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Abstract— Falls are a major problem of later life having severe 

consequences on quality of life and a significant burden in 

occidental countries. Many technological solutions have been 

proposed to assess the risk or to predict falls and the majority is 

based on accelerometers and gyroscopes. However, very little was 

done for identifying first time fallers, which are very difficult to 

recognise. This paper presents a meta-model predicting falls using 

short term Heart Rate Variability (HRV) analysis acquired at the 

baseline. 170 hypertensive patients (age: 72 ± 8 years, 56 female) 

were investigated, of which 34 fell once in the 3 months after the 

baseline assessment. This study is focused on hypertensive 

patients, which were considered as convenient pragmatic sample, 

as they undergo regular outpatient visits, during which short term 

ECG can be easily recorded without significant increase of 

healthcare costs. For each subject, 11 consecutive excerpts of 5 

minutes each (55 min) were extracted from ECGs recorded 

between 10:30 and 12:30 and analysed. Linear and nonlinear HRV 

features were extracted and averaged among the 11 excerpts, 

which were, then, considered for the statistical and data mining 

analysis. The best predictive meta-model was based on 

Multinomial Naïve Bayes, which enabled to predict first-time 

fallers with sensitivity, specificity and accuracy rates of 72%, 61%, 

68% respectively. 

Index Terms—Fall Prediction, Heart Rate Variability analysis, 

Multinomial Bayesian model, Accidental Falls 

I. INTRODUCTION 

ALLS are a serious health problem among older citizens. In 

community dwelling old adults, the fall rate per year is 

around 30%; people aged 65 and older have higher risk of 

falling, and 50% of people older than 80 years fall at least once 

a year [1, 2]. In the UK, falls cost to the NHS more than -£2.3 

billion per year [1]. Predicting falls is challenging, but could 

help designing more targeted and therefore sustainable fall 

prevention programs. Even defining a fall is a challenge itself. 

For example, the National Database of Nursing Quality 

Indicators defines a fall as “an unplanned descent to the floor  

with or without injuries”, whereas the World Health  
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Organization defines a fall as “an event which results in a 

person coming to rest inadvertently on the ground or floor or 

some lower level”[3]. In this study we considered both the 

definitions, instructing patients and operators accordingly. 

Regardless of the definition, a fall is often the result of 

complex and dynamic interactions between intrinsic (subject-

specific) risk factors and extrinsic (environmental) risk factors. 

The former include, among others, age, history of recent fall, 

mobility impairments, urinary incontinence or frequency, 

certain medications and their combinations, postural 

hypertension, frailty, and other cardiovascular, neurological 

and visual concomitances [3]. Extrinsic include, among others, 

footwear, transient exposure to risky environments (i.e. 

unsupervised toileting) and so on [4]. 

 Since falls in older citizens increase morbidity and mortality, 

and because of continuous ageing of occidental population, fall 

prevention has become an important priority in Europe and 

USA and the efforts about research and development of 

technologies aiming to screen the risk of falling and/or to detect 

and/or to predict falls are constantly increasing. 

However, recent systematic reviews highlighted that many of 

the proposed technologies presented several limits including the 

elevated occurrence of false alarms, the obtrusiveness of those 

technologies and their costs-effectiveness [5]. Regarding costs-

effectiveness, the majority of the proposed approaches require 

the use of additive sensors (mainly accelerometers, gyroscopes 

or ambient sensors) having no other direct utility for the older 

citizens’ health and therefore determining unsustainable 

additional costs [5]. Also, the mechanism that accelerometers, 

gyroscopes or ambient sensors uses, cannot detect all the risk 

factors for falls. 

