yn−yc

xn−xc
, xn > xc

π + arctan yn−yc
xn−xc

, xn < xc
π
2 , xn = xc

(15)

where (xn, yn) represents the needle point estimation ob-
tained using the method described in Section II and (xc, yc)
represents the center of the US probe. The estimated angle of
the sagittal image plane will be the average of all θj values
for the same needle.

The estimated sagittal imaging plane is calculated for each
transverse image and the mean angle is obtained. The mean
angle is used to derive the transformation matrix Tp which is
used to convert the 3D needle points (~x3D, ~y3D, ~z3D) to their
2D projection (~xproj , ~yproj) onto the estimated sagittal plane.
The transformation is shown below:
xproj,1 ... xproj,n
yproj,1 ... yproj,n
zproj,1 ... zproj,n

1 ... 1

 = Tproj


x3D,1 ... x3D,n
y3D,1 ... y3D,n
y3D,1 ... y3D,n
1 ... 1

 (16)

Tproj =


cos θ sin θ 0 0
0 0 1 0

− sin θ cos θ 0 0
0 0 0 1

 (17)

TABLE II
SUMMARY STATISTICS OF MANUAL COMPARISON RESULTS

Entire Transverse Image Set
Error: x-axis Error: y-axis Resultant Error

Mean [mm] 0.3 0.2 0.4

Std. Dev. [mm] 0.3 0.4 0.5

5 Transverse Images
Error: x-axis Error: y-axis Resultant Error

Mean [mm] 0.4 0.3 0.5

Std. Dev. [mm] 0.5 0.6 0.8

Here n is the total number of points defining the 3D needle
shape. We refer to this 2D projection as the projected needle
shape. The needle shape obtained from the sagittal US image
will be referred to as the sagittal needle shape.

The needle shape computations described in Sections II and
III were applied to the clinical US images using a 2.6 GHz
AMD Phenom II X4 910 processor with 4 GB of memory
running 32 bit MATLAB. The mean computation times for the
image processing (per image) and the needle shape estimation
portions of the algorithm were 22 ms and 351 ms respectively.
The needle shape estimation was calculated using the entire
set of transverse images obtained for each needle studied and
a minimum of 100 consensus set iterations. The computation
times show that the needle shape estimation can be obtained
and displayed in real-time for clinical applications and will
not impact the overall procedure time.

C. Needle Shape Comparison Results and Discussion

Needle point estimation results were compared to manual
segmentation using the transverse US image sets obtained from
the patient study. These images were selected based on how
readily the needle could be manually identified within the
image. The needle location was manually identified in each
of the transverse US images and the result was compared to
two separate applications of the proposed algorithm. In the
first application, the entire transverse image set was used as
an input to the proposed algorithm. In the second application,
the 5 transverse images obtained nearest to the needle tip were
used as inputs. The latter application demonstrates how the
proposed method functions using a limited set of images, some
of which may contain confounding information. Summary
statistics are shown in Table II. Using the entire image set,
the resultant error between the manual segmentation results
and the proposed method averages 0.4 mm, which equates
to only 2 pixels in the transverse US image. With the image
set of 5 transverse images, the resultant error averages 0.5
mm, which equates to 3 pixels in the transverse US image.
In both cases, the needle shape estimation results obtained
using the proposed algorithm averaged close to 0.5 mm of
the manual needle segmentation results. Note that manual
segmentation involves a degree of human subjectivity and
imprecision, which accounts for the vast majority of the
smaller errors shown in Table II. Our method provides a
consistent, systematic way to locate the needle based on the
estimated needle position observed within a series of images.
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Fig. 13. Comparison of the needle shapes obtained using the transverse and
sagittal US images.

