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Abstract—Asthma is a chronic lung disease that usually
develops during childhood. Despite that symptoms can almost
be controlled with medication, early diagnosis is desirable in
order to reduce permanent airway obstruction risk. It has been
suggested that abnormal parasympathetic nervous system (PSNS)
activity might be closely related with the pathogenesis of asthma,
and that this PSNS activity could be reflected in cardiac vagal
control. In this work, an index to characterize the spectral
distribution of the high frequency (HF) component of heart
rate variability (HRV), named peakness (℘), is proposed. Three
different implementations of ℘, based on electrocardiogram
(ECG) recordings, impedance pneumography (IP) recordings and
a combination of both, were employed in the characterization of
a group of preschool children classified attending to their risk of
developing asthma. Peakier components were observed in the HF
band of those children classified as high-risk (p < 0.005), who
also presented reduced sympathvoagal balance. Results suggest
that high-risk of developing asthma might be related with a lack
of adaptability of PSNS.

Index Terms—heart rate variability, asthma, children,
peakness, parasympathetic nervous system.
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ECG Electrocardiogram

EDR ECG-Derived Respiration

HF High Frequency

HiR High Risk

HR Heart Rate

HRV Heart Rate Variability

ICS Inhaled Corticosteroids

IP Impedance Pneumography

IQR Inter-Quartile Range

LF Low Frequency

LoR Low Risk

mAPI Modified Asthma Predictive Index

NN Normal-to-Normal

OSAS Obstructive Sleep Apnea Syndrome

pNN50 Percentaje of successive Normal-to-Normal

differences greater than 50 ms

PSD Power Spectral Distribution

PSNS Parasympathetic Nervous System

SDNN Standard Deviation of Normal-to-Normal intervals

SDSD Standard Deviation of Successive Differences

RMSSD Root Mean Square of Successive Differences

RSA Respiratory Sinus Arrhythmia

SNR Signal-to-Noise Ratio

SPT Skin Prick Test

I. INTRODUCTION

A
STHMA is a chronic inflammatory disease that narrows

the airways [1], thus making breathing difficult. Although

it affects people of any age [2] it is prone to start in childhood

[3], and an increase in the number of asthmatic children

during the last decades [2] has risen asthma as the most

common chronic disease of childhood in the United States [4].

Asthma is characterized by a series of symptoms that include

bronchial hyper-responsiveness, spasmodic contraction of the

bronchioles or increase in mucus segregation among others,

which cause difficulty for expiring the air from the lungs [5]

and whose continuous presence may lead to the permanent

remodeling of the airways [6].

Most of these symptoms are usually reversible with medi-

cation but in some cases they can turn severe [2], and hence

accurate and early diagnosis is important in order to provide an

appropriate treatment and follow-up of the patients, as early

intervention seems to prevent permanent airway obstruction
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TABLE I
CHARACTERISTICS OF THE CHILDREN IN THE DATA BASE. (WHILE CONTINUOUS VARIABLES ARE EXPRESSED AS MEDIAN (MIN-MAX), INTEGER

VARIABLES ARE DISPLAYED AS N (%). BMI: BODY MASS INDEX, SPT: SKIN PRICK TEST.)

LoR HiR ICS Total

n 14 13 7 34

Sex (male) 6 (43%) 5 (39%) 4 (57%) 15 (44%)

Age (years) 5.0 (3.4-6.6) 4.6 (3.4-6.8) 5.1 (3.8-6.7) 4.9 (3.4-6.8)

Height (cm) 111 (96-121) 110 (94-126) 108 (104-127) 109 (94-127)

Birth weight (kg) 3.6 (2.1-5.2) 3.6 (2.8-4.6) 3.5 (3.0-4.1) 3.5 (2.1-5.2)

BMI 16.5 (13.5-18.3) 15.9 (14.8-18.0) 16.1 (14.5-18.0) 16.1 (13.5-18.3)

Wheeze 5 (36%) 13 (100%) 7 (100%) 26 (77%)

Allergic rhinitis 2 (14%) 3 (23%) 2 (29%) 7 (21%)

Atopic dermatitis 7 (50%) 7 (54%) 3 (43%) 17 (50%)

SPT positivity 3 (21%) 9 (69%) 5 (71%) 17 (50%)

Parental asthma 4 (28%) 6 (46%) 4 (57%) 14 (41%)

[7]. Despite the fact that asthma usually develops during

childhood, there is not a feasible means to early diagnose it

[8]. The assessment of asthma in young children is mainly

based on clinical history [9]–[11], which is retrospective in

nature and can be incomplete in some cases. Also classical

expiratory flow measurements that are widely used in adults,

such as forced expiratory volume in one second and forced

vital capacity, are strongly effort dependent and therefore

usually not reliable in young children with limited cooperation

[8]. In this way, it would be interesting to dispose of non-

invasive methods that could be used for aiding in the diagnosis

of asthma without interfering in children normal activity.