This paper presents the results of a study aiming to develop 

a method to assess the risk of falling using short-term HRV 

analysis in hypertensive patients. This is a particular subgroup 

of older citizens, because of drug prescription and prevalence 
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of cardiovascular risk factors for falls. However, this is a 

significant subgroup, given the hypertension incidence, which 

rise from the 60% in the 6th decade to the 70% in the 7th with a 

steep increase in the following decades of life[6]. Differently 

from the few previous studies investigating HRV in fallers [5, 

7], which were focused on 24-hour HRV, this is the first paper 

describing the results obtained with short-term HRV analysis, 

which is much easier and cheaper to be translated in everyday 

outpatient clinical practice. This approach is based on the idea 

that it is possible to early detect constantly depressed 

autonomous nervous system states, which increase significantly 

the risk of falling. In fact, according to existing literature, 42% 

of falls among the community-based older population are due 

to transient problems, which are significantly related to 

cardiovascular system and autonomous nervous system 

conditions [8], including: gait/balance disorders, syncope, 

weakness, dizziness/vertigo, drop attacks and  postural 

hypotension [2, 9, 10]. 

Differently from other technological approaches used in 

previous studies, HRV can be extracted from 

Electrocardiogram (ECG), largely used to monitor/screen 

patients over 60 years old. In fact, ECG monitoring is beneficial 

for several cardiovascular diseases, and the application of ECG 

monitoring during real-life activities are under investigation for 

several purposes and particularly because of its effectiveness as 

early detector of cardiovascular diseases worsening [5, 11, 12]. 

Accordingly, most of the wearable and ambient sensing 

technologies aiming to monitor older subjects in real life 

include ECG or HRV monitoring.  

Therefore, while older citizens could be sceptical of wearing 

technologies embedding accelerometers and gyroscopes “only” 

for falls prevention, it is expected that the same users would be 

less sceptical of adopting technologies that have been already 

proven effective for other cardiovascular diseases. In other 

words, enriching those technologies today under exploration 

with an ECG sensor could be convenient combination in order 

to predict/detect a fall, while being used to monitor 

cardiovascular problems. For these reasons, in this study,  we 

focused on hypertensive patients undergoing regular outpatient 

visits, for which ECG recordings were already going to be 

prescribed in order to monitor the risk of other cardiovascular 

events [13]. Moreover, other well known risk factors for falls 

(e.g. multiple-prescriptions) are also systematically monitored 

and recorded in hypertensive patients undergoing regular 

outpatient visits, facilitating this study. 

Differently from other methodologies used in previous 

studies, this paper presents a meta-model to automatically 

identify subjects at higher risk of falling via HRV features using 

advanced data mining methods. 

II. METHODS 

A. Dataset 

This study was carried in the outpatient clinic for 

hypertension at the University Hospital of Naples “Federico II”, 

and therefore it was approved by the Local Ethic Committee 

and all the participants signed specific informed consent to 

allow the use of their data for this study. Hypertensive patients 

were enrolled in this study if they met the following inclusion 

criteria: home dwelling autonomous above 55 years old, 

without cognitive impairments and without history of falls in 

the previous years. At the baseline, a nominal 24h ECG Holter 

registration was performed, together with the other periodic 

controls for hypertension management. ECGs were recorded 

using Holter ECG Cardioscan DMS 300-3A and downloaded 

for analysis using Cardioscan software (V12.0; DMS Holter, 

Stateside, NV, USA). Further details on the clinical protocol for 

hypertension management, other clinical outcomes (non-falls) 

and the ECG recording specifications could be found in [13]. 

Falls were self-reported by patients. The following definitions 

for accidental falls were used in order to instruct patients and 

operators: “an unplanned descent to the floor with or without 

injuries” and/or “an event which results in a person coming to 

rest inadvertently on the ground or floor or some lower level”. 

B. HRV Processing 

The series RR beat intervals were obtained from ECG 

recordings using an automatic QRS detector based on 

nonlinearly scaled ECG curve length feature[14]. The QRS 

detection was performed through the WQRS 

implementation[14] , freely available from PhysioNet. 

All the Holter recordings started in early morning (i.e. from 

8:30am to 9:30am). In order to avoid the white coat effect, and 

to maximally standardize the protocol (i.e., minimize 

heterogeneity due to circadian cycle), the second and third 

hours of each recording were considered (approximately 

between 10:30 and 12:30). From these two hours the first 11 

consecutive 5-minutes excerpts were used for the analysis. The 

two hours were initially selected as a quality check was 

performed using the NN/RR ratio, and each excerpt was 

included among the consecutive 11 only if the NN/RR ratio 

resulted more than 90%. According to the protocol, a subject 

would have been excluded if 11 consecutive excerpts would 

have been not identifiable in those two hours. This did not 

happen in the current study. 

