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  Abstract—Snoring (SN) is an early sign of upper airway 
dysfunction, and it is strongly associated with obstructive sleep 
apnea (OSA). SN detection is important to monitor SN 
objectively and to improve the diagnostic sensitivity of sleep-
disordered breathing (SDB). In this study, an automatic snore 
detection method using an Emfit (Electromechanical film 
transducer) signal is presented. Representative polysomnographs 
of normal breathing (NB) and SN periods from 30 subjects were 
selected. Individual SN events were identified using source 
separation applying nonnegative matrix factorization 
deconvolution (NMFD). The algorithm was evaluated using 
manual annotation of the polysomnographic recordings. 
According to our results, the sensitivity (Se), and the positive 
predictive value (PPV) of the developed method to reveal snoring 
from the Emfit signal were 83% and 86%, respectively. 
Compared to other approaches, our method adapts to the 
individual spectral snoring profile of the subject rather than 
matching a particular spectral profile, estimates the snoring 
intensity, and obtains the specific spectral profile of the snores in 
the epoch. Additionally, no training is necessary. This study 
suggests that it is possible to detect individual SN events with 
Emfit mattress, which can be used as a contactless alternative to 
more conventional methods such as piezo-snore sensors or 
microphones. 

Index Terms— sleep, sleep-disordered breathing (SDB), 
snoring (SN), Emfit (Electromechanical Film Transducer) 
mattress sensor, nonnegative matrix factorization (NMF), 
nonnegative matrix factorization deconvolution (NMFD). 
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I. INTRODUCTION

Snoring (SN) is one of the first signs of upper airway
dysfunction and can be linked closely to sleep-disordered 
breathing (SDB) such as obstructive sleep apnea (OSA) [1]-
[3]. Among adults, the prevalence of SN has been found to be 
10–60%, and it is more commonly found in men than women 
[4]-[6]. It is shown that snoring increases with age and the 
gender difference decreases as with aging [5], [7]. The 
vibrations and sound disturbances caused by SN have 
significant effects on the snorer’s health and influence their 
bed partners quality of sleep too [8]. Several studies have 
associated SN with sleepiness, hypertension, angina pectoris, 
and cerebral stroke [4], [5]. However, Gottlieb et al. [2], 
suggested that these health problems could be explained by its 
close relationship with OSA. Also, simple SN has been 
associated with sleepiness, reduced work performance, and 
traffic accidents [6], [9]-[11]. Nevertheless, health 
consequences of SN without OSA are less clear [12]; Marin et 
al. [13] concluded there are no cardiovascular outcomes 
associated with SN [13]. However, other studies present 
contradicting results [14]. On the other hand, the mechanical 
vibration induced by SN may cause neurogenic lesions in the 
upper airway tissues [15], carotid atherosclerosis [16], 
inflammatory responses in a intracellular level [17], and 
vascular smooth muscle cell injuries [18]. Furthermore, the 
loud sound and vibrations might cause arousals to the snorer 
as well as to the bed partner [8], impeding an uninterrupted 
and restorative sleep [19]. 

The Gold standard for SDB diagnostics in the clinical 
practice is done using polysomnography (PSG). In the clinical 
practice, the American Association of Sleep Medicine 
(AASM) recommends three methods to detect SN [20]: a 
piezoelectric sensor placed on the neck, an acoustic sensor 
such as microphone on the trachea, chest or near the patient’s 
bed, and nasal prongs connected to the nasal pressure sensor. 
Arnardottir et al. [21] advocated the use of audio-based 
techniques over others and encouraged the development of a 
standardized method to measure SN. However, these methods 
may have some drawbacks. They are annoying and may 
disturb patient's sleep. For instance, in the case of oral 
breathing or under the presence of moisture in the nasal 
prongs, the SN detection is ruined. Furthermore, the 
piezoelectric sensor may entirely or partially detach during the 
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night due to movement or sweat artifacts, leaving this sensor 
impractical for SN detection. Also, even when employing 
external microphones offer a high-quality measure of the 
characteristics of SN, its setting is complex and dependent on 
the distance from the patient. 

The Electromechanical Film Transducer (Emfit) is a 
permanently charged polypropylene ferro-electret film 
sensitive to mechanical stress. The polymer layers are 
separated by air gaps that upon an orthogonal mechanical 
force, the charge differential between these gaps and the 
permanently charged internal layers, produces a change of 
potential. As a result, the Emfit signals is a consequence of 
pressure changes inducing potential differences, which are 
measured with a differential AC amplifier [22], [23]. The high 
sensitivity of the Emfit sensor allows place it unobtrusively 
under the mattress. 

Unobtrusive sensors, such as Emfit, promise to ease and 
complement PSG diagnostics. Mattress type sensors like 
Emfit, the Polyvinylidene fluoride film (PVDF), the static-
charge-sensitive bed (SCSB), the sheet-type SD-101, and the 
balancing tube air-mattress (AMBT), have been used for 
multiple purposes, such as (1) breathing rate (BR) and heart 
rate (HR) monitoring [24]-[29], (2) SDB diagnosis [30]-[40], 
(3) epilepsy monitoring, (4) periodic leg movements and
restless legs syndrome assessment [41]-[43]. In addition to
solve the aforementioned issues in the normal clinical settings,
mattress-like sensors provide additional physiological
information; namely, HR and breathing. Moreover, Emfit
reveals the increased effort present in periods with prolonged
partial obstruction [30].

Despite the advantages of mattress-like sensors, few studies 
exist about SN detection using them. Hwang et al. [44] 
proposed an automatic SN detection algorithm using a PVDF-
type mattress sensor based on two spectral features of SN 
events (power ratio and peak frequency) and machine learning 
techniques. Also, Shin et al. presented simple filtering and 
thresholding techniques to detect SN on an AMBT [40]. These 
methods rely on selected spectral features and need training to 
function. Compared to other mattresses, the Emfit mattress is 
more sensitive than PVDF mattress in the orthogonal 
direction, and less than 1% of the signal is affected by lateral 
forces [23]. 