Pathogenesis of asthma has been related with an abnormal

autonomic nervous system (ANS) function [12]–[14], particu-

larly with its parasympathetic branch, as parasympathetic ner-

vous system (PSNS) is involved in the control of bronchomotor

tone [15] and bronchoconstriction mechanisms [16], [17]. As

high frequency (HF) component of heart rate variability (HRV)

spectrum mainly reflects PSNS activity [18], HRV analysis has

been used to assess increased vagal tone in asthmatic subjects

[13], [14]. This, together with the absence of sympathetic

innervation of airway smooth muscle [16], [17] point to

PSNS activity as an important underlying factor of the altered

bronchomotor tone in asthmatics. In this way, parasympathetic

bronchial control in asthma has been previously studied in

adults and children through HRV analysis [13], [14], but to

the authors knowledge no preschool children HRV studies have

been performed.

Respiratory modulation of HF component of HRV spectrum

varies over time. This modulation depends on breathing pa-

rameters and might be also related with the configuration of the

whole tracheobronchial tree (macro-configuration) in a given

instant, which in turn depends on each airway configuration

(micro-configuration). Under the assumption of independent

airways, Que et al. [19] suggested that probability of a

simultaneous narrowing of all the airways tends to zero.

However, increased bronchomotor tone in asthma produces

a decreased airway caliber, which might lead to an increase

of this probability. In this way, Que et al. hypothesized that

asthma could be regarded as a state in which improbable

airway micro-configuration distribution are more likely to

occur, thus leading to a lack of adaptability. As the underlaying

bronchoconstriction mechanisms are thought to be mainly

driven by PSNS [16], [17], this lack of adaptability could be

reflected in or caused by changes in PSNS activity behavior.

Hence, PSNS activity has been presented to be different

in asthmatic children than in controls and these differences

can be assessed through HRV analysis. Under the hypothesis

that abnormal PSNS behavior in asthma may be reflected in

changes in the spectral distribution of HF component of HRV

spectrum, in this work we aim to characterice HRV spectra in

preschool children that have been classified attending to their

risk of developing asthma.

II. MATERIALS AND METHODS

A. Study population

The data used in this work consists on electrocardiogram

(ECG) holter and impedance pneumography (IP) recordings

of 44 children who were referred to the Pediatric Allergy

Unit of Helsinki University Hospital due to persistent or

recurrent lower respiratory tract symptoms, such as wheezing

(a whistling sound when expiring air from the lungs), shortness

of breath or coughing. From this 44 recordings, 10 were

discarded due to electrode detachment, patient turning off

the device or forgetting to turn on the device. The recording

devices and the ECG and IP acquisition were custom designed

at Tampere University of Technology (Tampere, Finland) [20],

and signals were acquired with a sampling frequency of

256 Hz. The mean length of the recordings is about 14 hours

(± 3.5 hours).

Patients were classified into three groups according to their

modified asthma predictive index (mAPI) [21]. Children with

a positive mAPI were classified as a high risk (HiR) group for

developing persistent asthma, whereas children with negative

mAPI were classified as low risk (LoR). Furthermore, another

group was formed with children with a confirmed history

of wheeze but that were under inhaled corticosteroids (ICS)

treatment at the time of the recording. In the case of HiR and
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LoR groups, none of the subjects was under regular asthma

treatment, nor were they supplied bronchodilators during the

recordings. Table I contains a summary of patient information.

Data acquisition was approved by an institutional pediatric

ethics review board and informed written consent was received

from guardians of all patients. Also informed written parental

consent was received before data acquisition.

This data was collected for the study performed by Seppä

et al. [22], hence additional information can be found there.

B. Preprocessing

Signals were only analyzed during night due to several

reasons. Cardiac vagal tone is increased at night [23], with a

higher effect over bronchomotor tone in the case of asthmatic

subjects [24]. Moreover, children activity during day time is

usually higher than in the case of adults (and also unknown

in the analyzed database), compromising the analysis and

interpretation of the results in this period.

Analysis period was set between 23:00 and 05:00 based on

the observation of a reduction in mean heart rate (HR) at this

time interval, indicating a resting/sleeping state of the patients.