TABLE III
SUMMARY STATISTICS OF SAGITTAL IMAGE COMPARISON RESULTS

Entire Transverse Set 5 Transverse Images
Max Error Avg. Error Max Error Avg. Error

Mean [mm] 0.70 0.37 0.91 0.43

Std. Dev. [mm] 0.32 0.15 0.67 0.21

The projected needle shape was also compared to the needle
segment observed in the sagittal US image as a second way
to validate the results. For each sagittal US image, the image
processing algorithm described in Section II is applied, and
the RANSAC algorithm described in Section III is slightly
modified to fit a second-order polynomials to the needle
segment. A second-order polynomial was used because the
portion of the needle observed in the sagittal US images is
approximately half the inserted length. The needle tip was
localized in the sagittal images using a similar method to [11],
where the needle tip is marked by a drop-off in pixel intensity
below the intensity threshold α defined in Section II-C. In
addition, the 18 gauge brachytherapy needles used are not
as flexible as alternatives used in the literature like nitinol
wire. A second-order polynomial is sufficient to estimate this
needle segment, as opposed to a third-order polynomial which
is reserved for estimation of the entire needle shape.

The sagittal and projected needle shapes are aligned at
the point closest to the needle base in the sagittal image.
An example of the two needle shapes superimposed over the
original image is shown in Fig. 13.

The maximum error between the two needle shapes is
measured along with the average error between the estimated
needle shape (obtained from the transverse US images) and the
reference needle shape (obtained from the sagittal US image).
Summary statistics for all 49 needles are presented in Table III.

Based on the results in Table III, we observe that the
maximum error between the two needle shapes averages 0.70
mm when using the entire transverse image set and 0.91
mm when using only 5 transverse images, both of which are
less than the outer diameter of an 18 gauge brachytherapy
needle (1.27 mm). The average errors of 0.37 mm for the
entire transverse image set and 0.43 mm for the 5 transverse
image set corresponds to an errors of 2.1 pixels and 2.4 pixels
in the clinical transverse US images respectively, which is
very minimal. An average accuracy of <0.5 mm is sufficient
for clinical applications, where, based on our clinical study,
surgeons can tolerate errors of up to 5 mm with respect to
the needle’s target position. These results indicate that the

proposed method can provide accurate estimates of the needle
shape under clinical conditions. This method allows clinicians
to use transverse US images to develop an estimate of the
3D needle shape quickly without requiring 3D ultrasound or
sagittal images. In addition, the quality of the needle shape
information provided by the proposed method is much better
than the information surgeons currently use to verify needle
placement, which is typically the lateral error observed in a
single tranverse US image.

VII. CONCLUSION

In this paper, a method for 3D needle shape estimation using
a discrete series of transverse images is described. Experiments
are performed to identify the depth, number, and quality
of transverse images required to obtain accurate results. As
well, application of the proposed method to patient data is
performed and verified by comparing the estimation results to
images obtained from the sagittal perspective and to manual
segmentation of the transverse US images.

Experimental results showed that to obtain maximum errors
of less than 2 mm, the depth of the final image within the
transverse image set must be at least 75% of the maximum
needle depth into tissue. Additional tests showed that using
10 transverse images closest to the needle tip, the proposed
method is functional as long as the needle can be identified in
30% of the images obtained. Our method is robust against
many of the common US characteristics that confuse both
manual and automated segmentation methods.

The proposed method was also applied to in-vivo images
obtained from prostate brachytherapy procedures. Two dif-
ferent tests were performed. In the first test, each needle
shape was estimated using the entire set of in-vivo transverse
US images obtained. In the second test, each needle shape
was estimated using the 5 transverse US images obtained
nearest to the needle tip. The results were compared to manual
segmentation of the same images. The error between the
manually segmented results and the results obtained using the
proposed method was 0.4 mm when using the entire transverse
US image sets and 0.5 mm when using the 5 transverse
US image sets. The needle shape estimations for each case
were also compared to sagittal images obtained during the
brachytherapy procedure. Comparisons yielded a maximum
error averaging 0.70 mm when using the entire transverse
image sets and 0.91 mm when using the 5 transverse image
sets. A study of computation times showed that the result
could be accurately obtained in real-time for operating room
conditions.

With respect to the clinical US images, although the com-
parison could only be performed on the segment of the needle
observed in the sagittal US plane, this segment normally spans
the entire length of the prostate or slightly greater. Therefore,
the proposed method is shown to provide excellent results
for the needle shape observed within the prostate, which is
normally the segment of greatest interest for determining the
dose distribution. The average errors observed in the clinical
US images were slightly higher than those obtained in the
in-vitro experiments, which could be caused by larger degree
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of noise and hyperechoic objects found when imaging human
tissue compared to the plastisol tissue phantom.
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