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Abstract

Structural magnetic resonance imaging (MRI) has been proven to be an effective tool for 

Alzheimer’s disease (AD) diagnosis. While conventional MRI-based AD diagnosis typically uses 

images acquired at a single time point, a longitudinal study is more sensitive in detecting early 

pathological changes of AD, making it more favorable for accurate diagnosis. In general, there are 

two challenges faced in MRI-based diagnosis. First, extracting features from structural MR images 

requires time-consuming nonlinear registration and tissue segmentation, whereas the longitudinal 

study with involvement of more scans further exacerbates the computational costs. Moreover, the 

inconsistent longitudinal scans (i.e., different scanning time points and also the total number of 

scans) hinder extraction of unified feature representations in longitudinal studies. In this paper, we 

propose a landmark-based feature extraction method for AD diagnosis using longitudinal 

structural MR images, which does not require nonlinear registration or tissue segmentation in the 

application stage and is also robust to inconsistencies among longitudinal scans. Specifically, 1) 

the discriminative landmarks are first automatically discovered from the whole brain using training 

images, and then efficiently localized using a fast landmark detection method for testing images, 

without the involvement of any nonlinear registration and tissue segmentation; 2) high-level 

statistical spatial features and contextual longitudinal features are further extracted based on those 

detected landmarks, which can characterize spatial structural abnormalities and longitudinal 

landmark variations. Using these spatial and longitudinal features, a linear support vector machine 

(SVM) is finally adopted to distinguish AD subjects or mild cognitive impairment (MCI) subjects 
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from healthy controls (HCs). Experimental results on the ADNI database demonstrate the superior 

performance and efficiency of the proposed method, with classification accuracies of 88.30% for 

AD vs. HC and 79.02% for MCI vs. HC, respectively.

Index Terms

Alzheimer’s disease; longitudinal study; landmark-based feature extraction; structural magnetic 
resonance imaging

I. Introduction

Dementia is a clinical syndrome that encompasses neurological disorders characterized by 

memory loss and cognitive impairment [1]. It is estimated that the global economic costs of 

dementia are more than US $818 billion in 2015 [2]. Being the most common cause of 

dementia in elderly people, Alzheimer’s disease (AD) accounts for up to 70% of all 

dementia cases, and is now estimated to be the third-leading cause of death, after heart 

disease and cancer [3]. Thus, in order to delay disease progression and take therapeutic 

measures, early diagnosis of AD, especially at its early prodromal state, such as mild 

cognitive impairment (MCI), is especially imperative.

In the literature, structural magnetic resonance imaging (MRI) has been proven to be an 

effective tool for AD diagnosis because of its capability to visualize brain anatomical 

structures [4], [5]. Extensive studies have focused on AD diagnosis based on cross-sectional 

analysis using MRI data from one single time point. In these methods, various features are 

extracted based on gray matter (GM) [6], [7], [8], cortical thickness [9], [10], as well as 

shape and volume measurement of hippocampus [11], [12]. Recently, longitudinal studies 

have shown more attractive clinical assessment of biomarkers [13], [14], [15]. Compared 

with cross-sectional study at a single time point, a longitudinal study is more sensitive to 

early pathological changes by focusing on both the spatial structural abnormalities and the 

longitudinal variations of tissues.

Generally, existing longitudinal studies largely focus on the degeneration of well-known 

representative biomarkers, which include hippocampal volume, ventricular volume, whole 

brain volume, and cortical thickness. For example, Chincarini et al. proposed four image 

analysis strategies based on hippocampal volume by integrating longitudinal atrophy rate as 

a measurement for AD diagnosis [16]. Jack et al. investigated the changing rates of four 

structures (i.e., hippocampus, entorhinal cortex, whole brain, and ventricle), and supported 

the idea of using changing rates as biomarkers for AD diagnosis [17]. Aguilar et al. analyzed 

the longitudinal atrophy changes in cortical thickness measures and subcortical volumes, and 

pointed out that using the data from two time points yielded better index results than only 

using one time-point data(such as cross-sectional data) [18]. Farzan et al. [19] adopted 

longitudinal percentage of brain volume changes and principal component analysis (PCA) 

[20] based feature selection strategy for AD diagnosis. The results suggested that the use of 

intermediate atrophy rates and their principal components improved diagnostic accuracy.