In a preprocessing step, ECG holter signals were resampled

to 1000 Hz using cubic splines interpolation in order to reduce

the impact of ECG sampling frequency on HRV analysis [25].

ECG baseline was extracted with a 3rd order Butterworth

low-pass filter with 0.5 Hz cut-off frequency to be further

subtracted from the interpolated ECG. Detection of QRS-

complexes in order to generate RR interval (time distance

between consecutive QRS-complexes) series was performed

with the wavelet-based approach described by Martı́nez et al.

[26].

Visual analysis of the signals revealed the existence of

some very noisy ECG segments, probably due to movement

(movement artifacts). In order to exclude from the analysis

those bad signal-quality ECG segments, beat-to-beat signal to

noise ratio (SNR) was calculated from the ECG signals as

described in Bailón et al. [27]. This beat-to-beat SNR was

computed as:

x̂SNRi
=

Ai

1 + PNi

(1)

where x̂SNRi
, Ai and PNi

are the SNR, peak-to-peak ampli-

tude and high-frequency noise level of beat i, respectively. Ai

was obtained as the difference between the maximum and the

minimum value of the QRS-complex corresponding to beat i,
whereas PNi

was calculated as:

PNi
=

√

√

√

√

1

ti2 − ti1

∫ ti
2

ti
1

x2(t)dt (2)

where x(t) is a high-pass filtered version of the ECG signal

(2nd order, 20 Hz cut-off frequency Butterworth filter) and ti1
is set 150 ms after the QRS-complex corresponding to beat

i, whereas ti2 is dependent of the instantaneous HR and is

calculated as ti1 + RRi/2, being RRi the RR interval (in

ms) between beat i and beat i + 1. Threshold for assuming
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Fig. 1. In the upper panel, an ECG segment showing a RSA episode is
displayed. After QRS-complex detection (empty circles), the method proposed
by Mateo and Laguna in [28] labeled the beat marked with a filled circle as
an ectopic. In the middle panel, the position of the beat labeled as ectopic
has been incorrectly modified. In order to solve that, RRe and RRe−1 are
compared. As the condition 1.15·RRe ≥RRe−1 is satisfied, the event is
considered to be a RSA episode, and the correction is undone. The resulting
detection is displayed in the lower panel.

acceptable SNR was established at 20 dB below the median

SNR of the night period of the recording.

For ectopic beats detection, first, the method proposed by

Mateo and Laguna [28], which imposes an upper threshold

on the degree of variation of instantanous heart rate, was em-

ployed. However, since respiratory sinus arrhythmia (RSA) is

stronger in children [29], some RSA episodes were considered

as ectopic beats. So the identified ectopic beats were revised

according to the following criteria: when a beat was labeled

as ectopic the RR interval between it and the previous beat

(RRe) was compared with the previous RR interval (RRe−1).

If the condition 1.15·RRe ≥RRe−1 (adopted from Tsipouras

et al. [30]) was satisfied, the event was considered as a RSA

episode instead of as an ectopic beat occurrence. An example

of this process is shown in Fig. 1.

On the other hand, IP signals preprocessing consisted in

a 3rd order Butterworth band-pass filtering, with cut-off fre-

quencies of 0.05 and 0.5 Hz, in order to eliminate the baseline

and discard all those components that are not expected to be

respiration-related.

Both ECG and IP signals were later split in five-minute

segments overlapped four minutes, so that a five-minute seg-

ment was obtained for each minute of the recording. Those

segments whose ECG SNR decayed under the threshold were

discarded.

C. Respiratory frequency estimation

Respiratory frequency was estimated within each five-

minute block by two different approaches. In the first one, the

respiratory frequency was extracted directly from the power

spectral density (PSD) of the IP signal as proposed by Bailón

et al. [27], being referred to as FIP. The PSD of the IP signal

was calculated by Welch’s method (50-second windows with
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50% overlap). Also, respiratory frequency was estimated from

the QRS slopes and R-wave angle ECG-derived respiration

(EDR) approach proposed by Lázaro et al. [31]. The previous

method (Bailón et al. [27]) was applied to the resulting EDR

afterwards. The resulting frequency is referred to as FEDR.