Standard linear HRV analysis according to International 

Guidelines was performed [15]. Moreover, nonlinear features 

were computed according to recent literature [16]. The HRV 

analysis was performed using an ad hoc developed HRV 

software based on MATLAB version R2013a (The MathWorks 

Inc., Natick, MA) implementation [17]. 

As shown in Table I, time-domain HRV features, reliable in 

5-min HRV analysis, were calculated: Average of all RR 

intervals (AVNN), standard deviation of all NN intervals 

(SDNN), square root of the mean of the sum of the squares of 

differences between adjacent NN intervals (RMSSD), number 

and percentage of differences between adjacent NN intervals 

that are longer than 50 ms (NN50 and pNN50).  

The frequency-domain HRV features rely on the estimation 

of power spectral density, computed with Lomb-Scargle 

periodogram. The generalized frequency bands in case of short-

term HRV recordings were low frequency (LF, 0.04-0.15 Hz), 

and high frequency (HF, 0.15-0.4 Hz). The included frequency-

domain features were absolute for each band, LF, HF, and the 

LF/HF power ratio (see Table I). 
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Nonlinear HRV was analyzed with the following methods: 

Poincaré plot, Approximate entropy, Correlation dimension, 

Detrended fluctuation analysis, and Recurrence Plot (RP) [13, 

18](see Table I).  
TABLE I 

HRV FEATURES 

Features Units Description 

Time Domain 

AVNN ms The mean of RR intervals 
SDNN ms Standard deviation of RR intervals 

RMSSD ms Square root of the mean squared differences 

between successive RR intervals 
NN50 / Number of successive RR interval pairs that 

differ more than 50 ms 

pNN50 ms NN50 divided by the total number of RR 
intervals 

Frequency Domain 

Absolute 

power 

ms2 Absolute power of LF and HF bands 

LF/HF / Ratio between LF and HF band powers 

Non-linear   
SD1,SD2 ms The standard deviation of the Poincare plot 

perpendicular to the line-of-identity (SD1) and 

along the line-of-identity (SD2) 
ApEn  Approximate Entropy 

SampEn  Sample Entropy 
D2  Correlation Dimension 

DFA:  Detrended fluctuation analysis 

α1  / Short-term fluctuation slope 
α2 / Long-term fluctuation slope 

RPA:  Recurrence plot analysis: 

Lmean Beats Mean line length 
Lmax Beats Maximum line length 

REC % Recurrence rate 

DET % Determinism 
ShanEn / Shannon entropy 

DIV  Divergence 

C. Statistical Analysis  

Median, standard deviation, 25th and 75th percentiles were 

calculated to describe distribution of HRV features for fallers 

and no-fallers. The non-parametric Wilcoxon Signed-Rank Test 

was used to investigate the statistical significances of feature 

variation between fallers and no-fallers. The Wilcoxon test was 

chosen as several HRV features, as expected, were not normally 

distributed. Baseline continuous and categorical variables were 

presented as median (± standard deviation) or as count 

(percentage), respectively. Wilcoxon test and Chi-square test 

were adopted to compare continuous and categorical variables, 

respectively, between those who experienced a fall and those 

who did not. The statistical analysis was performed using IBM 

SPSS statistics 22. 

D. Model training, validation and testing procedure  

According to [19], the whole dataset was split per subject in 

three folders (Fig. 1): folder 1 (34%) was used for feature 

selection; folder 2 (39%) was used for training the classification 

models; finally folder 3 (27%) was adopted to evaluate the 

performance of the developed classification models. 

The subjects not included in folder 1, were randomly 

assigned to folder 2 or folder 3 according to a 2:3 ratio. The 

reason of this asymmetric splitting was that the folder 2 was 

further split in 3 subsamples because of the 3-fold cross-

validation technique (as detailed in subsection II.D.3). 