In our previous study, we characterized the spectral 
differences of thirty-seconds epochs length from NB and SN 
periods in the Emfit signal using the power spectrum [32]. We 
wanted to continue to develop unsupervised methods to detect 
individual snores based on source separation techniques using 
spectrogram factorization. Mono-source separation techniques 
have been traditionally employed in music [45], [46] and more 

recently, to detect HR and breathing using a digital 
stethoscope [47]. The objective of this study is to investigate 
the use of Emfit mattress for snoring assessment by using 
advanced signal processing methods. Additionally, we want to 
find out the spectral profiles of snoring in the Emfit sensor 
signal using source separation techniques. 

II. DATA ACQUISITION AND STUDY DESIGN

A. Subjects
Thirty-three patients under suspicion of SDB took part in the 
study, including one-night full PSG. Three recordings had to 
be omitted from the study due to high-level noise, or electrical 
artifacts in the Emfit signal. The final data set consisted of 30 
PSGs. The age of the subjects (24 men, 6 women) ranged from 
25 to 60 years. Anthropometric data are shown in Table 1. All 
patients had signed a written informed consent before 
recordings were performed in the sleep laboratory of Tampere 
University Hospital, Tampere, Finland. This study was 
approved by the Ethical Committee of the Pirkanmaa Hospital 
District.  

B. Recording
PSGs were performed using a standard monitoring montage

Fig. 1: Thirty-seconds epoch with three snoring (SN) events for the (a) Emfit 
(mV); (b) band-pass filtered Emfit (6–100 Hz, mV); (c) nasal pressure (μbar); 
(d) tracheal sound signals (V); and (e) envelope trace of piezoelectric sensor 
(units). Scored SN events are represented as red rectangles.

TABLE I 
DEMOGRAPHIC AND CLINICAL DATA FROM THE SUBJECTS UNDER STUDY 

 (24 MEN, 6 FEMALE) 

Parameter Units Min–
max Median IQR 

Age [yrs] 25–60 44.5 16.5 
Body mass index [Kg·m-2] 22.2–54 29 8.4 
Snore time [min] 0–286 30 84 
Apnea-hypoapnea index - 0–105.7 15 29.1 

TABLE II 
SUMMARY OF ANNOTATED EVENTS PER PATIENT IN THE STUDY 

Total 
amount Mean ± SD Min–max Median IQR 

SN events 3521 117.4 ± 54.4  36 – 245  115 96 
Artifacts 16 – 0 – 2 0 1 

SN events, snoring events; SD, standard deviation; min, minimum; max, 
maximum; IQR, interquartile range. 
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including EEG (F3-A2, F4-A1, C3-A2, C4-A1, O1-A2, O2-
A1); electromyographs of submental and tibialis muscles, and 
the two channels of the electrooculogram; an 
electrocardiogram; pulse oxygen saturation (SpO2); and body 
position measurements. A nasal air pressure transducer was 
employed to measure the airflow. Respiratory movements 
were assessed with thoracic and abdominal inductive belts. SN 
was measured with a piezoelectric sensor situated on the neck 
and a tracheal microphone positioned above the suprasternal 
notch. The Emfit mattress sensor of dimensions 32 cm × 62 
cm × 0.4 cm was placed under the thoracic area of the sleeping 
patient under the mattress. Data were recorded with an Embla 
N7000 and Somnologica Studio 3 software setup (Embla®, 
USA). The sampling rate of 2 Hz was used for SpO2, 10 Hz 
for respiratory movements, 500 Hz for the electrocardiogram 
(ECG), 100 Hz for the piezoelectric snore sensor, 11 kHz for 
the tracheal microphone, and 200 Hz for the Emfit sensors, 
and all other signals. 

C. Data selection and snore episode reference labeling
Representative periods of SN and NB of a maximum duration 
of 10 min per patient were selected by an experienced 
neurophysiologist. The scoring of the SN periods was based 
on three different channels. The airflow channel inferred from 
the nasal air pressure signal was used to preselect SN periods 
based on the high-frequency SN components on top of the 
airflow waveform. During these preselected periods SN had to 
appear in the piezo-sensor signal placed on the neck (envelope 
technique, threshold 10 uV). Following, SN was confirmed by 
the signal of the tracheal microphone (Fig.1). Finally, SN 
sounds were listened from the video file. NB periods did not 
contain SN, apneas or hypopneas in any of the previously 
above signal characteristics. In addition, each patient SN 
intensity was evaluated and annotated by an independent 
expert scorer as low (L), medium (M), and high (H) on the 10 
min SN periods based on the video file. To ease the 

processing, NB and SN periods were divided into thirty-
seconds epochs. The total number of epochs were 1119, of 
which 473 and 546 were NB and SN epochs, respectively. 
Visual inspection of each epoch was performed to annotate the 
artefacts in the Emfit signal; detected events concurring with 
the annotated artefacts were discarded. The percentage of 
epochs of male subjects for NB epochs and SN epochs were 
78.6, and 79.3%, respectively. 

In a second scoring step, snore events were annotated by an 
independent expert scorer from each selected period. The 
same protocol used in the period selection step was followed. 
Additionally, if SN was present during either inspiratory and 
or expiratory phase of the breathing cycle, the event was 
annotated as a single SN event. The total annotated SN events 
were 3521 (mean ± standard deviation; 117.4 ± 54.4). Table 2 
reports the summary of the scored snore events. Fig. 1 depicts 
a thirty-seconds example of an epoch with two SN events.  