D. HRV indexes

In this work both time and frequency domain analyses

were considered. In time domain analysis mean normal-to-

normal interval (NN), SDNN, SDSD, RMSSD and pNN50

[18] were obtained. In the case of the frequency domain

analysis, RR interval series were not directly transformed to

the frequency domain, but the modulating signal that is thought

to carry ANS information was first estimated according to the

time-varying integral pulse frequency modulation (TVIPFM)

model presented by Bailón et al. in [32] (in the following

calculations, subindex j represents the selected segment of

a five minute block, from which also time domain mea-

surements were obtained). First, instantaneous HR, dHRj
(n),

was obtained from RR interval series and re-sampled at 4

Hz. Beat time occurrences of those beats labeled as ectopics

were corrected with cubic spline interpolation (in average only

0.62% of the beats were ectopics, being them distributed in

time). Afterwards, a time-varying mean HR, dHRMj
(n), was

obtained by applying a 0.03 Hz low-pass filter to dHRj
(n)

and the HRV signal, dHRVj
(n), was obtained as dHRVj

(n) =
dHRj

(n)−dHRMj
(n). Finally, the modulating signal, mj(n), was

calculated as mj(n) = dHRVj
(n)/dHRMj

(n), where dHRMj
(n) is

the mean of dHRMj
(n) calculated over the j-th segment.

From this modulating signal, mj(n), HRV spectrum,

ŜHRV(F ), was estimated through Welch’s periodogram (50-

second window, 50% overlap), and classical frequency indexes

were calculated: low frequency (LF) and HF power (PLF

and PHF respectively), total power (TP), PLF to PHF ratio

(RLF/HF) and normalized LF power (PLFn) [18]. In this work,

classical LF band in the range [0.04-0.15] Hz was considered

[18]. On the other hand, HF band was defined as a 0.15 Hz

window centered in the FIP of the considered segment (from

now, HF band refers to the modified band, whereas classical

HF band refers to the [0.15-0.4] Hz band). The reason to

modify it was that, in some cases, FIP was near 0.4 Hz, so

part of the power around it spread along frequencies larger

than 0.4 Hz. Also, there were some cases where frequency

components with uncertain origin did appear around 0.15 Hz

(mid-frequency band, described by Goren et al. [33]), so a bias

would de introduced in the HF power calculation if considering

them. It was checked that there were not cases where the lower

bound of the resulting HF band was lower than 0.15 Hz. An

example showing both limitations is displayed in Fig. 2.

Minute by minute evolution of all the cited parameters was

obtained from five-minute segments.

E. Peakness

An index for evaluating the distribution of the HF band

of HRV spectrum is presented. Essentially, it is based on

measuring how the most powerful frequency components of

HF band are concentrated around the respiratory frequency. In
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Fig. 2. PSD showing the 0.15 Hz HF band (gray) centered in FIP. The
classical HF band of [0.15-0.4] Hz is shown with a dashed rectangle. It can
be noticed that HF power would not be well estimated if classical HF band
was considered: in the lower boundary we can observe spectral leakage from
LF band, whereas in the higher boundary a leakage from HF outside the
band due to the fact that the maximum is close to 0.4 Hz can be found.
PSD, as obtained from the modulating signal m(n) (see text for details), is
adimensional (ad).

this way, the power concentrated in a narrow band around the

respiratory frequency estimation was calculated as:

P∆ =

∫ min(FIP+∆f/2,HR/2)

max(FIP−∆f/2,0.15)

ŜHRV(F )dF (3)

where ∆f is twice the resolution of Hamming window,

∆f = 2.6Fs

N , being Fs the sampling frequency and N the

number of samples of the window (50 seg ×4 samples/seg

= 200 samples). The limits of [0.15-HR/2] Hz are imposed

in order to ensure that no power from the LF band or from

components with uncertain origin are considered (HR/2 Hz

is the highest frequency we can represent in HRV spectrum,

as HR is the intrinsic sampling frequency of HRV [34]).

The proposed index, named peakness (℘), is then defined

as:

℘IP
HRV =

∫ min(FIP+∆f/2,HR/2)

max(FIP−∆f/2,0.15)

ŜHRV(F )dF

∫ min(FIP+∆F/2,HR/2)

max(FIP−∆F/2,0.15)

ŜHRV(F )dF

=
P∆

PHF
(4)

where the subindex HRV and the superindex IP indicate that

℘IP
HRVis calculated from the HRV spectrum and using FIP as

the estimation of the respiratory frequency, and ∆F is a 0.15

Hz band centered in the estimated respiratory frequency. As

seen in eq. (4), the value of ℘IP
HRVwill be higher as the power

of the HF band of the spectrum is more concentrated around

a single frequency (see Fig. 3), being ℘IP
HRV= 1 in the case

of a pure sinusoid.