1) HRV Feature Selection 

As recalled also in [19], the number of features used in a 

machine learning model should be strongly limited by the 

number of subjects presenting the event to detect (falls) in each 

folder, in order to minimize the risk of over-fitting. Moreover, 

a smaller set of significant features strongly simplifies the 

medical interpretation of the achieved results, by directing 

attention only on the most important informative part of the 

utilized signal [19]. However, selecting the minimum set of 

features using the same folder utilized to train the machine-

learning model can reduce the generalizability of the final 

decisional model. Therefore, the HRV features were minimized 

using only the folder 1 (58 patients, of which 12 fallers). The 

feature selection was based on two main stages: the relevance 

analysis performed by Wilcoxon Signed-Rank Test and 

redundancy analysis in term of feature correlation (Fig. 2) [20]. 

 The relevance analysis aimed to identify the HRV features 

changing more significantly among fallers and non-fallers, 

according to the Wilcoxon Signed-Rank Test. Since not all the 

HRV features were normally distributed, (i.e., frequency 

features have non-symmetric distributions) a non-parametric 

test was adopted. All the HRV features changing significantly 

between fallers and non-fallers (p-value less than 0.05) were 

selected at this stage.  

All the relevant HRV features (p<0.05) were then further 

minimized with the redundancy analysis aiming to exclude 

highly correlated features. Notions of measure redundancy are 

normally explored in terms of feature correlation. It is widely 

accepted that two features are redundant to each other if their 

values are strongly correlated. The features with a Pearson’s 

coefficient above 0.7 in absolute magnitude and with a 

significant p-value (less than 0.05) were excluded. In this final 

stage, only the HRV features relevant and not redundant were 

considered for the next steps.  

 
 
Fig. 1. Splitting of the dataset in three folders 

 

 

 
 

Fig. 2. Framework of Feature Selection 
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2) Machine learning methods 

Five different machine-learning methods were used to 

develop models aiming to automatically detect future fallers 

based on HRV features: Naïve Bayes (NB), which uses the naive 

Bayes formula to calculate the probability of each class given 

the values of all the attributes and assuming the conditional 

independence and the Gaussian distribution of the attributes 

[21]; Multinomial Naïve Bayes(MNB), which is based on 

Bayes’ theorem (Bayes rule), with the additional incorporation 

of frequency information and multinomial distribution for each 

of the features [22]; Support Vector Machine(SVM), which 

belongs to a general field of kernel-based machine learning 

methods and are used to efficiently classify both linearly and 

non-linearly separable data[23]; Multilayer Perceptron 

(MLP)consisting of an artificial neural network of nodes 

(processing elements) arranged in layers [24]; Neighbor 

Search(IBK), which finds a group of k objects in the training set 

that are closest to the test object, and bases the assignment of a 

label on the predominance of a particular class in this 

neighborhood [25]. Regarding model parameters, for multilayer 

perceptron classifier, the learning rate was varied from 0.3 to 0. 

9, the momentum from 0.2 to 1 and the number of epoch from 

100 to 2000; for support vector machine, basis function kernel 

was used, varying gamma from 10-5 to 10. As regards neighbor 

search, it was trained by varying K from 1 to 5. Each of those 

methods was used with all the possible combinations of N out 

the D selected features (with D equal to the number of features 

selected and N spanning from 3 to D). The Weka platform for 

knowledge discovery (version 3.6.10), issued by the University 

of Waikato as an open source software under the GNU General 

Public License[26], was used to train, validate and test the 

classification models. 

3) Training and validation 

 The training of the machine-learning models was performed 

on the folder 2 (67 patients, of which 13 patients experienced a 

fall). Folder 2 was further divided in 3 equal sized subsamples, 

according to the 3-fold person-independent cross-validation 

approach. Of these 3 subsamples, 2 subsamples are used as 

training data and the remaining one is retained for validating the 

model. The process is then repeated 3 times, with each of the 3 

subsamples used exactly once as the validation data. Finally, 

the cross-validated estimations are computed by averaging the 

performances over the 3 validation subsamples. Binary 

classification measures were adopted according to the standard 

formulae reported in Table II [27, 28]. 

Given the relatively small and unbalanced number of events 

(falls) in each subsample; the random allocation of one subject 

to one of the three subsamples can significantly alter the cross-

validation estimates. Therefore, we repeated 10 times the cross-

validation procedure and averaged over those 10 iterations the 

cross-validation estimates. This procedure was performed 5 

times: one for each machine-learning method used to develop 

predictive models (see Fig. 3). 

