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Abstract—Snoring (SN) is an early sign of upper airway
dysfunction, and it is strongly associated with obstructive sleep
apnea (OSA). SN detection is important to monitor SN
objectively and to improve the diagnostic sensitivity of sleep-
disordered breathing (SDB). In this study, an automatic snore
detection method using an Emfit (Electromechanical film
transducer) signal is presented. Representative polysomnographs
of normal breathing (NB) and SN periods from 30 subjects were
selected. Individual SN events were identified using source
separation  applying  nonnegative  matrix  factorization
deconvolution (NMFD). The algorithm was evaluated using
manual annotation of the polysomnographic recordings.
According to our results, the sensitivity (Se), and the positive
predictive value (PPV) of the developed method to reveal snoring
from the Emfit signal were 83% and 86%, respectively.
Compared to other approaches, our method adapts to the
individual spectral snoring profile of the subject rather than
matching a particular spectral profile, estimates the snoring
intensity, and obtains the specific spectral profile of the snores in
the epoch. Additionally, no training is necessary. This study
suggests that it is possible to detect individual SN events with
Emfit mattress, which can be used as a contactless alternative to
more conventional methods such as piezo-snore sensors or
microphones.

Index Terms— sleep, sleep-disordered breathing (SDB),
snoring (SN), Emfit (Electromechanical Film Transducer)
mattress sensor, nonnegative matrix factorization (NMF),
nonnegative matrix factorization deconvolution (NMFD).
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I. INTRODUCTION

Snoring (SN) is one of the first signs of upper airway

dysfunction and can be linked closely to sleep-disordered
breathing (SDB) such as obstructive sleep apnea (OSA) [1]-
[3]. Among adults, the prevalence of SN has been found to be
10-60%, and it is more commonly found in men than women
[4]-[6]. It is shown that snoring increases with age and the
gender difference decreases as with aging [5], [7]. The
vibrations and sound disturbances caused by SN have
significant effects on the snorer’s health and influence their
bed partners quality of sleep too [8]. Several studies have
associated SN with sleepiness, hypertension, angina pectoris,
and cerebral stroke [4], [5]. However, Gottlieb et al. [2],
suggested that these health problems could be explained by its
close relationship with OSA. Also, simple SN has been
associated with sleepiness, reduced work performance, and
traffic  accidents [6], [9]-[11]. Nevertheless, health
consequences of SN without OSA are less clear [12]; Marin et
al. [13] concluded there are no cardiovascular outcomes
associated with SN [13]. However, other studies present
contradicting results [14]. On the other hand, the mechanical
vibration induced by SN may cause neurogenic lesions in the
upper airway tissues [15], carotid atherosclerosis [16],
inflammatory responses in a intracellular level [17], and
vascular smooth muscle cell injuries [18]. Furthermore, the
loud sound and vibrations might cause arousals to the snorer
as well as to the bed partner [8], impeding an uninterrupted
and restorative sleep [19].

The Gold standard for SDB diagnostics in the clinical
practice is done using polysomnography (PSG). In the clinical
practice, the American Association of Sleep Medicine
(AASM) recommends three methods to detect SN [20]: a
piezoelectric sensor placed on the neck, an acoustic sensor
such as microphone on the trachea, chest or near the patient’s
bed, and nasal prongs connected to the nasal pressure sensor.
Arnardottir et al. [21] advocated the use of audio-based
techniques over others and encouraged the development of a
standardized method to measure SN. However, these methods
may have some drawbacks. They are annoying and may
disturb patient's sleep. For instance, in the case of oral
breathing or under the presence of moisture in the nasal
prongs, the SN detection is ruined. Furthermore, the
piezoelectric sensor may entirely or partially detach during the



TABLE |
DEMOGRAPHIC AND CLINICAL DATA FROM THE SUBJECTS UNDER STUDY
(24 MEN, 6 FEMALE)

Min-

Parameter Units Median IQR
max

Age [yrs] 25-60 445 16.5

Body mass index [Kg-m?] 222-54 29 8.4

Snore time [min] 0-286 30 84

Apnea-hypoapnea index - 0-105.7 15 29.1

night due to movement or sweat artifacts, leaving this sensor
impractical for SN detection. Also, even when employing
external microphones offer a high-quality measure of the
characteristics of SN, its setting is complex and dependent on
the distance from the patient.

The Electromechanical Film Transducer (Emfit) is a
permanently charged polypropylene ferro-electret film
sensitive to mechanical stress. The polymer layers are
separated by air gaps that upon an orthogonal mechanical
force, the charge differential between these gaps and the
permanently charged internal layers, produces a change of
potential. As a result, the Emfit signals is a consequence of
pressure changes inducing potential differences, which are
measured with a differential AC amplifier [22], [23]. The high
sensitivity of the Emfit sensor allows place it unobtrusively
under the mattress.