In order to assess if IP signal can be excluded from the

analysis, thus only considering ECG, another approach was

proposed. In this case the respiratory frequency estimation
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used was the one obtained from the EDR. Hence, the new

definition of ℘ is:

℘EDR
HRV =

∫ min(FEDR+∆f/2,HR/2)

max(FEDR−∆f/2,0.15)

ŜHRV(F )dF

∫ min(FEDR+∆F/2,HR/2)

max(FEDR−∆F/2,0.15)

ŜHRV(F )dF

(5)

where the subindex HRV and the superindex EDR indicate

that ℘EDR
HRV is calculated from the HRV spectrum and using

FEDR as an estimation of the respiratory frequency.

Finally, the complementary case of using only the IP signal

was considered. Hence, ℘ was derived directly from the PSD

of the IP signals as:

℘IP
IP =

∫ min(FIP+∆f/2,HR/2)

max(FIP−∆f/2,0.15)

ŜIP(F )dF

∫ min(FIP+∆F/2,HR/2)

max(FIP−∆F/2,0.15)

ŜIP(F )dF

(6)

where ŜIP(F ) is the PSD of the IP signal and the subindex

IP and the superindex IP indicate that ℘IP
IPis calculated from

the IP PSD and using FIP as an estimation of the respiratory

frequency.

F. Statistical Methods

Subject characterization was performed by calculating the

mean and median of the minute by minute evolution for every

possible combination of two consecutive hours in order to

cover at least one complete sleep cycle [35]. Also inter-quartile

range (IQR) was calculated. For the three study groups, a

Kolmogorov-Smirnov test was applied for assessing normality

of the data. Afterwards, a two-sided Wilcoxon rank-sum test

was applied when needed to the described mean in order to

assess differences between groups. Also Spearman correlation

coefficient (ρ) and Bland-Altman plot [36] were calculated

for assessing the relationship between parameters. Finally, the

mean absolute error in the estimation of FEDR was computed.

III. RESULTS

The highest number of significant differences between

groups was found for the two-hour period going from 2

a.m. to 4 a.m. with similar results for the mean and median

of all the parameters, so only mean is considered in the

further discussion for simplification. Results obtained for this

period are displayed in Table II, where it can be noticed

that the three ℘ , RLF/HF and PLFn presented statistically

significant differences between LoR and HiR. On the other

hand, mean PHF, RLF/HF, PLFn, ℘IP
HRVand ℘EDR

HRVwere able

to distinguish between LoR and ICS, whereas only RLF/HF

and PLFn presented significant differences between HiR and

ICS.

In order to check the accuracy of the respiratory frequency

estimation obtained from the EDR method, the mean abso-

lute error between FIP and FEDR was calculated, being it

0.0038 ± 0.0044 Hz.
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Fig. 3. ℘IP

HRV
is obtained as the ratio between the area defined by the HRV

spectrum between FIP −∆f/2 and FIP +∆f/2 (black, P∆) and the total
area of the HF band (gray, PHF). Note that whereas in (a) the existence of
only one dominant frequency component results in a high ℘IP

HRV
, the presence

of other powerful spectral components in HF band observed in (b) leads to
a lower value. PSD, as obtained from the modulating signal m(n) (see text
for details), is adimensional (ad).

Comparing the results obtained for each of the groups,

increased values of the three different ℘ and also decreased

values of RLF/HF and PLFn were obtained for HiR and ICS

with respect to LoR. The median values of the three different

versions of ℘ are consistent within each group, being similar

in the case of ℘IP
HRVand ℘EDR

HRVand slightly increased in the

case of ℘IP
IP. No noticeable differences could be assessed in

the median values of the other considered parameters, although

increased IQR was found in HiR for most of the classical time

and frequency domain indexes.

As PHF mainly reflects parasympathetic activity and

℘IP
HRVaims to measure spectral distribution in HF band, it

would be interesting to analyze if there exist a monotonic

relationship between PHF and ℘IP
HRV, as increased mean PHF

could be related with increased ℘IP
HRV. Spearman correlation
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coefficient was calculated between both parameters, being

ρ = 0.38, thus discarding monotony between them. On the

other hand, possible relationship with sympathovagal balance

was considered (lower PLFn was observed for HiR than for

LoR), so correlation between PLFn and ℘IP
HRVwas calculated.

In this case, the result was ρ = −0.72 thus revealing a

negative correlation between the indexes. This might indi-

cate that higher values of ℘IP
HRVwould be associated with

parasympathetic dominance, as PLFn = PLF/(PLF + PHF).
Regarding ℘IP

HRVand ℘IP
IP, ρ = 0.94 was obtained suggesting

strong correlation. However, Bland-Altman plot displayed in

Fig. 4 suggests that both methods are not equivalent as range

of confidence intervals is larger than the difference of the

medians between groups (Table II). Negative bias indicates

that ℘IP
IPusually present higher values (as can be also noticed

in their median values displayed in Table II).