4) Testing of predictive model and best model selection 

Testing a classifier involves analyzing its performances on a 

set of subjects that is independent from the training and 

validation set [19]. Accordingly, folder 3 (45 patients) was used 

to test the trained models. Finally, the best performing model 

was selected as the one achieving the highest averaged AUC, 

which is a reliable estimator of both sensitivity and specificity 

rates and, in case of equal AUC average, the model with 

minimal complexity (i.e. minor mean number of features 

employed). 

E. Final model generation 

For the best performing method, a meta-model was produced 

by averaging the coefficients of the hyperplanes separating 

fallers by non-fallers for each of the 10 models generated during 

the validation. Coefficients were assumed to be zero for 

features that were not selected. The performances of this final 

model were computed, according to the formulae introduced in 

Table II, using folder 3. In addition, the Diagnostic Odds Ratio 

(DOR) was computed and ROC curve of the best model was 

constructed. 

 
Fig. 3. Model training validation and testing. For each of the 5 learning-machine methods used (j=1…5), the training-validation procedure was repeated 10 

times (i=1…10). For each iteration, the Confusion Matrix (𝐶𝑀𝑖,𝑗) and the  𝐴𝑈𝐶𝑖,𝑗 were calculated. The best method was the one with max
𝑗

{𝐴𝑈�̂�𝑗}. 

BEST MODEL SELECTIONTESTINGTRAINING-VALIDATION

TRAININGi,j
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for j=1:5

for i=1:10
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L
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MODEL COMPLEXITY

MODELi,j

FOLDER 3
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TABLE II 

BINARY CLASSIFICATION PERFORMANCE FEATURES 

MEASURE FORMULA 

SENSITIVITY (TPR) SEN = TP / (TP + FN) 

SPECIFICITY (1-FPR) SPE = TN / (FP + TN) 

ACCURACY ACC = (TP+TN) / (TP+TN+FP+FN) 

AREA UNDER CURVE AUC = AREA UNDER ROC CURVE 

TP: the number of fallers correctly classified; TPR: TP rate; TN: the 

number of non-fallers correctly classified; FP: the number of non-fallers 
incorrectly classified as fallers; FPR: FP rate; FN: the number of fallers 

incorrectly classified as non-fallers 
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III. RESULTS 

The current study was performed enrolling 170 hypertensive 

patients (including 56 female and 114 male), age 72 ±8 years, 

of which 34 subjects experienced a fall within 3 months from 

the baseline assessment. Other clinical and metabolic 

information are reported in Table III. According to the baseline 

data, no statistically significant differences were observed 

between fallers and non-fallers.  

Table IV reports the median (MD), the standard deviation 

(SD), the 25th and the 75th percentiles for the 21 HRV features 

extracted from faller and no-faller subjects for all the dataset. 

The last column of Table IV shows the Wilcoxon Signed-Rank 

Test p-values of feature variations between fallers and no-

fallers. As shown in Table IV, 20 out of 21 HRV features 

changed significantly between fallers and no-fallers. 

Particularly, in fallers lower value of all time-domain features 

except AVNN was observed. Moreover, in fallers both LF and 

HF power were lower, while LF/HF increased. Furthermore, the 

statistical analysis showed that fallers had significantly lower 

SD1, SD2, D2 and DIV, and significantly higher ApEn, 

SampEn, α1, α2, D2, REC, Lmax, Lmean, DET, and ShanEn. 

 HRV feature selection, performed on the first folder, showed 

that 16 HRV features were relevant (changed significantly also 

in this folder), of which 11 were excluded with the redundancy 

analysis as strongly and significantly correlated (Fig. 4).  

Finally, 5 HRV features (pNN50, HF, SD1, Lmax, ShanEn) 

resulted not statistically correlated (|  |< 0.7 and p-

value>0.05). 