Unobtrusive sensors, such as Emfit, promise to ease and
complement PSG diagnostics. Mattress type sensors like
Emfit, the Polyvinylidene fluoride film (PVDF), the static-
charge-sensitive bed (SCSB), the sheet-type SD-101, and the
balancing tube air-mattress (AMBT), have been used for
multiple purposes, such as (1) breathing rate (BR) and heart
rate (HR) monitoring [24]-[29], (2) SDB diagnosis [30]-[40],
(3) epilepsy monitoring, (4) periodic leg movements and
restless legs syndrome assessment [41]-[43]. In addition to
solve the aforementioned issues in the normal clinical settings,
mattress-like  sensors provide additional physiological
information; namely, HR and breathing. Moreover, Emfit
reveals the increased effort present in periods with prolonged
partial obstruction [30].

Despite the advantages of mattress-like sensors, few studies
exist about SN detection using them. Hwang et al. [44]
proposed an automatic SN detection algorithm using a P\VDF-
type mattress sensor based on two spectral features of SN
events (power ratio and peak frequency) and machine learning
techniques. Also, Shin et al. presented simple filtering and
thresholding techniques to detect SN on an AMBT [40]. These
methods rely on selected spectral features and need training to
function. Compared to other mattresses, the Emfit mattress is
more sensitive than PVDF mattress in the orthogonal
direction, and less than 1% of the signal is affected by lateral
forces [23].

In our previous study, we characterized the spectral
differences of thirty-seconds epochs length from NB and SN
periods in the Emfit signal using the power spectrum [32]. We
wanted to continue to develop unsupervised methods to detect
individual snores based on source separation techniques using
spectrogram factorization. Mono-source separation techniques
have been traditionally employed in music [45], [46] and more

TABLE Il
SUMMARY OF ANNOTATED EVENTS PER PATIENT IN THE STUDY
Total . .
amount Mean+SD  Min-max Median IQR
SNevents 3521 117.4+544 36-245 115 96
Acrtifacts 16 - 0-2 0 1

SN events, snoring events; SD, standard deviation; min, minimum; max,
maximum; IQR, interquartile range.

recently, to detect HR and breathing using a digital
stethoscope [47]. The objective of this study is to investigate
the use of Emfit mattress for snoring assessment by using
advanced signal processing methods. Additionally, we want to
find out the spectral profiles of snoring in the Emfit sensor
signal using source separation techniques.

Il. DATA ACQUISITION AND STUDY DESIGN

A. Subjects

Thirty-three patients under suspicion of SDB took part in the
study, including one-night full PSG. Three recordings had to
be omitted from the study due to high-level noise, or electrical
artifacts in the Emfit signal. The final data set consisted of 30
PSGs. The age of the subjects (24 men, 6 women) ranged from
25 to 60 years. Anthropometric data are shown in Table 1. All
patients had signed a written informed consent before
recordings were performed in the sleep laboratory of Tampere
University Hospital, Tampere, Finland. This study was
approved by the Ethical Committee of the Pirkanmaa Hospital
District.

B. Recording
PSGs were performed using a standard monitoring montage
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Fig. 1: Thirty-seconds epoch with three snoring (SN) events for the (a) Emfit

(mV); (b) band-pass filtered Emfit (6—100 Hz, mV); (c) nasal pressure (ubar);

(d) tracheal sound signals (V); and (e) envelope trace of piezoelectric sensor
(units). Scored SN events are represented as red rectangles.



including EEG (F3-A2, F4-Al, C3-A2, C4-Al, O1-A2, O2-
Al); electromyographs of submental and tibialis muscles, and
the two channels of the electrooculogram; an
electrocardiogram; pulse oxygen saturation (SpQO.); and body
position measurements. A nasal air pressure transducer was
employed to measure the airflow. Respiratory movements
were assessed with thoracic and abdominal inductive belts. SN
was measured with a piezoelectric sensor situated on the neck
and a tracheal microphone positioned above the suprasternal
notch. The Emfit mattress sensor of dimensions 32 cm x 62
cm x 0.4 cm was placed under the thoracic area of the sleeping
patient under the mattress. Data were recorded with an Embla
N7000 and Somnologica Studio 3 software setup (Embla®,
USA). The sampling rate of 2 Hz was used for SpO,, 10 Hz
for respiratory movements, 500 Hz for the electrocardiogram
(ECG), 100 Hz for the piezoelectric snore sensor, 11 kHz for
the tracheal microphone, and 200 Hz for the Emfit sensors,
and all other signals.