Finally, in Fig. 5, boxplots of mean ℘IP
HRVand PLFn for

HiR and LoR groups are shown for each two-hour interval,

in order to evaluate the robustness of each of the parameters

to discriminate between both groups along the whole night.

According to this figure, ℘IP
HRVis a much more robust index,

as it is able to discriminate between both groups at almost

every interval.

IV. DISCUSSION

Several studies have pointed out to parasympathetic branch

of ANS as the main responsible of broncho-constriction me-

chanisms [16], [17] and bronchomotor tone control [15], which

are closely related to asthma. The increased vagal activity and

altered autonomic airway control observed in asthmatic pa-

tients may be also reflected in cardiac vagal activity [13], [14]

and hence HRV could be a suitable tool for evaluating those

changes. In this work, we hypothesized that not only increased

vagal tone but also a distinct behaviour of vagal activity could

be related with asthma, and that these differences could be

characterized through HRV spectral analysis. For this purpose,

we defined ℘ as an index to evaluate the spectral distribution

of HF components of HRV spectra, and we used it in the

characterization of a group of preschool children that had

been previously classified attending to their risk of developing

asthma.

Concept of peakness, was already presented by Bailón

et al. [27] and used by Lázaro et al. [31] and Hernando

et al. [37] for respiratory frequency estimation and stress

assessment, respectively. However, a modified definition is

employed here. Essentially, the main differences between ℘
presented here and peakness proposed by Bailón et al. are

related to the frequency resolution and to the frequency bands

definition: whereas Bailón et al. aimed to distinguish those

spectra with a clear dominant frequency, ℘ is used in this

work for the characterization of the frequency distribution in

the HF band. In this way, a higher resolution is employed

here for calculating the PSD, as two near powerful frequency

components must be differenced. Moreover, Bailón et al.

considered a wider frequency band, as peakness was applied

to respiratory signals which are not expected to show non-

respiration-related components. In difference, ℘ is applied
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Fig. 5. Temporal evolution of the mean values of ℘IP

HRV
and PLFn is

shown. Boxplots are centered in the intermediate hour of the two-hour interval
considered (boxplots for different groups, although plotted separately for
interpretation purposes, are calculated with the same time references). *
indicates significant differences between HiR and LoR in the given two-hour
interval.

to HRV signals which are well known to have other non-

respiration-related modulations, thus a narrower band was

considered.

℘IP
HRVwas analyzed together with classical time and fre-

quency domain HRV indexes. Previously, HRV signals were

conveniently preprocessed. Although it is well known that an

accurate ectopics detection and correction is crucial in HRV

analysis, the problem in this case is different: if we considered

a RSA episode as ectopic (overcorrection), we would be

loosing fundamental information, as RSA is essentially what

we pretend to characterize through ℘IP
HRV. RSA episodes
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TABLE II
MEAN VALUE BETWEEN 02:00 AND 04:00 OF THE PRESENTED PARAMETERS FOR EACH OF THE GROUPS (MEDIAN (IQR)). * AND ** INDICATE

DIFFERENCES WITH LOR (p < 0.05 AND p < 0.005 RESPECTIVELY), WHILE † INDICATES DIFFERENCES WITH HIR (p < 0.05). AS PLF , PHF AND TP
ARE CALCULATED FROM m(n) AND NOT DIRECTLY FROM RR INTERVAL SERIES, THEY ARE ADIMENSIONAL (AD).

LoR (n=14) HiR (n=13) ICS (n=7)

FIP (Hz) 0.30 (0.04) 0.29 (0.04) 0.29 (0.08)

FEDR (Hz) 0.30 (0.05) 0.29 (0.04) 0.26 (0.08)

NN (ms) 750.97 (144.94) 756.29 (146.98) 796.71 (86.57)

SDNN (ms) 74.68 (21.42) 72.40 (92.04) 91.77 (29.78)

SDSD (ms) 81.13 (26.73) 78.35 (127.75) 113.80 (45.07)

RMSSD (ms) 81.01 (26.70) 78.26 (127.54) 113.65 (45.01)

pNN50 (%) 42.56 (21.91) 34.74 (33.99) 49.47 (14.61)

PLF (ad) 0.0027 (0.0019) 0.0021 (0.0036) 0.0026 (0.0023)

PHF (ad) 0.0035 (0.0015) 0.0032 (0.0147) 0.0069 (0.0044)*

TP (ad) 0.0057 (0.0033) 0.0051 (0.0197) 0.0099 (0.0067)