Zhang et al. Page 2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, there are still several challenges in existing longitudinal data based analysis. 1) 

Time-consuming nonlinear registration or tissue segmentation step is usually required, 

whereas the longitudinal study with involvement of more scans further exacerbates the 

computational time; 2) Limited measurements may be incapable of capturing the full pattern 

of morphological abnormalities of the whole brain; 3) Longitudinal scans across subjects are 

usually inconsistent, since the scans at some time points might be missing during the data 

collection process.

In this study, a landmark-based feature extraction framework is proposed for AD diagnosis 

using longitudinal structural MR images. Different from traditional longitudinal studies, our 

method 1) does not require the time-consuming nonlinear registration and tissue 

segmentation, 2) can cover the representative morphological abnormalities from the whole 

brain, and 3) is able to handle the inconsistency among longitudinal scans. Specifically, the 

discriminative landmarks with significant morphological group differences are automatically 

discovered from the whole brain. By using a regression forest-based landmark detection 

method, these landmarks can be efficiently detected in the application stage without using 

conventional steps of nonlinear registration and tissue segmentation. Based on these detected 

landmarks, high-level spatial features and contextual longitudinal features are further 

extracted, respectively. Specifically, a bag-of-words strategy is used to extract high-level 

spatial features, by calculating the frequency of low-level landmark-based morphological 

features from different scanning time points. In this way, the significant spatial abnormalities 

from all scanning time points are aggregated together, thus also invariant to the number of 

longitudinal scans. In addition, to extract contextual longitudinal features, an interpolation 

step is first used to generate a Jacobian map from longitudinal landmark displacements. 

Then, contextual features can be extracted around the landmarks from the Jacobian map. 

Finally, a linear support vector machine (SVM) classifier [21] is adopted to perform 

AD/MCI classification using these spatial and longitudinal features.

Note, this work is different from our early work in [22]. Specifically, our early work [22] 

focused on proposing an anatomical landmark discovery approach, while in this paper we 

mainly propose a new feature extraction method based on anatomical landmarks, where both 

spatial and longitudinal feature representations are extracted from longitudinal MR images. 

In particular, the major contributions of this paper can be summarized as follows. First, we 

adopt a bag-of-words strategy to generate high-level spatial features for MR images. Second, 

we propose using the normalized longitudinal deformations to generate the contextual 

longitudinal features for MR images. Importantly, both types of features are invariant to 

inconsistent longitudinal scans (i.e., different scanning time points and also different 

numbers of total scanned MRI images in individuals) in the longitudinal studies.

The remaining sections are organized as follows. Section II first introduces the data used in 

this study, and then presents the image processing step in detail for identifying the 

discriminative landmarks. Section III describes the proposed landmark-based feature 

extraction procedures for both high-level spatial features and contextual longitudinal 

features. Section IV gives the experimental results by comparing the proposed method with 

competing methods, and further analyzes the influences of parameters on the performance of 
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the proposed method. In Section V, we discuss those important components in the proposed 

method. Finally, the conclusion is given in Section VI.

II. Materials and Image Processing

A. Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI-1)1 is a 5-year public-private 

partnership to test whether serial MRI, positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment and early Alzheimer’s disease. One 

goal of ADNI is to develop improved methods that will lead to uniform standards for 

acquiring longitudinal, multi-site MRI and PET data on subjects with AD, MCI, and elderly 

healthy controls (HCs). Subjects used in this study are from the ADNI-1 database.

In our study, the basis longitudinal scanning interval is 0.5 year. The scanning step is starting 

from 0 to 3 years, but some of the subjects have missing canning time points. That is, all 

subjects may have scans from different time points and different numbers of total scans. We 

selected the subjects which have at least 3 scanning time points in our experiments. Thus, 

there are a total of 207 age-matched HCs, 154 AD, and 346 MCI subjects. The demographic 

information (i.e., gender, age, and education) of the studied subjects used in this study are 

summarized in Table I. The statistics of scans for the studied subjects is summarized in 

Table II.

B. Image Processing

In this paper, we adopt a data-driven landmark discovery algorithm to obtain our landmarks 

[22]. The image processing includes two major steps: linear alignment and landmark 

discovery. In the following, we describe details about the two steps.