Table V reports the performance measurements (mean and 

standard deviation) estimated on the independent test set of the 

5 models, averaged over the 10 iterations. According to the 

criteria defined in sub-section II.D.4, the Multinomial Naïve 

Bayes model outperformed the other data-mining methods 

achieving the best mean value of performance measures over 

10 iterations: 72% sensitivity, 61% specificity and 68% 

accuracy. This method achieved the best average AUC and it 

TABLE IV 

HRV FEATURES IN NO-FALLERS AND FALLERS 

HRV Features  Non-Fallers   Fallers     

  MD±SD 25th  75th  MD±SD  25th  75th  p-val Trend 

AVNN 773.75±244.9 640.6 899.3 782.9±185.5 676.5 901.7 0.162 ↑ 

SDNN 57.35±64.9 35.60 91.9 46.2±70.11 30.8 73.8 <0.01 ↓↓ 

RMSSD 48.65±64.7 26.25 86.4 29.25±83.4 19.9 50.4 <0.01 ↓↓ 

NN50 30±39.9 11.00 62.0 16±35.5 6.00 28.0 <0.01 ↓↓ 

pNN50 9.4±16.5 3.50 22.6 4.85±12.78 1.60 9.10 <0.01 ↓↓ 

LF 0.010±0.009 0.01 0.02 0.007±0.009 0.00 0.02 <0.01 ↓↓ 

HF 0.016±0.09 0.00 0.03 0.006±0.02 0.00 0.02 <0.01 ↓↓ 

LF/HF 0.666±1.53 0.46 1.10 0.97±2.01 0.57 2.11 <0.01 ↑↑ 

SD1 34.44±45.9 18.58 61.2 20.71±59.15 14.1 35.61 <0.01 ↓↓ 

SD2 71.72±79.7 43.26 115.5 60.59±72.6 40.5 91.43 <0.01 ↓↓ 

ApEn 0.94±0.21 0.76 1.05 0.96±0.23 0.77 1.07 <0.01 ↑↑ 

SampEn 1.06±0.51 0.70 1.45 1.23±0.57 0.75 1.61 <0.01 ↑↑ 

α1  0.9±0.28 0.71 1.10 1.03±0.3 0.78 1.26 <0.01 ↑↑ 

α2 0.87±0.29 0.66 1.07 0.97±0.32 0.75 1.15 <0.01 ↑↑ 

D2 0.80±1.39 0.06 2.37 0.46±1.34 0.04 1.90 <0.05 ↓↓ 

REC 0.44±0.16 0.32 0.52 0.45±0.15 0.36 0.53 <0.05 ↑↑ 

Lmax 126±106.4 67.00 212 184±109.9 111 289 <0.01 ↑↑ 

Lmean 15.2±14.7 9.73 23.04 16.86±14.9 11.8 24.91 <0.01 ↑↑ 

DIV 0.008±0.01 0.00 0.01 0.006±0.008 0.00 0.01 <0.01 ↓↓ 

DET 0.99±0.02 0.98 1.00 0.99±0.01 0.99 1.00 <0.01 ↑↑ 

ShanEn 3.34±0.58 2.97 3.78 3.42±0.58 3.21 3.88 <0.01 ↑↑ 

 

TABLE III 

PATIENT BASELINE CHARACTERISTICS 

Clinical features 

 