C. Data selection and snore episode reference labeling

Representative periods of SN and NB of a maximum duration
of 10 min per patient were selected by an experienced
neurophysiologist. The scoring of the SN periods was based
on three different channels. The airflow channel inferred from
the nasal air pressure signal was used to preselect SN periods
based on the high-frequency SN components on top of the
airflow waveform. During these preselected periods SN had to
appear in the piezo-sensor signal placed on the neck (envelope
technique, threshold 10 uV). Following, SN was confirmed by
the signal of the tracheal microphone (Fig.1). Finally, SN
sounds were listened from the video file. NB periods did not
contain SN, apneas or hypopneas in any of the previously
above signal characteristics. In addition, each patient SN
intensity was evaluated and annotated by an independent
expert scorer as low (L), medium (M), and high (H) on the 10
min SN periods based on the video file. To ease the

(1) Preprocessing (2) Quality assessment

(a) Signal strength

(3) Snoring detection

processing, NB and SN periods were divided into thirty-
seconds epochs. The total number of epochs were 1119, of
which 473 and 546 were NB and SN epochs, respectively.
Visual inspection of each epoch was performed to annotate the
artefacts in the Emfit signal; detected events concurring with
the annotated artefacts were discarded. The percentage of
epochs of male subjects for NB epochs and SN epochs were
78.6, and 79.3%, respectively.

In a second scoring step, snore events were annotated by an
independent expert scorer from each selected period. The
same protocol used in the period selection step was followed.
Additionally, if SN was present during either inspiratory and
or expiratory phase of the breathing cycle, the event was
annotated as a single SN event. The total annotated SN events
were 3521 (mean * standard deviation; 117.4 + 54.4). Table 2
reports the summary of the scored snore events. Fig. 1 depicts
a thirty-seconds example of an epoch with two SN events.

I1l. METHODS

The architecture of the proposed algorithm is illustrated in Fig.
2. It comprises of four stages: preprocessing (Fig. 2-1), quality
assessment (Fig. 2-2), SN detection (Fig. 2-3), and evaluation
(Fig. 2-4).

A. Preprocessing

The Emfit signal (r[n]) was high-pass filtered using a finite
impulse response (FIR) filter designed with a Hamming
window, cut-off frequency at 6 Hz, and 1 Hz transition band.
This filter removes the high power heart components under 6
Hz, the baseline, and the breathing signal.

Acquired data in clinical environments are often noisy. We
modeled our signal u[n], as a sum of the desired signal d[n]
and noise n[n]: additive white Gaussian noise (AWGN)
(Mawen) and power line interference (np.;), and other noise
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Fig. 2: Block diagram of the snoring detection process: (1) pre-processing and signal conditioning, (2) quality assessment, (3)
snoring detection, and (4) evaluation. HP, high pass; LP, low pass; MAD, mean absolute deviation; PSNR, peak signal to noise
ratio; STFT, short-time Fourier transform; TP, true positives; FP, false positives; PPV, positive predictive value; NP, number of

peaks; MPD, minimum peak distance.



(Mo[nD).
r[n] = d[n] + nawen[nl + nppi[n] +n,ln] 1)

Before the acquisition, the signal is subject to frequency-
dependent attenuation when transmitted through the body, bed
sheets, sleeping mattress, and the losses in the material
transitions. To partially compensate the attenuation and
enhance the frequencies where SN occurs, the signal was
filtered with a pre-emphasis filter. This filter emphasizes high-
frequency components while attenuating lower frequency
components. The employed filter is a first order FIR filter
defined in (2), where the constant a was set to 0.97. The Emfit
signal was filtered with a pre-emphasis filter after PLI noise
removal.

uln] =F[n] —a-#fln-1], 2

where #[n] represents the band-passed acquired data.

The PLI was removed using an adaptive algorithm centered at
50 Hz [48]. To remove the Gaussian noise, we used a wavelet
denoising technique using a 15-level 13th order Symmlets
using soft-thresholding, Heursure method for threshold
selection, with unscaled noise modeling and threshold
rescaling using the first level coefficients. This approach has
been used to denoise phonocardiogram [49].

B. Signal quality estimation: signal strength and noise

To study the dependence of our algorithm with the signal
strength and noise we estimated two measures. To measure the
strength of the signal, the ratio between a denoised
ballistocardiogram (BCG) and the raw Emfit signal (3) was
estimated from each epoch for each patient. The noise was
quantitatively evaluated using the peak signal-to-noise ratio
(PSNR) (4). The BCG signal (ygcs), was extracted using a
high-pass Butterworth filter with cut-off frequency of 1 Hz to
remove the low-frequency respiratory components [25], and a
low-pass filter with cut-off frequency of 5 Hz.