III. METHODS

The architecture of the proposed algorithm is illustrated in Fig. 
2. It comprises of four stages: preprocessing (Fig. 2-1), quality
assessment (Fig. 2-2), SN detection (Fig. 2-3), and evaluation
(Fig. 2-4).

A. Preprocessing
The Emfit signal (𝑟𝑟[𝑛𝑛]) was high-pass filtered using a finite 
impulse response (FIR) filter designed with a Hamming 
window, cut-off frequency at 6 Hz, and 1 Hz transition band. 
This filter removes the high power heart components under 6 
Hz, the baseline, and the breathing signal. 

Acquired data in clinical environments are often noisy. We 
modeled our signal 𝑢𝑢[𝑛𝑛], as a sum of the desired signal 𝑑𝑑[𝑛𝑛] 
and noise 𝜂𝜂[𝑛𝑛]: additive white Gaussian noise (AWGN) 
(𝜂𝜂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) and power line interference (𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃), and other noise 

Fig. 2: Block diagram of the snoring detection process: (1) pre-processing and signal conditioning, (2) quality assessment, (3) 
snoring detection, and (4) evaluation. HP, high pass; LP, low pass; MAD, mean absolute deviation; PSNR, peak signal to noise 
ratio; STFT, short-time Fourier transform; TP, true positives; FP, false positives; PPV, positive predictive value; NP, number of 
peaks; MPD, minimum peak distance. 
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(𝜂𝜂𝑜𝑜[𝑛𝑛]). 

𝑟𝑟[𝑛𝑛] = 𝑑𝑑[𝑛𝑛] + 𝜂𝜂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑛𝑛] + 𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃[𝑛𝑛]  + 𝜂𝜂𝑜𝑜[𝑛𝑛] (1) 

Before the acquisition, the signal is subject to frequency-
dependent attenuation when transmitted through the body, bed 
sheets, sleeping mattress, and the losses in the material 
transitions. To partially compensate the attenuation and 
enhance the frequencies where SN occurs, the signal was 
filtered with a pre-emphasis filter. This filter emphasizes high-
frequency components while attenuating lower frequency 
components. The employed filter is a first order FIR filter 
defined in (2), where the constant a was set to 0.97. The Emfit 
signal was filtered with a pre-emphasis filter after PLI noise 
removal. 

𝑢𝑢[𝑛𝑛] = 𝑟̂𝑟[𝑛𝑛] − 𝑎𝑎 · 𝑟̂𝑟[𝑛𝑛 − 1], (2) 

where 𝑟̂𝑟[𝑛𝑛] represents the band-passed acquired data. 

The PLI was removed using an adaptive algorithm centered at 
50 Hz [48]. To remove the Gaussian noise, we used a wavelet 
denoising technique using a 15-level 13th order Symmlets 
using soft-thresholding, Heursure method for threshold 
selection, with unscaled noise modeling and threshold 
rescaling using the first level coefficients. This approach has 
been used to denoise phonocardiogram [49]. 

B. Signal quality estimation: signal strength and noise 
To study the dependence of our algorithm with the signal 
strength and noise we estimated two measures. To measure the 
strength of the signal, the ratio between a denoised 
ballistocardiogram (BCG) and the raw Emfit signal (3) was 
estimated from each epoch for each patient. The noise was 
quantitatively evaluated using the peak signal-to-noise ratio 
(PSNR) (4). The BCG signal (𝑦𝑦𝐵𝐵𝐵𝐵𝐵𝐵), was extracted using a 
high-pass Butterworth filter with cut-off frequency of 1 Hz to 
remove the low-frequency respiratory components [25], and a 
low-pass filter with cut-off frequency of 5 Hz. 

The denoised BCG signal was estimated using a Wavelet 
denoising technique using a 5-level fourth order Symmlets, 
using soft-thresholding, Heursure method for threshold 
selection; this denoising technique has been used successfully 
in ECG denoising [50]. 

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑𝑑𝑑) = 10 · 𝑙𝑙𝑙𝑙𝑙𝑙
𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵2

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 , (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 · 𝑙𝑙𝑙𝑙𝑙𝑙
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀

 (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑟𝑟[𝑛𝑛] − 𝑑𝑑[𝑛𝑛])2 , (5) 

where 𝜎𝜎2 is the variance estimated using the mean absolute 
deviation (MAD) as a robust estimator of the variance [51], 
[52], MSE is the mean squared error, and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum value of u[ n]. 

C. Source separation using non-negative matrix 
factorization deconvolution (NMFD) 
The goal of applying non-negative factorization (NMF) in an 
Emfit spectrogram is to bring out multiple sources (or signals 
of interest e.g. SN) from a single-channel mixture of signals. 
We considered the Emfit signal as an additive combination of 
several components: the pulse wave caused by the beating 
heart or BCG, SN, and noise. 

𝑟𝑟[𝑛𝑛] = �𝑠𝑠𝑖𝑖[𝑛𝑛]
𝑖𝑖

+ 𝜂𝜂[𝑛𝑛], (6) 

where i corresponds to the i-th source, 𝑠𝑠𝑖𝑖[𝑛𝑛] the source signal, 
and 𝜂𝜂[𝑛𝑛] represents the AWGN and PLI noise, and other 
unwanted noise. 

The Emfit signal can then be represented using a time-
frequency representation using the spectrogram or short-time 
Fourier transform (STFT) (7). The spectrogram provides a 
representation of the signal power distribution over a set of 
frequencies at specific time windows.  