1) Linear Alignment—All MR images are linearly aligned to a common template, namely 

Colin27, which was created by averaging 27 registered scans of a single subject [23]. Since 

the template only provides a common space for us to compare different brain images, other 

templates (e.g., MNI) can also be used in this case. In order to achieve high efficiency, we 

adopt a landmark-based affine registration method. Specifically, five pre-defined landmarks 

(i.e., anterior commissure (AC) and posterior commissure (PC) landmarks, and the other 

three representative landmarks in the mid-sagittal plane) are automatically detected by a pre-

trained regression forest-based landmark detection model [24]. A global similarity 
transformation matrix, which encodes 7 degrees of freedom (DOF), can be estimated to 

model the transformation of the landmarks from the moving image to the template [25]. 

Since each landmark has three coordinate values, five landmarks are enough to estimate the 

transformation matrix.

2) Landmark Discovery based on Training Data—Our target is to identify the 

regions with group differences in local structures between patients and HCs in the training 

1www.adni-info.org
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set. To this end, we intend to perform a voxel-wise group comparison between these two 

groups, following our previous work [22]. However, the linearly aligned images are not 

voxel-wisely comparable. In order to build the correspondences among voxels from different 

images, in the training stage, all training images are nonlinearly aligned to the Colin27 

template after linear alignment. In general, the warped images are very similar to each other 

so that the subject-specific structural information in different images may not be sufficiently 

significant. Therefore, we extract patch-based morphological features (i.e., the 3D histogram 

of oriented gradients (HOG) features [26]) from linearly aligned images to describe local 

brain structures. By using the deformation field from nonlinear image registration, we can 

build correspondences between voxels in the template and all linearly-aligned images [27], 

[28], [29]. Therefore, for each voxel in the template, we can extract two groups of HOG 

features from its corresponding voxels in all training patients and HCs, respectively. We can 

then perform a multivariate test (i.e., Hotelling’s T2 statistic [30]) on the two groups, 

through which a p-value can be calculated for each voxel in the template. Accordingly, a p-

value map can be obtained according to the template. Finally, the local minima in the p-

value map are identified as locations of discriminative landmarks in the template space. 

These landmarks, which are located in the template space, can be directly projected to all 

training images using their own deformation fields. It is worth noting that we use both 

baseline and longitudinal MR images in the training set for landmark detection in the 

training stage.

Figure 1 shows our identified landmarks via performing group comparison between AD 

subjects and HCs. As can be seen from this figure, the landmarks that have significant group 

difference (i.e., small p-values) are most located in the ventricles and hippocampus, and such 

phenomenon coincides with previous findings of the potential pathologic regions of AD 

subjects. In addition, we also illustrate the 3D distribution of our identified landmarks in Fig. 

2. We can see the possible locations and distribution of all landmarks in the whole brain. 

From this figure, we can also discover that the landmarks close to ventricles and 

hippocampus have significant group difference. In addition, we further show the identified 

landmarks in MCI vs. HC classification in Fig. S1 in the Suppmentary Materials.

3) Landmark Detection for Testing Data—We further train a regression-forest-based 

landmark detector [22] using all training images in the training stage, and apply this model 

to detect the respective landmarks for each testing image in the testing stage. In this way, we 

do not need to perform nonlinear registration for testing images. Recently, regression 

learning has been broadly used in detecting anatomical landmarks in 3D medical images 

[31], [32], [33], [34]. Particularly, regression forest is most popular due to its high efficiency, 

robustness, and accuracy. Specifically, the proposed regression forest in [22] is used to learn 

a non-linear mapping between a voxel’s local appearance and its 3D displacement to the 

target landmark. Therefore, by using the learned regression forest, each sampled voxel can 

predict a 3D displacement based on its local appearance, and then votes for a potential 

landmark position. The landmark position can be determined by gathering all votes and 

selecting the position with the most votes. Specifically, in our method, we jointly detect 

multiple landmarks using a multivariate regression forest [35]. In order to avoid overly 

strong correlations among all landmarks, the landmarks are clustered into different groups, 
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and then landmarks in each group are detected separately. Here, landmark clustering is 

performed based on a dissimilarity matrix, where each entry is the variance of pairwise 

landmark distances across subjects. Then, we adopt normalized cuts [36] to implement final 

clustering. In doing so, the correlations for each group is considered relatively stable, thus 

the regression forest model could be accurately constructed. In this way, both training 

images and testing images have the same landmarks, and particularly, the landmarks for each 

testing image can be obtained efficiently, thanks to the fast landmark detector. More details 

can be found in our previous work in [22].