The denoised BCG signal was estimated using a Wavelet
denoising technique using a 5-level fourth order Symmlets,
using soft-thresholding, Heursure method for threshold
selection; this denoising technique has been used successfully
in ECG denoising [50].

2
Rpce(dB) = 10 - log —255, 3)
emfit
PSNR = 10 - log % 4)
= °9 MsE
1
MSE == (rln] - d[n])?, 5)

where o2 is the variance estimated using the mean absolute
deviation (MAD) as a robust estimator of the variance [51],
[52], MSE is the mean squared error, and u,,, is the
maximum value of u[ n].

C. Source separation using matrix

factorization deconvolution (NMFD)

The goal of applying non-negative factorization (NMF) in an
Emfit spectrogram is to bring out multiple sources (or signals
of interest e.g. SN) from a single-channel mixture of signals.
We considered the Emfit signal as an additive combination of
several components: the pulse wave caused by the beating
heart or BCG, SN, and noise.

r[n] = Z siln] +ninl, (6)

L

non-negative

where i corresponds to the i-th source, s;[n] the source signal,
and n[n] represents the AWGN and PLI noise, and other
unwanted noise.

The Emfit signal can then be represented using a time-
frequency representation using the spectrogram or short-time
Fourier transform (STFT) (7). The spectrogram provides a
representation of the signal power distribution over a set of
frequencies at specific time windows.

Y0 = ) dimWyamnln—mle ™, (@)

m=—oo

where Wygmm 1S the Hamming window. The magnitude
spectrogram (Z = |Y(n,w)|) is estimated calculating the
absolute value of the STFT. From now, we refer to Z as a
matrix with m rows and n columns. The magnitude
spectrogram was normalized by the median energy contained
within the 6-10 Hz band of the spectrogram (8), using this
band as reference intensity for all patients because it contains
heart-originated activity present in all subjects. Finally, the Z
is log-transformed:

7, = log <Z(m,n)/ Z Z(m,n)> ®)

m~6Hz

The source separation is accomplished factorizing the
magnitude spectrogram in two matrices (9), in such a way that
the result groups the components into the sources.

Z=A"X 9)

One of the applications of matrix factorization is blind source
separation (BSS) where the observations are considered as a
weighted sum of n underlying sources. NMF has been used in
single-channel source separation of audio source [53], drum
transcriptions [46], and recovery of biological signals [47].
Inspired by previous work by Paatero et al. [54], NMF was
first proposed as an algorithm to learn parts of faces and text
semantics [55], [56]. The factorization assumes a
compositional model of audio sources, i.e. an additive
combination of components that do not result in subtraction or
diminishment of any of the parts [57].

NMF is applied to the magnitude spectrogram of the signal
Z € R,F*T, where R, represents the set of non-negative real
numbers, T the number of time frames, and F is the resolution
of the discrete Fourier transform (DFT). The goal of NMF is



to approximate Z as a product of two non-negative matrices
(9), by minimizing the error of reconstruction.

Z=A-X (10)
Each spectral vector y, is thus a linear combination of all the
rows or atoms ag (in the s-th atom in time n), and the time
varying activation x;[n]: y, = ¥5_, a;x,[n],s = 1...5. The
number of atoms S is usually chosen so that (F X T) < FT, so
the product can be regarded as a compressed form of Y. There
are several proposed NMF algorithms. The classic NMF
factorization algorithm minimizes the Kullback-Leibler (KL)
divergence [55]:

A", X* = argmaxD(Z || AX),A > 0,X >0, (11)
AX

where A* and X* are the optimal values of A and X from the
minimization problem. However, this factorization does not
take into account the relative positions of each of the atoms
and consequently ignores temporal information. An extended
version of the NMF called NMFD initially proposed by
Smaragdis (2004) takes into account temporal information in
the factorization process [58]. The expression xx is then
transformed into:

7 ~ AQX, (12)
where @ is the circular convolution. The target is to minimize
a new cost function:

InZ

, (13)
F
with A = A®X, |||l is the Frobenius norm, and @ is the
Hadamard product (an element-wise multiplication). A

detailed description and the multiplicative updates for
estimating A, and X is described by Smaragdis et al. [58].