𝑌𝑌(𝑛𝑛,𝜔𝜔) = � 𝑑𝑑[𝑚𝑚]𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻[𝑛𝑛 − 𝑚𝑚]𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ,
∞

𝑚𝑚=−∞

 (7) 

where 𝑤𝑤𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is the Hamming window. The magnitude 
spectrogram (𝑍𝑍 = |𝑌𝑌(𝑛𝑛,𝜔𝜔)|) is estimated calculating the 
absolute value of the STFT. From now, we refer to Z as a 
matrix with m rows and n columns. The magnitude 
spectrogram was normalized by the median energy contained 
within the 6–10 Hz band of the spectrogram (8), using this 
band as reference intensity for all patients because it contains 
heart-originated activity present in all subjects. Finally, the Z 
is log-transformed: 

𝑍𝑍𝑛𝑛 =  𝑙𝑙𝑙𝑙𝑙𝑙 �𝑍𝑍(𝑚𝑚,𝑛𝑛)/ � 𝑍𝑍(𝑚𝑚,𝑛𝑛)
𝑚𝑚~10𝐻𝐻𝐻𝐻

𝑚𝑚~6𝐻𝐻𝐻𝐻

� (8) 

The source separation is accomplished factorizing the 
magnitude spectrogram in two matrices (9), in such a way that 
the result groups the components into the sources.  

𝑍𝑍 = 𝐴𝐴′ ∙ 𝑋𝑋′ (9) 

One of the applications of matrix factorization is blind source 
separation (BSS) where the observations are considered as a 
weighted sum of n underlying sources. NMF has been used in 
single-channel source separation of audio source [53], drum 
transcriptions [46], and recovery of biological signals [47]. 
Inspired by previous work by Paatero et al. [54], NMF was 
first proposed as an algorithm to learn parts of faces and text 
semantics [55], [56]. The factorization assumes a 
compositional model of audio sources, i.e. an additive 
combination of components that do not result in subtraction or 
diminishment of any of the parts [57]. 

NMF is applied to the magnitude spectrogram of the signal 
𝑍𝑍 ∈ ℛ+

𝐹𝐹×𝑇𝑇, where ℛ+ represents the set of non-negative real 
numbers, T the number of time frames, and F is the resolution 
of the discrete Fourier transform (DFT). The goal of NMF is 
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to approximate Z as a product of two non-negative matrices 
(9), by minimizing the error of reconstruction. 

𝑍𝑍 ≈ 𝐴𝐴 ∙ 𝑋𝑋 (10) 

Each spectral vector 𝑦𝑦𝑡𝑡  is thus a linear combination of all the 
rows or atoms 𝑎𝑎𝑠𝑠 (in the s-th atom in time n), and the time 
varying activation 𝑥𝑥𝑠𝑠[𝑛𝑛]: 𝑦𝑦𝑡𝑡 = ∑ 𝑎𝑎𝑠𝑠𝑥𝑥𝑠𝑠[𝑛𝑛], 𝑠𝑠 = 1. . . 𝑆𝑆𝑆𝑆

𝑠𝑠=1 . The 
number of atoms S is usually chosen so that (𝐹𝐹 × 𝑇𝑇) < 𝐹𝐹𝐹𝐹, so 
the product can be regarded as a compressed form of Y. There 
are several proposed NMF algorithms. The classic NMF 
factorization algorithm minimizes the Kullback-Leibler (KL) 
divergence [55]: 

A∗,𝑋𝑋∗ = argmax
𝐴𝐴,𝑋𝑋

𝐷𝐷(𝑍𝑍 ∥ 𝐴𝐴𝐴𝐴),𝐴𝐴 ≽ 0,𝑋𝑋 ≽ 0, (11) 

where A∗ and 𝑋𝑋∗ are the optimal values of A and X from the 
minimization problem. However, this factorization does not 
take into account the relative positions of each of the atoms 
and consequently ignores temporal information. An extended 
version of the NMF called NMFD initially proposed by 
Smaragdis (2004) takes into account temporal information in 
the factorization process [58]. The expression xx is then 
transformed into: 

𝑍𝑍 ≈ 𝐴𝐴⨀𝑋𝑋, (12) 

where ⨀ is the circular convolution. The target is to minimize 
a new cost function: 

D = �𝑍𝑍 ⊗
ln Z
Λ

− 𝑍𝑍 + Λ�
𝐹𝐹

, (13) 

with Λ = 𝐴𝐴⨀𝑋𝑋, ‖∙‖𝐹𝐹 is the Frobenius norm, and ⊗ is the 
Hadamard product (an element-wise multiplication). A 
detailed description and the multiplicative updates for 
estimating A, and X is described by Smaragdis et al. [58]. 

The NMFD is applied to the Emfit signal and restricted to 
decompose in two signals (number of atoms or S). 
Traditionally, the matrix decomposition is initialized creating 
a random A matrix (𝐴𝐴𝑠𝑠

𝐹𝐹×𝐶𝐶𝑖𝑖  =  𝐴𝐴𝐹𝐹×(𝐶𝐶1+𝐶𝐶2)), where 𝐶𝐶𝑖𝑖 represents 
columns 𝑖𝑖 = 1. . . 𝑆𝑆. In this study, we initialized each atom of 
matrix A to those frequencies that matches our source signal. 
Previous work [32], found a significant power increase in the 
bands [16-40] and [55-100] Hz, thus we initialized the 𝐶𝐶2 

components to be maximum at frequencies at 30–100 Hz, 
and 𝐶𝐶1 components to be maximum at 6–30 Hz:  

𝐴𝐴𝑠𝑠
𝐹𝐹×𝐶𝐶𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 = � 𝑎𝑎𝑖𝑖1 = 𝛼𝛼1 ∀𝑖𝑖, 𝑓𝑓𝑖𝑖 ∈ [6 − 30]𝐻𝐻𝐻𝐻, 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

  𝑎𝑎𝑖𝑖2 = 𝛼𝛼2 ∀𝑖𝑖, 𝑓𝑓𝑖𝑖 ∈ [30 − 100]𝐻𝐻𝐻𝐻, 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14) 

where 𝛼𝛼𝑙𝑙 for 𝑙𝑙 = [1,2], and 𝐹𝐹 being the frequency resolution 
of the STFT. These step functions were convolved with a 
Gaussian kernel to smooth the transition between zero values 
and alpha values. The NMFD algorithm iteratively adjusts the 
columns (𝑎𝑎1–2 = 𝐶𝐶1–2) to minimize the cost function. The 
NMFD implementation has the added constraint consisting on 
maintaining the initial zero values of matrix 𝐴𝐴 during the 
multiplicative updates. 