III. Feature Extraction and Classification

Based on the identified landmarks, we propose a landmark-based framework for extracting 

features from longitudinal MR images. As shown in Fig. 3, two types of landmark-based 

features, i.e., spatial features and longitudinal features, are extracted to describe the spatial 

structural abnormalities and longitudinal landmark variations, respectively. In the following, 

we explain details about the feature extraction process.

A. Landmark-based Spatial Feature Extraction

Intuitively, in the cross-sectional study with only a single time point, the morphological 

features (e.g., 3D HOG, local energy pattern [37], and curvature features [38]) for all 

landmarks can be extracted and concatenated as strong features for classification. However, 

there are two challenges in the longitudinal study: 1) The numbers of scanning time points 

across subjects are often inconsistent due to missing time points during longitudinal study 

for some subjects, which makes it difficult to extract a unified feature representation for 

these subjects with different numbers of scans. 2) It is also difficult to identify the 

corresponding baseline images across different subjects, which means that a baseline 

scanning time point of one subject may not correspond to that of another subject. Thus, how 

to extract a unified spatial feature representation from subjects with inconsistent longitudinal 

scans is a very challenging task.

To address these two problems, we propose to use a bag-of-words strategy to extract 

statistical high-level spatial features. The bag-of-words strategy has demonstrated impressive 

performance on text, language, and image classification [39], [40], [41], [42]. Specifically, 

Figure 4 shows the procedure of our spatial feature extraction method, where each landmark 

is treated independently. As shown in Fig. 4(a), we first extract the 3D HOG feature vector 

for each landmark, as well as 3D HOG feature vectors for the supplementary voxels (i.e., the 

neighboring voxels within a small spherical patch of the landmark). After extracting features 

from all training images and aggregating them together, we have a set of 3D HOG feature 

vectors. Then, we perform K-means clustering [43] on this set of feature vectors, and build a 

dictionary (i.e., ) with its words (i.e., w1, w2, …, wM) being the clustering centers. In the 

Supplementary Materials, we further show the a part of visual words learned in AD vs. HC 

classification and MCI vs. HC classification in Fig. S4 and Fig. S5, respectively. Then, for 

each individual subject, we can first extract the 3D HOG feature vectors (denoted by a 

feature set ℱ) for each landmark and its supplementary voxels in all longitudinal scans. The 

statistical histogram representation is then calculated by counting the occurrence frequencies 
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of the clustering centers in these HOG features (i.e., ℱ), as shown in Fig. 4(b). 

Mathematically, the histogram representation (i.e., R) for one landmark can be defined as

(1)

where δ(·) is the Kronecker delta function defined as

(2)

In order to achieve the invariance to the number of longitudinal scans, the histogram 

representation is ℓ1 normalized. Finally, we extract the statistical features for all landmarks, 

regardless of differences in the number of scanning time points, as shown in Fig. 4(c). Here, 

the reasons for using supplementary voxels in the neighborhood of landmarks are two-fold: 

1) The HOG feature set can be expanded to get statistical features by using the bag-of-word 

strategy; 2) It is also helpful to relieve potential errors in localizing landmark positions.

B. Landmark-based Longitudinal Feature Extraction

To address the inconsistent number of longitudinal scans in different subjects, we generate a 

normalized 3D longitudinal displacement at the beginning of feature extraction. Specifically, 

we first define the longitudinal displacement between two scans for one specific landmark 

by

(3)

where Ltp is the landmark location of the p-th scan from all longitudinal scans and tp is the 

corresponding relative scanning time point with respect to the first scan. Then, the 

normalized 3D displacement d̄ (mean displacement per year) is calculated from all possible 

combinations between two scans at different scanning time points, as shown in Fig. 5. 

Mathematically, d̄ is defined as follows:

(4)

where n is the number of existing scans. As shown in Fig. 5(b), a normalized deformation 

field can be built by applying thin plate splines (TPS) interpolation [44] to the normalized 

3D longitudinal displacement d̄ of all landmarks. Based on this normalized deformation 

field, a Jacobian map is further calculated to capture longitudinal volume changes. Finally, 

as shown in Fig. 5(c), we can extract morphological features (i.e., 3D HOG) for landmarks 
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in the Jacobian map. Therefore, the longitudinal volume changes on these discriminative 

landmarks can be captured by these morphological features. It is worth noting that, instead 

of treating each landmark individually, the neighboring landmarks are jointly considered 

during the generation of the normalized deformation field. In this way, although the 

morphological features in the Jacobian map are extracted for each landmark individually, the 

contextual information about the neighboring landmarks is automatically embedded into the 

calculated features.