The NMFD is applied to the Emfit signal and restricted to
decompose in two signals (number of atoms or S).
Traditionally, the matrix decomposition is initialized creating
a random A matrix (45 = AF*(€1+C2)) where ¢, represents
columns i = 1...S. In this study, we initialized each atom of
matrix A to those frequencies that matches our source signal.
Previous work [32], found a significant power increase in the

bands [16-40] and [55-100] Hz, thus we initialized the C,

components to be maximum at frequencies at 30-100 Hz,
and C; components to be maximum at 6-30 Hz:

ap = a1 Vi, f; € [6 — 30]Hz, 0 otherwise
aj; = a, Vi, f; € [30 — 100]Hz, 0 otherwise

(14)

FXC;
A7 = a5 = {

where a; for | = [1,2], and F being the frequency resolution
of the STFT. These step functions were convolved with a
Gaussian kernel to smooth the transition between zero values
and alpha values. The NMFD algorithm iteratively adjusts the
columns (a;_, = C;_,) to minimize the cost function. The
NMFD implementation has the added constraint consisting on
maintaining the initial zero values of matrix A during the
multiplicative updates.

The snoring events (E) are the result of finding the peaks P, in
the time varying activation vector x,[n], where s =2
corresponds to the atom associated with snoring (y; =

a,x;[n]).
D. Snoring event detection

The activation matrix component corresponding to the snoring
source is then x,[n]. To remove spurious peaks from x,[n], a
Savitzky-Golay fourth-order FIR filter [59] of one second
length was applied. The one second time-length, corresponds
to the “typical” minimum time of a SN event. This smoothing
technique is based on least-squares fitting of polynomials to
the data segments, preserving the shape of the activation
vector x,[n].

Under the presence of snores, the activation vector x,[n] has
two different distributions. It was observed that on the absence
of snores, the spectral profile a,[n], is small, and
approximately flat. The activation vector exhibited an
approximately Gamma distribution. Thus, we made the
assumption that the activation vector x,[n], follows a slightly
Gamma distribution. Conversely, under the presence of
snoring events, the distribution becomes more skewed,
following a generalized extreme value distribution (GEV) or
when the snores loud and long, it becomes a Gaussian mixture
of two components. We assumed these models to assess the
presence of events within the epoch. The model selection was
based on the second-order Akaike Information Criterion (AIC)
[60], [61]. If the criterion resolves on a distribution associated
with events, the algorithm continues to the next step.
Otherwise, the algorithm considered the epoch as NB and
proceeds to proceeds to the next epoch.
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Fig. 3: Spectrogram factorization normal breathing epoch (NB), and (b) of a snoring epoch (SN). Activation matrices (x,[n], s = [1,2])
of the first and second components, respectively. Atoms/spectral profiles (as[n], s = [1,2]) of the activation matrices. In black, x,[n]; in

red, the output of the Savitzky-Golay FIR filter. The black dots represent the peaks within the epoch ﬁk.

Once the presence of events in the activation vector is
confirmed, the algorithm proceeds to the snore event
detection. To detect a snore event (Ey), a threshold (4,,) on
the activation vector must be estimated, manually or
automatically. One of the main issues in event classification is
to find a suitable threshold. Machine learning and statistical
approaches derive a threshold that is dependent on the training
data. These are inherently variant across subjects, although
data is normalized to compensate. In this work, we used an
adaptive threshold based on the current epoch. Histogram
based methods are dependent on the distribution of the
activation vector on each epoch. These algorithms have been
heavily studied for image segmentation and binarization. We
implemented a modified thresholding technique based on the
shape of the histogram's derivative [62]. However, instead of
smoothing the signal’s histogram of each frame, as is done by
Taskanen et al. (2015), we fitted a kernel distribution to the
activation's matrix histogram (x,[n]). Subsequently, we

estimated the first derivative to estimate the global minimum,
and then we estimated the next local peak towards infinity.
This approach yields more robust results and increases
sensitivity considerably. Also, if the next local peak is not
found, the epoch is discarded for further processing.

Finally, peaks were detected using the built-in MATLAB®
function findpeaks.m. This built-in algorithm has three inputs,
the number of peaks (NP), the minmun peak distance (MPD),
and maximun peak height (MPH). The input parameters NP
and MPD we estimated from the breathing rate derived from
the raw Emfit signal. To estimate the breathing rate, we
extracted the breathing waveform from the raw Emfit signal
by filtering u[n] with a 3rd-orther Butterworth low pass filter
with a cut-off frequency of 0.5 Hz. Each epoch of the resulting
breathing waveform (b[n]) was interpolated using weighted
linear least squares and a 2nd degree polynomial model over
(b[n]). This interpolation method has the advantage to fit the
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breath to a quasi-sinusoidal pattern while preserving breathing
cycles. The number of peaks and valleys to detect were
calculated by estimating breathing period with autocorrelation
analysis. A 20 percent error margin for both NP and MPD was
assumed to account for the intra-epoch breathing variability.
The maximum peak height (MPH) corresponds to the
estimated threshold, A.,. For each epoch we obtain a
collection of peaks: P, = [L, ] at locations L, and their
associated intensity value [, k = 1...,K, where K is the
number of detected peaks.