The snoring events (𝐸𝐸) are the result of finding the peaks 𝑃𝑃�𝑘𝑘 in 
the time varying activation vector 𝑥𝑥2[𝑛𝑛], where 𝑠𝑠 = 2 
corresponds to the atom associated with snoring (𝑦𝑦𝑡𝑡 =
𝑎𝑎2𝑥𝑥2[𝑛𝑛]). 

D. Snoring event detection 
The activation matrix component corresponding to the snoring 
source is then 𝑥𝑥2[𝑛𝑛]. To remove spurious peaks from 𝑥𝑥2[𝑛𝑛], a 
Savitzky-Golay fourth-order FIR filter [59] of one second 
length was applied. The one second time-length, corresponds 
to the “typical” minimum time of a SN event. This smoothing 
technique is based on least-squares fitting of polynomials to 
the data segments, preserving the shape of the activation 
vector 𝑥𝑥2[𝑛𝑛]. 

Under the presence of snores, the activation vector 𝑥𝑥2[𝑛𝑛] has 
two different distributions. It was observed that on the absence 
of snores, the spectral profile 𝑎𝑎2[𝑛𝑛], is small, and 
approximately flat. The activation vector exhibited an 
approximately Gamma distribution. Thus, we made the 
assumption that the activation vector 𝑥𝑥2[𝑛𝑛], follows a slightly 
Gamma distribution. Conversely, under the presence of 
snoring events, the distribution becomes more skewed, 
following a generalized extreme value distribution (GEV) or 
when the snores loud and long, it becomes a Gaussian mixture 
of two components. We assumed these models to assess the 
presence of events within the epoch. The model selection was 
based on the second-order Akaike Information Criterion (AIC) 
[60], [61]. If the criterion resolves on a distribution associated 
with events, the algorithm continues to the next step. 
Otherwise, the algorithm considered the epoch as NB and 
proceeds to proceeds to the next epoch. 
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Once the presence of events in the activation vector is 
confirmed, the algorithm proceeds to the snore event 
detection. To detect a snore event (𝐸𝐸𝑘𝑘), a threshold (𝜆𝜆𝑡𝑡ℎ) on 
the activation vector must be estimated, manually or 
automatically. One of the main issues in event classification is 
to find a suitable threshold. Machine learning and statistical 
approaches derive a threshold that is dependent on the training 
data. These are inherently variant across subjects, although 
data is normalized to compensate. In this work, we used an 
adaptive threshold based on the current epoch. Histogram 
based methods are dependent on the distribution of the 
activation vector on each epoch. These algorithms have been 
heavily studied for image segmentation and binarization. We 
implemented a modified thresholding technique based on the 
shape of the histogram's derivative [62]. However, instead of 
smoothing the signal’s histogram of each frame, as is done by 
Taskanen et al. (2015), we fitted a kernel distribution to the 
activation's matrix histogram (𝑥𝑥2[𝑛𝑛]). Subsequently, we 

estimated the first derivative to estimate the global minimum, 
and then we estimated the next local peak towards infinity. 
This approach yields more robust results and increases 
sensitivity considerably. Also, if the next local peak is not 
found, the epoch is discarded for further processing. 

Finally, peaks were detected using the built-in MATLAB® 
function findpeaks.m. This built-in algorithm has three inputs, 
the number of peaks (NP), the minmun peak distance (MPD), 
and maximun peak height (MPH).  The input parameters NP 
and MPD we estimated from the breathing rate derived from 
the raw Emfit signal. To estimate the breathing rate, we 
extracted the breathing waveform from the raw Emfit signal 
by filtering u[n] with a 3rd-orther Butterworth low pass filter 
with a cut-off frequency of 0.5 Hz. Each epoch of the resulting 
breathing waveform (𝑏𝑏[𝑛𝑛]) was interpolated using weighted 
linear least squares and a 2nd degree polynomial model over 
(𝑏𝑏[𝑛𝑛]). This interpolation method has the advantage to fit the 

 

Fig. 3: Spectrogram factorization normal breathing epoch (NB), and (b) of a snoring epoch (SN).  Activation matrices (𝑥𝑥𝑠𝑠[𝑛𝑛], 𝑠𝑠 = [1,2]) 
of the first and second components, respectively. Atoms/spectral profiles (𝑎𝑎𝑠𝑠[𝑛𝑛], 𝑠𝑠 = [1,2]) of the activation matrices. In black, 𝑥𝑥2[𝑛𝑛]; in 
red, the output of the Savitzky-Golay FIR filter. The black dots represent the peaks within the epoch 𝑃𝑃�𝑘𝑘. 
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breath to a quasi-sinusoidal pattern while preserving breathing 
cycles. The number of peaks and valleys to detect were 
calculated by estimating breathing period with autocorrelation 
analysis. A 20 percent error margin for both NP and MPD was 
assumed to account for the intra-epoch breathing variability. 
The maximum peak height (MPH) corresponds to the 
estimated threshold, 𝜆𝜆𝑡𝑡ℎ. For each epoch we obtain a 
collection of peaks: 𝑃𝑃�𝑘𝑘 = [𝐿𝐿�𝑘𝑘 , 𝐼𝐼𝑘𝑘] at locations 𝐿𝐿�𝑘𝑘, and their 
associated intensity value 𝐼𝐼𝑘𝑘 , 𝑘𝑘 = 1. . . ,𝐾𝐾, where K is the 
number of detected peaks. 