Non-Fallers 

MD±SD 

Fallers 

MD±SD 

p-val 

Age (Years) 71.85(±7.046) 70.33(±9.6) 0.22 

Gender (Female) 45(26.7%) 12(7.14%) 0.93 

History of  Hypertension 46(27.8%) 12(7.2%) 0.90 

History of stroke 13(7.8%) 2(1.2%) 0.43 

Diabetes 22(13.1%) 5(3%) 0.68 

Diastolic BP(mmHg) 76.00(±8.97) 75.92(±11.75) 0.69 

Systolic BP (mmHg) 136.76(±20.15) 144.44(±21.31) 0.06 

Total cholesterol 176.96(±36.34) 188.86(±40.99) 0.13 

LDL(mg/dl) 101.56(±30.012) 113.67(±35.16) 0.11 

HDL(mg/dl) 52.25(±13.33) 51.33(±13.61) 1.00 

BMI(kg/m2) 27.76(±4.06) 27.27(±4.13) 0.43 

BSA(m2) 1.89(±0.16) 1.9(±0.22) 0.84 

Alpha-blockers 21(12.6%) 7(4.2%) 0.64 

Beta-blockers 56(33.7%) 13(7.8%) 0.45 

ACE inhibitor 45(27.1%) 14(8.43%) 0.64 

Dihydropyridine 35(21.08%) 9(5.4%) 0.82 

IMT Mean(mm) 1.57(±0.45) 1.41(±0.36) 0.07 

IMT Max(mm) 2.35(±0.75) 2.23(±0.89) 0.19 

LVMi(g/m2) 131.84(±26.32) 133.62(±22.99) 0.68 

EF(%) 58.90(±11.24) 63.47(±6.51) 0.05 

BP: blood pressure; IMT: intima media thickness; LVMi: left ventricular mass 

index; EF: ejection fraction 

 
Fig. 4. HRV Feature Selection 
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was also the less complex employing a less mean number of 

features (Table V).   

 

As described in section II.E a meta-model was generated by 

averaging the coefficients of the hyperplanes separating fallers 

and non-fallers obtained at each iteration of the validation 

process. In log-space, the Multinomial Naïve Bayes meta-model 

equation was: 

.09 HF-.02 pNN50-.20 SD1+.05 Lmax-.05 ShanEn-.59 0 (1) 

Because 3 features (SD1, Lmax, ShanEn) out of the 5 selected 

were always employed in all the 10 models, they significantly 

dominate this meta-model. In fact, the remaining HF and 

pNN50 were employed respectively only 2 times and 1 time out 

of 10 iterations. Therefore, the reduced meta-model employing 

only the 3 non-linear features, achieved the same performance: 

 

-.20 SD1+.05 Lmax-.05 ShanEn-.59 0 (2) 

The interpretation of equation (2) could be the following: “a 

subject is classified as faller if it lies above the hyperplane”. In 

other words, a subject is identified at high risk of falling if: 
 

-.20 SD1+.05 Lmax-.05 ShanEn-.59>0 (3) 

Using this interpretation, the Diagnostic Odds Ratio (DOR) 

for this meta-model was 4.9 (CI 95%: 1.49 - 11.7).  The ROC 

curve for the meta-model estimated on the independent test set 

is shown in Fig. 5. 

 

 

IV. DISCUSSION 

The current study proposed a mathematical model to 

automatic assess the risk of first-time falls in hypertensive 

patients, based on few HRV features. These features were 

extracted from 11 consecutive 5 minutes HRV excerpts 

extrapolated from the second and third hour of Holter 

registrations (approximately between 10:30 and 12.30). 

The statistical analysis showed that fallers presented a 

generally depressed HRV and a decline of non-linear heartbeat 

dynamics. It is known that HRV depression can be due to drug 

therapy or ageing. However, our results suggested that this 

difference is not due to those factors, because, as reported in 

Table III, no significant statistical differences were observed in 

drug therapy or age between fallers and non-fallers. 

These results confirmed our previous finding on long-term 

HRV analysis [5]. Differently, a precedent study investigating 

HRV feature changes between fallers and non-fallers [7] did not 

find significant differences, although it demonstrated the same 

features trends for AVNN, SDNN, pNN50, LF. This difference 

could be due to several reasons, including the following: in [7] 

only linear long-term HRV analysis was performed; it enrolled 

a smaller sample size (about 60 patients); they used history of 

falls and not future falls to classify the subjects. 

In our study, significant differences in both linear and 

nonlinear HRV features between the two groups emerged. 

However, nonlinear ones appeared to have better discrimination 

ability: the 3 nonlinear features selected during the feature 

selection phase (SD1, Lmax, ShanEN) were then utilized 

independently by each method.  

During the testing, the best performances were achieved by 

Multinomial Naïve Bayes, with relative high sensitivity (72%), 

specificity (61%) and accuracy (68%). The other models 

achieved high specificity and accuracy but quite low sensitivity 

during the testing. Therefore, Multinomial Naïve Bayes model 

was the best model according to our selection criteria, based on 

AUC and model complexity. For other applications (e.g., 

screening), other criteria (e.g., highest sensitivity rate) could 

represent a better choice.  