The NMFD algorithm is applied to a fixed-length window of
thirty-seconds with an overlap of 5 s, and hence, several
unwanted peaks are detected. We ignored the peaks when only
one peak was found in the epoch. In our implementation, we
merged those peaks resulting from the same snoring event
resulting in P, = [Ly, I ]. Finally, the raw peak locations were
refined such that each snoring event corresponded to the
location taking the beginning of the recording as reference.
The new re-referenced peaks E, = [Ly, I], where E
symbolizes k-event at location Lj, with instensity I, are later
evaluated with the annotated snore events.

E. Data and Statistical Analyses

Signal processing and statistical analyses were performed
using MATLAB (R-2013b, The MathWorks, Inc., Natick,
MA, USA). The NMFD algorithm was modified from an
NMFLib by Graham Grindlay [63]. The performance of the
algorithm was evaluated using the total number of true
positives (TP, number of detected snores that correspond to
annotated snores), the total false positives (FP, the number of
detected snoring events that were not annotated), total false
negatives (FN, number of annotated events that were not
detected by the algorithm), the positive predictive value (PPV,
proportion of SN epochs which are true positives) (15), the
sensitivity (Sen, the TP rate of the algorithm as the ratio of TP
to predict positives) (16), and the F-score (17). The resulting

F-scores are measures of the overall concordance between the
results of the algorithm and the visual scores.

TP
= 15
PPV TP + FP (19)
TP
= 16
Sen = I ¥FN (16)
PPV - Sen
=2.—— 17
F=2 PPV + Sen (17)
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Fig. 4: Detected SN events (a) Emfit spectrogram; (b) band-pass filtered
Emfit (6-100 Hz, mV); (c) nasal pressure (ubar); (d) tracheal sound
signals (V); and (e) envelope trace of piezoelectric sensor (units). Scored
SN events are represented as red rectangles and detected SN events (E})
in gray rectangles.



IV. RESULTS

A Hamming window of length 64 samples and 75% overlap
and a 512-point DFT was employed to estimate the
spectrogram. To reduce the amount of computing time, the
NMFD algorithm was allowed to run for maximally 500
iterations in all factorizations or until convergence as defined
by the relative change in the cost function; also our tests found
reasonable convergence at this point. The wavelet denoising
technique was applied to epochs with signal strength lower
than -9dB, this level was estimated experimentally.

A. Source separation of the Emfit signal

The STFT was computed, normalized, and log-transformed,;
samples can be seen in Fig. 3 and 4 in the top rows. The
resulting spectrogram was factorized using the NMFD, setting
the number of components to S = 2. One corresponding to SN
and the other component for pulse wave signal from the heart.
A representative NB epoch (Fig. 3a) and two SN epochs (Figs.
3b and Fig. 4) were selected to visualize the result of NMFD.
Subplots on the left side represent the time activations x[n],
s = [1,2], and subplots on the right side represent the atoms
(as[n],s = [1,2]). Due to our initialization procedure of the
NMFD algorithm, snoring always corresponds to the second
component, x,[n]. This spectral profile is in line with our
previous study [32] where a similar power spectrum density
(PSD) was found when comparing snoring and normal

breathing PSDs. It is also consistent why power ratios
perform well in certain SN profiles [44]. However, not all
snores had the same spectral profile; Fig. 3b and Fig. 4 show
the capability of the algorithm to adapt to the different spectral
snore profiles (see components a,[n] in Fig. 3 and 4).

B. SN event detection

Fig. 3-4 display the activations for the SN component are
shown (x,[n]) . After the threshold (4.,) was estimated for
each epoch, the detected peaks (P,), were merged from the
different overlapping windows (P,). The merged peaks are
considered the center of the snore events (E;) with a time
duration of one second. A sample of detected peaks (P,) is
shown in Fig. 3b, and Fig 4.

C. Evaluation results

Fig. 5 shows the annotated events together with the detected
events. Table 3 summarizes the individual results for the
proposed method. SN intensities were summarized using
minimum, maximum, median, and interquartile range. Median
Recec and PSNR values from SN epochs, apnea-hypoapnea
index (AHI), and body mass index (BMI) are shown in the
table. Lowest performances corresponded with lowest signal
intensity and noise (Rscc). Especially noticeable was patient
with Id. 18. A closer look at this signal showed high noise
intensity and a weak signal. Thus, snores did not stand out.