The NMFD algorithm is applied to a fixed-length window of 
thirty-seconds with an overlap of 5 s, and hence, several 
unwanted peaks are detected. We ignored the peaks when only 
one peak was found in the epoch. In our implementation, we 
merged those peaks resulting from the same snoring event 
resulting in 𝑃𝑃𝑘𝑘 = [𝐿𝐿𝑘𝑘 , 𝐼𝐼𝑘𝑘]. Finally, the raw peak locations were 
refined such that each snoring event corresponded to the 
location taking the beginning of the recording as reference. 
The new re-referenced peaks 𝐸𝐸𝑘𝑘 = [𝐿𝐿𝑘𝑘′ , 𝐼𝐼𝑘𝑘], where E 
symbolizes k-event at location 𝐿𝐿𝑘𝑘′  with instensity 𝐼𝐼𝑘𝑘 , are later 
evaluated with the annotated snore events.  

E. Data and Statistical Analyses
Signal processing and statistical analyses were performed 
using MATLAB (R-2013b, The MathWorks, Inc., Natick, 
MA, USA). The NMFD algorithm was modified from an 
NMFLib by Graham Grindlay [63]. The performance of the 
algorithm was evaluated using the total number of true 
positives (TP, number of detected snores that correspond to 
annotated snores), the total false positives (FP, the number of 
detected snoring events that were not annotated), total false 
negatives (FN, number of annotated events that were not 
detected by the algorithm), the positive predictive value (PPV, 
proportion of SN epochs which are true positives) (15), the 
sensitivity (Sen, the TP rate of the algorithm as the ratio of TP 
to predict positives) (16), and the F-score (17). The resulting 

F-scores are measures of the overall concordance between the
results of the algorithm and the visual scores.

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(15) 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(16) 

𝐹𝐹 = 2 ·
𝑃𝑃𝑃𝑃𝑃𝑃 ∙  𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆

(17) 

Fig. 5: Spectrogram factorization of a snoring epoch with another snoring profile. Activation matrices (𝑥𝑥𝑠𝑠[𝑛𝑛], 𝑠𝑠 = [1,2]) of the first 
(HR), second (SN) components, respectively. Atoms/spectral profiles (𝑎𝑎𝑠𝑠[𝑛𝑛], 𝑠𝑠 = [1,2]) of the activation matrices. In black, 𝑥𝑥2[𝑛𝑛]; in 
red, the output of the Savitzky-Golay FIR filter. The black dots represent the peaks within the epoch 𝑃𝑃�𝑘𝑘.

Fig. 4: Detected SN events (a) Emfit spectrogram; (b) band-pass filtered 
Emfit (6–100 Hz, mV); (c) nasal pressure (μbar); (d) tracheal sound 
signals (V); and (e) envelope trace of piezoelectric sensor (units). Scored 
SN events are represented as red rectangles and detected SN events (𝐸𝐸𝑘𝑘) 
in gray rectangles. 
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IV. RESULTS 

A Hamming window of length 64 samples and 75% overlap 
and a 512-point DFT was employed to estimate the 
spectrogram. To reduce the amount of computing time, the 
NMFD algorithm was allowed to run for maximally 500 
iterations in all factorizations or until convergence as defined 
by the relative change in the cost function; also our tests found 
reasonable convergence at this point. The wavelet denoising 
technique was applied to epochs with signal strength lower 
than -9dB, this level was estimated experimentally.  

A. Source separation of the Emfit signal
The STFT was computed, normalized, and log-transformed; 
samples can be seen in Fig. 3 and 4 in the top rows. The 
resulting spectrogram was factorized using the NMFD, setting 
the number of components to 𝑆𝑆 = 2. One corresponding to SN 
and the other component for pulse wave signal from the heart. 
A representative NB epoch (Fig. 3a) and two SN epochs (Figs. 
3b and Fig. 4) were selected to visualize the result of NMFD. 
Subplots on the left side represent the time activations 𝑥𝑥𝑠𝑠[𝑛𝑛],
𝑠𝑠 = [1,2], and subplots on the right side represent the atoms 
(𝑎𝑎𝑠𝑠[𝑛𝑛], 𝑠𝑠 = [1,2]). Due to our initialization procedure of the 
NMFD algorithm, snoring always corresponds to the second 
component, 𝑥𝑥2[𝑛𝑛]. This spectral profile is in line with our 
previous study [32] where a similar power spectrum density 
(PSD) was found when comparing snoring and normal 

breathing PSDs. It is also consistent why power ratios 
perform well in certain SN profiles [44]. However, not all 
snores had the same spectral profile; Fig. 3b and Fig. 4 show 
the capability of the algorithm to adapt to the different spectral 
snore profiles (see components 𝑎𝑎2[𝑛𝑛] in Fig. 3 and 4). 

B. SN event detection
Fig. 3–4 display the activations for the SN component are
shown (𝑥𝑥2[𝑛𝑛]) . After the threshold (𝜆𝜆𝑡𝑡ℎ) was estimated for
each epoch, the detected peaks (𝑃𝑃�𝑘𝑘), were merged from the
different overlapping windows (𝑃𝑃𝑘𝑘). The merged peaks are
considered the center of the snore events (𝐸𝐸𝑘𝑘) with a time
duration of one second. A sample of detected peaks (𝑃𝑃�𝑘𝑘) is
shown in Fig. 3b, and Fig 4.

C. Evaluation results
Fig. 5 shows the annotated events together with the detected 
events. Table 3 summarizes the individual results for the 
proposed method. SN intensities were summarized using 
minimum, maximum, median, and interquartile range. Median 
RBCG and PSNR values from SN epochs, apnea-hypoapnea 
index (AHI), and body mass index (BMI) are shown in the 
table. Lowest performances corresponded with lowest signal 
intensity and noise (RBCG). Especially noticeable was patient 
with Id. 18. A closer look at this signal showed high noise 
intensity and a weak signal. Thus, snores did not stand out. 