The results presented in this paper reinforce the idea that 

dysfunctions between cardiovascular system and autonomous 

nervous system are associated with higher risk of falling in the 

next few weeks and can be used to predict the risk of falling. 

According to previous findings [5], the reason could be that a 

depressed HRV reflects a reduced capability to react to extrinsic 

risk factors avoiding falls. In our previous study [5], an 

automatic classifier based on 24 hours HRV features was 

proposed achieving a DOR of 4.2 (CI 95% 2.0-8.7). Differently 

from this previous study, the current paper achieved better 

results by using 1-hour recording and analyzing the HRV on 5-

min excerpts (short-term analysis). 

The models presented in the current paper were developed 

through a rigorous training, validation and testing procedure 

following recent recommendations for machine-learning in 

biomedical engineering research [19], using three independent 

subsets of data for feature selection, model training and testing 

and averaging the performances by repeating the procedure ten 

times. Differently from machine learning algorithms, the 

TABLE V 

PERFORMANCE MEASUREMENT (MEANSD) AND MODEL COMPLEXITIES 

(COMP) ESTIMATED ON THE TEST SET (FOLDER 3) 

Method AUC SEN SPE ACC COMP 

NB 687.5 55.624.7 75.013.2 72.28.7 4.2 

MNB  70.07.8 72.210.9 61.17.4 67.85.9 3.1 

SVM 58.010.2 22.211.6 81.99.9 68.97.8 3.9 

MLP 60.06.2 5.616.5 84.79.3 71.16.0 4.3 

IBK 54.010.3 22.212.2 79.26.4 67.86.1 4.3 

  

 

 
 

Fig. 5. ROC curve for the multinomial naïve Bayes final meta-model 
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statistical tests were applied on the whole dataset (n=170), not 

requiring further evaluation or testing, in order to achieve the 

highest statistical power. 

The method proposed in the present paper is clinically 

feasible, since it only requires a 1-hour ECG recording, which 

is often performed in cardiovascular patients also through 

wearable devices[29]. For instance, the method proposed does 

not require the use of other technologies as wearable 

accelerometers or pressure matrices, which are not used in 

everyday clinical practices. For that reason, the method 

proposed could be easily integrated with other clinical tools for 

estimating the risk of falling and used widely in outpatient 

settings to identify high-risk patients who need further 

assessment and could benefit from fall prevention programs or 

fall detection systems [30-34]. This is important as falls depend 

from hundreds of risk factors and integration of complimentary 

approaches could be more effective in predicting falls. For 

instance, the mechanisms that accelerometers or gyroscopes use 

could perform better in a population in which other intrinsic risk 

factors are prevalent. In fact, focusing on hypertensive patients 

may have narrowed our study to a population where risk factors 

for falls due to cardiovascular problems were prevalent. 

Therefore, although hypertension affects the 60% of people in 

the 6th decade of life, 70% in the 7th and so far, future studies 

on a different population and combining different approaches 

seems to be needed. 

However, this study has some limitations that should be 

considered before adopting these methods in other contexts. 

This study focused on hypertensive patients, which represent 

special population with distinguished characteristics, different 

from the population of community-dwelling older citizens. 

Future study should explore how this method can be adapted to 

a more general population recruiting participants from a 

geriatric outpatient clinic. The patients were enrolled in an 

outpatient clinic for hypertension and not in a fall clinic. 

Therefore, important information, such as the exposure to other 

independent intrinsic/extrinsic risk factors for falls could not be 

accessed or used to verify independently the results. Moreover, 

the fall recordings were based on patient self-reports and 

potentially relevant characteristics of the recorded falls were 

not systematically recorded.  

V. CONCLUSION 

The current study proposed a method based on short-term 

HRV analysis to identify automatically future fallers among 

hypertensive patients aged 55 or over. The presented classifier 

achieved satisfactory results through a rigorous validation 

procedure, enabling to predict fallers with a sensitivity rate of 

72% and a specificity rate of 61%. The proposed method is 

based on analysis that is already in use in many outpatient 

clinics and could be used widely in outpatient settings to 

identify high-risk patients who need further assessment and 

could benefit from fall prevention programs.  
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