TABLE Il

CLASSIFICATION RESULTS OF SNORING EVENT DETECTION FROM EMFIT MATTRESS USING SOURCE SEPARATION TECHNIQUES

Id Sen PPV (%) FP TP D A F | 1 Rece PSNR  AHI BMI MA
(%) min-max med, IQR (dB) (dB)
1 96.75 96.75 4 119 123 123 97 0-3 1,0 -13.7 22.3982 32.3 22.2 H
2 92.21 80.68 17 71 88 77 86 1-3 2,1 -125 20.2909 3 29 M
3 94.30 91.98 13 149 162 158 93 1-7 7,1 -18.0 18.3214 64.7 38.64 H
4 90.23 98.74 2 157 159 174 94 1-5 4, 1 -19.9 15.3432 34.3 31.44 H
5 65.30 85.12 25 143 168 219 74 0-2 2,1 -15.2 19.5693 30.4 41.97 H
6 100.00 94.83 6 110 116 110 97 0-6 4,1 -16.3 17.9311 2.2 23.67 H
7 53.33 93.02 3 40 43 75 68 0-1 1,0 -13.7 19.2415 105.7 34.19 L
8 52.89 75.29 42 128 170 242 62 1-9 7, 2 -16.5 16.5514 11.3 30.2 H
9 100.00 99.09 1 109 110 109 100 0-7 4,1 -17.4 20.4427 27.8 33.08 H
10 7143 4839 32 30 62 42 58 0-10 3,1 -11.7 31.7468 20 22.64 L
11 60.00 81.82 4 18 22 30 69 0-2 1,0 -9.2 23.0210 38 — H
12 100.00 100.00 O 119 119 119 100 0-4 3,1 -16.7 18.9062 1.7 23.74 H
13 94.12 94.74 8 144 152 153 94 0-2 2,0 -17.5 15.0348 9.1 28.09 L
14 8421 4156 45 32 77 38 56 0-25 12,16 -17.7 18.7473 74.7 32.77 H
15 86.27 78.57 24 88 112 102 82 0-4 2,2 -20.9 18.4522 88 35.58 M
16 97.53 98.14 3 158 161 162 98 1-6 51 -14.9 18.0312 17 36.96 L
17 84.42 87.25 19 130 149 154 86 1-9 7,3 -16.0 19.4431 42.1 31.22 M
18 13.79 10000 0 20 20 145 24 0-1 1,0 -20.6 14.4857 10.6 — L
19 96.36 85.48 9 53 62 55 91 1-2 3,0 -7.6 255227 111 25.7 M
20 93.33 96.55 5 140 145 150 95 2-6 7,3 -9.5 249675 51 24.36 H
21 97.27 92.24 9 107 116 110 95 0-5 3,2 -12.8 24.4298 13.9 25.71 H
22 100.00 96.45 5 136 141 136 98 0-6 3,1 -17.3 13.5086 9.5 27.76 H
23 96.39 10000 0 160 160 166 98 0-1 1,0 -11.6 20.6058 9.6 33.26 L
24 65.00 52.53 47 52 99 80 58 0-3 2,1 -15.9 18.6443 12 53.91 L
25 70.89 82.35 12 56 68 79 76 0-9 6, 3 -9.6 25.2235 34 28.09 H
26 86.08 58.12 49 68 117 79 69 0-26 1,1 -16.9 19.1089 47.3 32.08 L
27 96.61 64.04 32 57 89 59 7 0-3 2,1 -15.8 17.5044 0 245 M
28 100.00 90.08 13 118 131 118 95 1-4 3,0 -13.3 18.4792 3.9 24.24 H
29 95.59 91.55 6 65 71 68 94 0-16 3,2 -17.4 19.7441 5.1 29.73 H
30 96.92 95.45 3 63 66 65 96 0-9 5 3 -20.4 17.9736 24.3 29 H

Id, random patient id.; Sen, Sensitivity (%); PPV, positive predictive value (%);FP, false positive; TP, true positive; D, number of detected SN-events; A,
number of annotated SN-events; F, F-measure or balanced F-score; Imin, minimum intensity; Imax, maximum intensity; Imed, median intensity; ligg,
interquartile range intensity; Rgcs, Ratio between BCG and raw Emfit (dB); PSNR, peak signal to noise ratio; AHI, apnea-hypoapnea index, BMI, body

mass index; MA, manual annotations for intensity of snoring.



TABLE IV
CLASSIFICATION RESULTS FOR ALL SNORERS USING (1°T ROW), AND THE HIGH,
MEDIUM AND LOW INTENSITY SNORERS.