TABLE III 

CLASSIFICATION RESULTS OF SNORING EVENT DETECTION FROM EMFIT MATTRESS USING SOURCE SEPARATION TECHNIQUES 

Id Sen 
(%) 

PPV (%) FP TP D A F I 
min-max 

I 
med, IQR 

RBCG 
(dB) 

PSNR 
(dB) 

AHI BMI MA 

1   96.75   96.75   4   119   123   123   97  0- 3   1,  0  -13.7  22.3982   32.3 22.2 H 
2   92.21   80.68   17   71   88   77   86  1- 3   2,  1  -12.5  20.2909   3 29 M 
3   94.30  91.98   13   149   162   158   93  1- 7   7,  1  -18.0  18.3214   64.7 38.64 H 
4   90.23   98.74    2   157   159   174   94  1- 5   4,  1  -19.9  15.3432   34.3 31.44 H 
5   65.30   85.12   25   143   168   219   74  0- 2   2,  1  -15.2  19.5693   30.4 41.97 H 
6   100.00   94.83    6   110   116   110   97  0- 6   4,  1  -16.3  17.9311   2.2 23.67 H 
7   53.33   93.02    3   40   43   75   68  0- 1   1,  0  -13.7  19.2415   105.7 34.19 L 
8   52.89   75.29   42   128   170   242   62  1- 9   7,  2  -16.5  16.5514   11.3 30.2 H 
9   100.00   99.09    1   109   110   109   100  0- 7   4,  1  -17.4  20.4427   27.8 33.08 H 
10  71.43   48.39   32   30   62   42   58  0-10   3,  1  -11.7  31.7468   20 22.64 L 
11   60.00   81.82    4   18   22   30   69  0- 2   1,  0  -9.2  23.0210   38 — H 
12   100.00   100.00    0   119   119   119   100  0- 4   3,  1  -16.7  18.9062   1.7 23.74 H 
13   94.12   94.74   8   144   152   153   94  0- 2   2,  0  -17.5  15.0348   9.1 28.09 L 
14   84.21   41.56   45   32   77   38   56  0-25  12, 16  -17.7  18.7473   74.7 32.77 H 
15   86.27   78.57   24   88   112   102   82  0- 4   2,  2  -20.9  18.4522   88 35.58 M 
16   97.53   98.14    3   158   161   162   98  1- 6   5,  1  -14.9  18.0312   17 36.96 L 
17   84.42   87.25   19   130   149   154   86  1- 9   7,  3  -16.0  19.4431   42.1 31.22 M 
18   13.79   100.00    0   20   20   145   24  0- 1   1,  0  -20.6  14.4857   10.6 — L 
19   96.36   85.48    9   53   62   55   91  1- 2   3,  0  -7.6  25.5227   11.1 25.7 M 
20   93.33   96.55    5   140   145   150   95  2- 6   7,  3  -9.5  24.9675   51 24.36 H 
21   97.27   92.24    9   107   116   110   95  0- 5   3,  2  -12.8  24.4298   13.9 25.71 H 
22   100.00   96.45    5   136   141   136   98  0- 6   3,  1  -17.3  13.5086   9.5 27.76 H 
23   96.39   100.00    0   160   160   166   98  0- 1   1,  0  -11.6  20.6058   9.6 33.26 L 
24   65.00   52.53   47   52   99   80   58  0- 3   2,  1  -15.9  18.6443   12 53.91 L 
25   70.89   82.35   12   56   68   79   76  0- 9   6,  3  -9.6  25.2235   34 28.09 H 
26   86.08   58.12   49   68   117   79   69  0-26   1,  1  -16.9  19.1089   47.3 32.08 L 
27   96.61   64.04   32   57   89   59   77  0- 3   2,  1  -15.8  17.5044   0 24.5 M 
28   100.00   90.08   13   118   131   118   95  1- 4   3,  0  -13.3  18.4792   3.9 24.24 H 
29   95.59   91.55    6   65   71   68   94  0-16   3,  2  -17.4  19.7441   5.1 29.73 H 
30   96.92   95.45    3   63   66   65   96  0- 9   5,  3  -20.4  17.9736   24.3 29 H 

Id, random patient id.; Sen, Sensitivity (%); PPV, positive predictive value (%);FP, false positive; TP, true positive; D, number of detected SN-events; A, 
number of annotated SN-events; F, F-measure or balanced F-score; Imin, minimum intensity; Imax, maximum intensity; Imed, median intensity; IIQR, 
interquartile range intensity; RBCG, Ratio between BCG and raw Emfit (dB); PSNR, peak signal to noise ratio; AHI, apnea-hypoapnea index, BMI, body 
mass index; MA, manual annotations for intensity of snoring.  
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Table 4 lists the results for all patients and the classification of 
high, medium and low intensity snorers given by the expert. 
The overall performance of the algorithm achieved Sensitivity 
and PPV of 82.81 and 86.29%, respectively. Best detection 
performance was achieved in those patients where the 
intensity of SN was highest. 

V. DISCUSSION 
In the present study, we proposed a novel method to detect SN 
events, obtain their spectral profile and derived an SN 
intensity value using source separation techniques. The 
algorithm detects snores without training based on the 
detection of the spectral energy distribution of SN in the 
frequency band 30–100 Hz. 

 Thirty-second long epochs with a 5 s window overlap were 
used in the study. The performance difference using other 
epoch sizes was not considered in this study. Shorter times 
eases the processing time and memory use of the algorithm 
while allowing to parallelize it in smaller processing threads. 
Longer windows might, however, improve the performance 
results further.  