RLF/HF (n.u.) 0.88 (0.49) 0.59 (0.27)* 0.43 (0.31)*,†

PLFn (n.u.) 0.44 (0.12) 0.34 (0.10)* 0.25 (0.14)**,†

℘IP
HRV(n.u.) 0.37 (0.06) 0.42 (0.09)** 0.44 (0.04)*

℘EDR
HRV (n.u.) 0.36 (0.06) 0.42 (0.11)* 0.44 (0.04)*

℘IP
IP(n.u.) 0.43 (0.05) 0.47 (0.07)* 0.46 (0.07)

detector proposed here aims to minimize the number of false

ectopic detections, which would lead to a smoother spectrum

hence introducing a bias in the computation of ℘IP
HRV. Also,

the definition of the HF band was not the classical [0.15-0.4]

Hz band recommended by the Task Force [18], instead it was

defined as a 0.15 Hz band centered in the estimated respiratory

rate, FIP. As shown in Fig. 2, the lower frequency bound of

the classical band could be inadequate when some not well-

defined components (mid-frequency band [33]) are present, as

power with an origin distinct from parasympathetic activity

will contaminate the HF band. In addition, the upper bound

of 0.4 Hz could be not enough when respiratory rate is high

as some HF power will leak out of the band (young children

present high respiratory rates [38]), so HR/2 was considered

as it is the highest representable frequency in HRV spectrum,

due to the fact that HR is the intrinsic sampling frequency of

HRV [34].

Results in Table II show statistical significant differences

between LoR and HiR in ℘IP
HRV, RLF/HF and PLFn, thus

suggesting a peakier component in the HF band accompanied

by a reduced sympathovagal balance in HiR. Also differences

between LoR and ICS were assessed by the previously cited

parameters, together with PHF. Similar results obtained for

HiR and ICS could reflect an intrinsic alteration of ANS

behavior, although it may be difficult to infer whether this

altered behavior could be caused by medication itself. Never-

theless, limited size of ICS group compromises the further

physiological interpretation.

In a previous study, Emin et al. [14] reported increased

PSNS activity and parasymapthetic dominance in older chil-

dren (7-12 years) with a clinical diagnosis of asthma, as well

as the ability of HRV analysis to stratify asthma severity. Here,

increased parasympathetic dominance assessed in HiR and ICS

by lower RLF/HF and PLFn is consistent with the results in

[14]. However, in difference with [14], mean PHF was similar

in all the groups, which might be due to several reasons. First

of all, distinct definitions of HF band are employed, as in [14]

it is defined as [0.15, 0.5] Hz, thus impeding direct comparison

of the results. Moreover, we are not performing a classification

of children with diagnosed asthma but a characterization of

groups that were formed attending to the predicted asthma

risk, and also age differences between the populations of

both studies may be accompanied by differences in the ANS

functioning. Finally, the recordings in Emin et al. [14] were

performed under predefined conditions of stimulated PSNS

activity (deep breathing, Valsalva maneuver), whereas in our

study ECGs were acquired without a controlled environment.

In a further step, a new definition of ℘ without need of

the IP signal was proposed. This new index, ℘EDR
HRV , required

estimation of the respiratory rate so an EDR signal was

obtained from each ECG as proposed by Lázaro et al. [31].

Afterwards, FEDR was obtained as proposed by Bailón et al.

[27]. Results from ℘EDR
HRVwere similar to those obtained from

℘IP
HRVfor the three groups and it was also able to distinguish

HiR from LoR, thus supporting the use of only ECG signals

and hence of a simpler acquisition hardware. However, this

index requires FEDR estimation to be accurate. Here, a mean

absolute error less than 0.005 Hz was achieved.

In order to verify whether ℘IP
HRVdoes reflect a measurement

of the respiratory activity or either it reflects another mecha-

nism, a third definition where only IP signal was considered,

℘IP
IP, was proposed. Analogously to the previous definitions of

℘ , higher ℘IP
IPwas obtained for HiR and ICS and significant

differences were found between LoR and HiR and hence it

can be derived from the IP signal with no need of ECG. High

correlation between both ℘ definitions (ρ = 0.94) suggests

strong relationship. However, Bland-Altman plot displayed in

Fig. 4 suggests that both measurements are not equivalent,
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as range of confidence intervals is larger than the difference

of the medians between groups (as can be noticed in Table

II). In this way and despite the fact that both indexes are

though to measure the same phenomenon, they cannot be used

interchangeably, as the intrinsic existence of different spectral

components in respiration and HRV lead to different mea-

surements. As displayed in Fig. 4 and Table II, ℘IP
IPpresents

higher average values, thus overestimating the results obtained

by ℘IP
HRV.