Scored Sen (%) PPV (%) FP TP D A F
intensity

All 82.81 86.29 447 2813 3260 3397 85
High 86.79 91.94 163 1859 2022 2142 89
Medium 90.00 8157 122 540 662 600 86
Low 63.21 71.88 162 414 576 655 67

Sen, Sensitivity (%); PPV=positive predictive value (%); TP, true positive;
FP, false positive; D, detected snoring (SN) events; A, annotated SN events;

F, F-measure or balanced F-score.

Table 4 lists the results for all patients and the classification of
high, medium and low intensity snorers given by the expert.
The overall performance of the algorithm achieved Sensitivity
and PPV of 82.81 and 86.29%, respectively. Best detection
performance was achieved in those patients where the
intensity of SN was highest.

V. DISCUSSION

In the present study, we proposed a novel method to detect SN
events, obtain their spectral profile and derived an SN
intensity value using source separation techniques. The
algorithm detects snores without training based on the
detection of the spectral energy distribution of SN in the
frequency band 30-100 Hz.

Thirty-second long epochs with a 5 s window overlap were
used in the study. The performance difference using other
epoch sizes was not considered in this study. Shorter times
eases the processing time and memory use of the algorithm
while allowing to parallelize it in smaller processing threads.
Longer windows might, however, improve the performance
results further.

We enforced the algorithm to decompose the signal into two
sources: one corresponding to SN, and the other corresponding
to the heart pulse wave. The spectral contribution for SN
events often showed a peak between 30 to 80 Hz. We also
found spectral components below but always accompanied
with higher frequency components similar to Fig. 4. In our
previous study [32], we found statistical differences in the
bands 6-16 Hz and 60-100 Hz. These spectral components in
6-16 Hz are very likely to be related to increased efforts,
which often appear concurrently with SN. Norman et al. [36]
used the spectral band 20-30 Hz to evaluate SN events.
However, in our experiments, several SN profiles did not
contain spectral components only in this band. Another study
performed with PVDF sensors by Hwang et al. used a power
ratio between components above and below 10 Hz [44].
Judging from the results shown in Fig. 4, we can verify that
some snore events have spectral components lower than and
above 30 Hz (e.g. Fig. 3b). These spectral components can be
an indicator of the SN type and points a direction of the
applicability of this method. In particular, the ability of the
algorithm to show the spectral profile of the snores, could
categorize SN based on the vibration spectral profile, e.g. oral
and nasal. This method is more powerful than obtaining a
mean PSD for each SN epoch, i.e. isolating events by source
separation, vyields a better representation of SN when
compared with different feature sets (e.g. relative power or

power ratios), which does not adapt as well to the various
types of SN events.

Snoring detection using other sensors have been performed
with higher sensitivity (usually above 90%) [64]-[67] in very
heterogeneous cohorts and by using diverse signal processing
methods. The Emfit mattress offers advantages over other
sensors. In situations where snoring is oral, nasal prongs are
not useful to capture SN. Also, moisture in the nasal prongs
produces high frequency components that might be interpreted
as SN. Furthermore, piezoelectric sensors have the known
issue that may entirely or partially detach during the night due
to movement and sweat, leaving this sensor useless for SN
detection. In all these cases, alternative signals are needed. On
the other hand, mattress sensor like Emfit will detect the SN
regardless the SN type, i.e. oral or nasal by using the obtained
spectral profiles. Furthermore, despite the fact that external
microphones offer a high-quality measure of the
characteristics of SN, its setting is complex and dependent on
the microphone, distance from the patient, and relative
position of the patients with the microphone. The Emfit
mattress does not detect as high frequency components like
microphones; but it does detect low frequency vibrations
produced by the partial obstruction of the airways, which may
have a physiological impact on the surrounding tissues [15]-
[18].

Snoring detection using bed mattresses has been approached
in by Hwang et al. [44]. Compared to their method, the
presented approach adapts to the SN pattern of each subject
and isolates SN from the main signal. Further, this method
does not require training.

The sensitivity to noise and artifacts is one of the main
weaknesses of the method. Proper segmentation and artifact
detection could be used to further improve the results; artifacts
may include, breathing events, movements, coughing, and
breathing efforts. On the other hand, we modeled the presence
of events or snores with a generalized extreme value and
Gaussian mixture to further analyze the epoch versus a gamma
distribution. Other approaches could yield better results to
classify the epoch; for example, convolutional neural
networks. However, they require training which was out of the
scope of this contribution.

Our algorithm showed diverse results when applied to the
dataset. Its performance in some of the patients was notably
worse. After inspecting these patients, the worse p