We enforced the algorithm to decompose the signal into two 
sources: one corresponding to SN, and the other corresponding 
to the heart pulse wave. The spectral contribution for SN 
events often showed a peak between 30 to 80 Hz. We also 
found spectral components below but always accompanied 
with higher frequency components similar to Fig. 4. In our 
previous study [32], we found statistical differences in the 
bands 6–16 Hz and 60–100 Hz. These spectral components in 
6–16 Hz are very likely to be related to increased efforts, 
which often appear concurrently with SN. Norman et al. [36] 
used the spectral band 20–30 Hz to evaluate SN events. 
However, in our experiments, several SN profiles did not 
contain spectral components only in this band. Another study 
performed with PVDF sensors by Hwang et al. used a power 
ratio between components above and below 10 Hz [44]. 
Judging from the results shown in Fig. 4, we can verify that 
some snore events have spectral components lower than and 
above 30 Hz (e.g. Fig. 3b). These spectral components can be 
an indicator of the SN type and points a direction of the 
applicability of this method. In particular, the ability of the 
algorithm to show the spectral profile of the snores, could 
categorize SN based on the vibration spectral profile, e.g. oral 
and nasal. This method is more powerful than obtaining a 
mean PSD for each SN epoch, i.e. isolating events by source 
separation, yields a better representation of SN when 
compared with different feature sets (e.g. relative power or 

power ratios), which does not adapt as well to the various 
types of SN events. 

Snoring detection using other sensors have been performed 
with higher sensitivity (usually above 90%) [64]-[67] in very 
heterogeneous cohorts and by using diverse signal processing 
methods. The Emfit mattress offers advantages over other 
sensors.  In situations where snoring is oral, nasal prongs are 
not useful to capture SN. Also, moisture in the nasal prongs 
produces high frequency components that might be interpreted 
as SN. Furthermore, piezoelectric sensors have the known 
issue that may entirely or partially detach during the night due 
to movement and sweat, leaving this sensor useless for SN 
detection. In all these cases, alternative signals are needed. On 
the other hand, mattress sensor like Emfit will detect the SN 
regardless the SN type, i.e. oral or nasal by using the obtained 
spectral profiles. Furthermore, despite the fact that external 
microphones offer a high-quality measure of the 
characteristics of SN, its setting is complex and dependent on 
the microphone, distance from the patient, and relative 
position of the patients with the microphone. The Emfit 
mattress does not detect as high frequency components like 
microphones; but it does detect low frequency vibrations 
produced by the partial obstruction of the airways, which may 
have a physiological impact on the surrounding tissues [15]-
[18]. 

Snoring detection using bed mattresses has been approached 
in by Hwang et al. [44]. Compared to their method, the 
presented approach adapts to the SN pattern of each subject 
and isolates SN from the main signal. Further, this method 
does not require training. 

The sensitivity to noise and artifacts is one of the main 
weaknesses of the method. Proper segmentation and artifact 
detection could be used to further improve the results; artifacts 
may include, breathing events, movements, coughing, and 
breathing efforts. On the other hand, we modeled the presence 
of events or snores with a generalized extreme value and 
Gaussian mixture to further analyze the epoch versus a gamma 
distribution. Other approaches could yield better results to 
classify the epoch; for example, convolutional neural 
networks. However, they require training which was out of the 
scope of this contribution. 

Our algorithm showed diverse results when applied to the 
dataset. Its performance in some of the patients was notably 
worse. After inspecting these patients, the worse performances 
were due to the low signal intensity and high heterogeneous 
noise in the recorded Emfit signal. As shown by the RBCG and 
PSNR, the noise was more predominant on these signals. In 
particular, deeper inspection on subject Id. 18, showed high 
noise. Our tests proved that wavelet denoising improved 
results. Further research on preprocessing could be conducted 
to study the nature of the noise, and best approaches to remove 
it without affecting the time signal domain. 

We also observed that some annotations were difficult to 
assess, i.e. it was not so clear whether the subject was snoring. 
Some events had clear high-frequency components in the 
nasal pressure signal. However, in the microphone nothing 
was heard. This is presumably due to humidity in the nasal 

TABLE IV 
CLASSIFICATION RESULTS FOR ALL SNORERS USING (1ST ROW), AND THE HIGH, 

MEDIUM AND LOW INTENSITY SNORERS. 
Scored 
intensity 

Sen (%) PPV (%) FP TP D A F 

All 82.81 86.29 447 2813 3260 3397 85 
High 86.79 91.94 163 1859 2022 2142 89 
Medium 90.00 81.57 122 540 662 600 86 
Low 63.21 71.88 162 414 576 655 67 

Sen, Sensitivity (%); PPV=positive predictive value (%); TP, true positive; 
FP, false positive; D, detected snoring (SN) events; A, annotated SN events; 
F, F-measure or balanced F-score. 
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prongs. Other SN events were sometimes considered SN 
where in fact was strong breathing. The Emfit did, however, 
detect these situations where vibrations occurred. 

Since BCG must be present in all recordings we assumed the 
median spectral BCG magnitude in the 6–10 Hz band as a 
reference. Results could be improved by using RBCG to 
estimate the threshold (𝜆𝜆𝑡𝑡ℎ). Also, instead of normalizing the 
spectrogram, the intensity of the vibrations in conjunction with 
RBCG could be used as an objective measurement of SN, which 
could allow comparing inter-subject SN intensity. 

VI. CONCLUSIONS 
In this paper, we presented a method which can be used for 
snoring event detection, the studying of the spectral profile of 

snoring events, and for the estimation of the intensity of 
snoring by analyzing the signal obtaining from the Emfit 
sensor. The method could detect 82.81% of the snoring events 
with the positive predictive value of 86.29%. The algorithm 
can adapt to individual snore profiles and thus, it can be easily 
applied in clinical practice. 
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