C. Classification with SVM Classifier

Recently, the support vector machine (SVM) classifier [21], [45], [46], [47], [48] has been 

proved to be effective in distinguishing patients (AD/MCI) from HCs [49], [50], [51], [52]. 

Therefore, in this study, using the concatenated spatial and longitudinal landmark-based 

features, we adopt the linear SVM as the classifier to identify AD/MCI patients from HCs, 

since the linear SVM is capable of tackling our high dimensional features and has good 

generalization ability (due to its max-margin classification characteristic). Specifically, we 

first normalize those landmark-based features using the conventional z-score normalization 

method [53]. Then, these normalized features are fed into a linear SVM classifier for 

AD/MCI diagnosis.

IV. Experiments

A. Parameter Setup

Using a 10-fold cross-validation strategy, we conduct experiments for two classification 

tasks, i.e., AD vs. HC and MCI vs. HC. The parameter values used in our approach are 

summarized as follows: For extraction of 3D HOG features, we use 9 orientations, 2 × 2 × 2 

cells, and a size of 8 × 8 × 8 for each cell. Therefore, the dimensionality of 3D HOG features 

is 72. In the bag-of-words strategy, the number of clustering centers is set to 50, and thus the 

dimensionality of spatial features for each landmark is 50. The radius of the spherical region 

for sampling supplementary voxels around each landmark is 5. For the SVM classifier, we 

fix the margin parameter C = 1. Due to the data-driven property of our method, the number 

of landmarks is determined by the training images. In our experiment, we search the local 

minima within a 7 × 7 × 7 cubic patch, and obtain roughly 1500 identified landmarks for 

each fold of cross-validation process.

B. Experimental Results

Five classification performance measures are used, namely 1) accuracy (ACC): the number 

of correctly classified samples divided by the total number of samples; 2) sensitivity (SEN): 

the number of correctly classified positive samples (patients) divided by the total number of 

positive samples; 3) specificity (SPE): the number of correctly classified negative samples 

(controls) divided by the total number of negative samples; 4) balanced accuracy (BAC): the 

mean value of sensitivity and specificity; and 5) area under receiver operating characteristic 

(ROC) curve (AUC).

For comparison, we also report the classification results of two baseline strategies based on 

our landmarks. The baseline spatial features are the HOG features that are directly extracted 
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according to the landmarks from the baseline (i.e., first scan) MR image only. The baseline 
longitudinal features refer to features obtained by directly using normalized displacements 

(i.e., d̄) of the landmarks. It is worth noting that these two baseline methods adopt a similar 

classification strategy as our method, i.e., using a linear SVM with C=1 as the classifier.

Table III reports the classification results, and Fig. 6 shows their corresponding ROC curves. 

These results demonstrate that, in both classification tasks, the proposed spatial features 

consistently outperform the baseline spatial features, and our longitudinal features generally 

achieve better performance than the baseline longitudinal features. Moreover, the 

combination of the proposed spatial and longitudinal features can further improve the 

classification performance.

C. Comparison with State-of-the-art Feature Representations

We further compare our method with two cross-sectional feature extraction methods based 

on GM, i.e., the ROI-based GM and the Voxel-based GM methods that share the same data 

with our proposed method. In ROI-based GM method, we extract GM concentrations based 

on 90 ROIs and perform classification using SVM classifier. Specifically, for partitioning a 

brain MR image into 90 ROIs, we use the Automated Anatomical Labeling (AAL) map. The 

AAL map is originally defined on the Montreal Neurological Institute (MNI) single subject 

brain MR image [54]. In our implementation, we use HAMMER [55] for nonlinear image 

alignment, and then map the GM tissue and ROIs to the template image. In Voxel-based GM 

method, we implement the classification method in [49], which successfully distinguishes 

AD cases from HCs using voxel-based GM features and the linear SVM classifier. To make 

a fair comparison, the same registration and segmentation methods, as used in the ROI-based 

GM method, are adopted in Voxel-based GM method. The classification results are shown in 

Fig. 7, from which we can see that our method consistently outperforms the other two GM-

based features in both classification tasks. The superior classification performance of our 

method is mainly coming from the combination of spatial and longitudinal features.