Summarizing, the three definitions of ℘ lead to similar

results, with increased values for HiR when compared with

LoR. Hence, and as ℘ is a measurement of how the power is

concentrated around the respiratory frequency, a peakier HF

component seems to be a common feature of children with

enhanced asthma risk. A possible explanation of increased

℘IP
HRVwould be a strong correlation with PHF. However, low

Spearman correlation between both variables rejected this hy-

pothesis. Nevertheless, negative correlation between℘IP
HRVand

PLFn suggests that spectral distribution of HF components

may be closely related with changes in sympathovagal balance,

whose altered behavior has been proposed to be responsible

of increased bronchoconstriction and bronchomotor tone ob-

served in asthmatics [15]–[17]. In spite of that, the nature

of these changes is not easy to analyze, as an increase in

sympathetic nervous system activity often produces a similar

effect than a decrease in PSNS activity and vice versa. Even

though correlation between℘IP
HRVand PLFn has been assessed,

the former has been presented as a more robust index against

inter- and intra-subject variability for distinguishing between

HiR and LoR, as displayed in Fig. 5). In addition, ℘ appears

to be robust, among young children, against the effect of sleep

stages over HRV and respiratory frequency [39] which may

be responsible of the lack of significant differences in PLFn

between groups in most of the two-hour periods (see Fig. 5).

As we do not dispose of polysomnographic recordings in this

study, we cannot evalaute the effect of sleep stages over HRV

or respiratory frequency. Nonetheless, additional confounders

apart from risk of asthma could be considered: e.g., obstructive

sleep apnea syndrome (OSAS) and chronic obstructive pul-

monary disease (COPD) are also obstructive diseases causing

dyspnea and that have been related with altered HRV [40],

[41]. In the case of OSAS, visual analysis of the IP signals of

the different patients have revealed the absence of generalized

amplitude decreases that could indicate apneic episodes, and

no differences between changes in IP amplitude were noticed

in the different groups. To the authors knowledge, no COPD

diagnosis was made for any of the subjects in the database,

although it is true that COPD diagnosis is again compromised

in so young children.

Despite being the physiological underlying processes

difficult to interpret, increased ℘ in HiR may be reflect-

ing differences in the PSNS-driven control of respiratory

modulation, since changes in respiratory pattern do affect

RSA as suggested by Strauss-Blasche et al. [42]. In this

way, HiR patients would be presenting a more stable res-

piration component, which could be related with a lack of

adaptability of the whole respiratory system. This hypothesis

is also supported by the results obtained by Seppä et al.

[22], who assessed reduced chaoticity in the IP of children

with high-risk of developing asthma. Moreover, Veiga et

al. assessed increased regularity of the airflow pattern in

asthmatics through decreased approximate entropy [43]. In

a previous study, we also observed a decreased complexity

(measured through correlation dimension analysis) of the

HF components in the case of HiR [44]. Hence, nonlinear

analysis of the airflow and HRV in asthmatics (and potential

asthmatics) suggests that asthma might be regarded as a state

of increased regularity as hypothesized by Que et al. [19] or

by Goldberger, who described illness as a state of reduced

complexity [45]. Increased ℘ in children that are more likely

to develop asthma in the future might be related with this

’decomplexification’ and despite the hypothetical background,

previous measurements suggesting decreased complexity in

asthmatics could be reflecting a lack of adaptability. Hence,

decreased adaptability of PSNS activity in early stages of life

could be a potential marker of asthma risk. Nevertheless, in

order to go deeper into the understanding of the nature of

the differences between groups, a prospective analysis would

be desirable so that we could assess if children classified

as HiR are indeed developing asthma in the future, as the

available classification is only based in the clinical history

of the children, and without accounting for inflammatory

markers. Additionally, the limited size of the database makes

further study necessary to provide stronger evidence of the

results reported here.

V. CONCLUSION

In conclusion, in this work HRV analysis has been used

for the characterization of ANS activity in a group of pre-

school children divided in 3 groups based on the risk of asthma

development and on medication intake: high-risk, low-risk, and

under ICS treatment. Consistently with previous studies that

described asthma as an state of increased regularity, peakness,

℘ , has been presented as a robust index that reflects a peakier

HF component in children with high risk of developing asthma

in the future. As HRV analysis is non-invasive in nature, it may

be regarded as a convenient tool to aid in the study of the

neural mechanisms underlying asthma, thus complementing

the information obtained through other methods.
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