In addition, we compare the proposed method with a recent work [16] that adopted 

longitudinal data for AD classification. Specifically, Chincarini et al. [16] used hippocampal 

volume and hippocampal volume atrophy rate as measurements for representing longitudinal 

MRI data in the task of AD classification. There are 96 AD patients and 148 healthy control 

(HC) subjects used in [16]. The reported AUC for AD vs. HC on ADNI-1 is 93.00%, which 

is slightly lower than ours (94.01%). Moreover, they used multi-atlas based method to obtain 

hippocampal segmentations, which is very time-consuming. For example, it usually takes 

hours to obtain an accurate hippocampal segmentation. On the other hand, for our landmark-

based method (e.g., using four longitudinal scans), it requires less than 3 minutes to 

complete all feature extraction steps, including linear registration, landmark detection, and 

the spatial and the longitudinal feature extraction.

D. Parameter Analysis

In this part, we investigate the effects of several important parameters on the classification 

performance of the proposed method. In this group of experiments, we simply fix half of the 
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data as training data and the remaining as testing data, in order to save the computational 

time.

During the discovery of landmarks, we define the landmarks by identifying the local minima 

within a cubic patch in the p-value map. Since the size of the cubic patch directly affects the 

number of landmarks, we conduct an experiment using different size of the cubic patch. That 

is, a smaller cubic patch will lead to a relatively larger number of landmarks. The 

experimental results for the two classification tasks are shown in Fig. 8. As can be seen from 

Fig. 8, using too many landmarks (> 2000) will lead to very high dimensional features, with 

a limited improvement of classification performance. The possible reason could be that 

many redundant features are included when using too many landmarks. In general, the size 

of 7×7×7 with roughly 1500 landmarks provides satisfactory performance.

In the spatial feature extraction step, the number of words in the dictionary (i.e., clustering 

centers) affects the accuracy and dimensionality of representation. Figure 9 shows the 

classification results of using our high-level spatial features for classification. From the 

figure, we can observe that the classification accuracy gradually increases with the use of 

more words, such as in a range from 10 to 50 words. Generally, when the number of words 
is 50, a good compromise between classification accuracy and representation dimensionality 

is achieved.

In addition, we further report the landmark detection accuracy achieved by the method 

proposed in [22] adopted in this study, and analyze the influence of landmark detection 

accuracy on the performance of our proposed method. The experimental results can be found 

in Table S1 and Fig. S3 in the Supplementary Materials.

V. Discussion

A. Landmark-based Framework

The major advantages of using landmark-based framework are two-fold: 1) The identified 

discriminative landmarks can cover all possible abnormalities from the whole brain without 

using several pre-defined biomarkers; 2) The use of landmarks makes it possible to integrate 

a fast landmark detection model into the diagnosis framework, such that both time-

consuming nonlinear registration and tissue segmentation can be avoided. It is worth noting 

that, although each landmark is a weak descriptor that only covers limited information from 

a small local patch, a large number of landmarks (such as thousands of landmarks) can well 

describe the brain structure, thus leading to a satisfactory classification performance.

B. Spatial Features

In the bag-of-words representation, words in the dictionary can be regarded as representative 

local spatial structures. Thus, the calculation of their occurrence frequency can be regarded 

as labeling the spatial structure of each landmark with its similarities to all words. Moreover, 

such high-level statistics are robust to both numbers and orders of scanning time points, and 

can capture unified spatial features for identifying structural abnormalities, even for the 

cases with variable longitudinal scans. As can be seen from both Table III and Fig. 6, the 
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method of using bag-of-words based spatial features achieves better classification 

performance than that of using just baseline spatial features.

C. Longitudinal Features

Intuitively, one type of longitudinal information is the trajectory of each landmark over time. 

However, this ignores the coherence among all neighboring landmarks, if just simply using 

the mean longitudinal displacements (d̄) as features. In our method, we generate a 

normalized deformation field by interpolation, through which we can extract contextual 

information by jointly using the neighboring landmarks. Moreover, it is also well known that 

the Jacobian determinants can indicate the local volume changes. Therefore, the local 

morphological features from the Jacobian map can comprehensively capture longitudinal 

volume changes around landmarks. The experimental results show that using longitudinal 

features from Jacobian map achieves 2% to 4% accuracy improvement, as compared with 

the methods using baseline longitudinal features.

D. Limitations and Future Work

In the proposed method, each landmark has 72 spatial features and 50 longitudinal features. 

Given thousands of landmarks, the concatenation of all these features from all landmarks 

would lead to high feature dimension, compared with the number of training subjects. Also, 

there are always some redundant or noisy features that can adversely affect the learning 

performance of the subsequent classification model. Therefore, selecting the most 

informative landmarks and features is important and can provide a reasonable solution for 

further performance improvement, which will be included in our future work. On the other 

hand, the proposed feature extraction framework may be also applied to multi-modal data 

(e.g., MRI, PET and functional MRI), which could further improve the accuracy of the brain 

disease diagnosis. In addition, besides the landmarks identified by the data-driven algorithm, 

there could be missing or spurious landmarks that are not considered in this study. A 

reasonable solution is to perform manual correction by adding more discriminative 

landmarks or removing those unreliable or redundant landmarks based on expert knowledge.

VI. Conclusion

In this paper, we have presented a landmark-based feature extraction method using 

longitudinal structural MR images. Compared with previous approaches, our method avoids 

the time-consuming steps of both nonlinear registration and tissue segmentation in the 

application stage. In addition, our method can also extract unified feature representations for 

subjects with different numbers of longitudinal scans, which is typical in the longitudinal 

studies. These two merits make our method suitable for clinical practice, where efficient 

diagnosis with the capability of dealing with the problem of inconsistent scan numbers is 

desired. To validate the effectiveness of our method, we have evaluated it extensively with 

the ADNI database, and achieved superior classification performance in both AD vs. HC and 

MCI vs. HC classifications, compared with several other benchmark methods.
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Fig. 1. 
2D slice illustration of the identified landmarks in AD vs. HC classification with AD and 

HC subjects from ADNI-1. The color illustrates the corresponding p-value in group 

comparison.
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Fig. 2. 
3D Illustration of the identified landmarks in AD vs. HC classification with AD and HC 

subjects from ADNI-1. The color illustrates the corresponding p-value in group comparison.
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Fig. 3. 
Framework of our efficient AD/MCI diagnosis method, including landmark detection, 

spatial feature and longitudinal feature extraction, and SVM-based AD classification/

diagnosis.
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Fig. 4. 
Steps of extracting the high-level spatial features based on discriminative landmarks. (a) 

Generating the dictionary (words) by clustering the 3D HOG features from training images. 

(b) Counting the appearing frequency of words in a 3D HOG feature set from the 

longitudinal images of one subject. (c) Concatenating bag-of-words features from all 

landmarks of one subject.
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Fig. 5. 
Steps of extracting the contextual longitudinal features based on discriminative landmarks. 

(a) An example of calculating longitudinal displacements among longitudinal images. (b) 

Generating a Jacobian map from the normalized deformation field interpolated by the mean 

longitudinal displacements. (c) Concatenating 3D HOG features from all landmarks in the 

Jacobian map.
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Fig. 6. 
ROC curves achieved by five methods using different feature representations in the tasks of 

(a) AD vs. HC classification, and (b) MCI vs. HC classification.
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Fig. 7. 
Comparisons with two types of GM-based features. (a) ACC of AD vs. HC. (b) ACC of 

MCI vs. HC.
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Fig. 8. 
Effect of using different sizes of the cubic patch for selecting local minima. (a) 

Classification accuracy. (b) Number of landmarks.
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Fig. 9. 
Classification accuracy with respect to the number of words used in the dictionary for 

calculation of spatial features.
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TABLE I

Demographic information of selected subjects in the ADNI-1 database

Male/Female Age (years) (Mean±SD) Edu. (years) (Mean±SD)

AD 81/73 75.10 ± 7.50 14.82 ± 3.08

MCI 219/127 74.33 ± 9.91 15.53 ± 3.29

HC 111/96 75.83 ± 4.98 16.10 ± 2.86
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TABLE II

Number of scans for the selected subjects in the ADNI-1 database

3 scans 4 scans 5 scans 6 scans

AD 63 91 - -

MCI 57 97 170 22

HC 46 145 16 -
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