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Abstract

As members of an increasingly aging society, one of our major priorities is to develop tools to 

detect the earliest stage of age-related disorders such as Alzheimer’s Disease (AD). The goal of 

this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home 

behavior data to detect the multimodal symptoms that are often found to be impaired in AD. After 

gathering longitudinal smart home data for 29 older adults over an average duration of >2 years, 

we automatically labeled the data with corresponding activity classes and extracted timeseries 

statistics containing 10 behavioral features. Mobility, cognition and mood were evaluated every six 

months. Using these data, we created regression models to predict symptoms as measured by the 

tests and a feature selection analysis was performed. Classification models were built to detect 

reliable absolute changes in the scores predicting symptoms and SmoteBOOST and wRACOG 

algorithms were used to overcome class imbalance where needed. Results show that all mobility, 

cognition, and depression symptoms can be predicted from activity-aware smart home data. 

Similarly, this data can be effectively used to predict reliable changes in mobility and memory 

skills. Results also suggest that not all behavioral features contribute equally to the prediction of 

every symptom. Future work therefore can improve model sensitivity by including additional 

longitudinal data and by further improving strategies to extract relevant features and address class 
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imbalance. The results presented herein contribute towards the development of an early change 

detection system based on smart home technology.
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I. INTRODUCTION

INCREASING life expectancy in developed countries has resulted in a growing number of 

cases of people affected by age-related neurodegenerative diseases, such as Alzheimer’s 

Disease (AD). An estimate of 115.4 million people will suffer from AD in 2050 [1], which 

can result in devastating consequences in terms of healthcare costs and quality of life of 

patients and caregivers. While there is no known cure [2], treatments to delay and reduce 

cognitive and behavioral symptoms of AD do exist and are demonstrated to be more 

effective the sooner they are applied [3]. Therefore, as a matter of general interest, the search 

for methods of early detection is currently a high priority issue. Such methods could lead to 

earlier detection and therefore more effective intervention. The resulting benefits include an 

increase in the independence of the patients, an improvement in quality of life for them and 

their caregivers and a reduction in health-care costs.

Although AD’s clinical hallmark is episodic memory impairment [4], it manifests symptoms 

in multiple domains, including mood, behavior, and cognition [5]. These symptoms and the 

associated pathology are usually measured by means of self- and informant- report 

questionnaires, clinical assessments conducted by health care professionals and medical 

examinations that may involve brain imaging. Often evaluations are initiated after symptoms 

have been prominent for some time, resulting in a delayed diagnosis [6]. Given that AD 

pathology in the brain accumulates slowly over time, a key for the treatments to be effective 

is early detection of the disease and implementation of available treatments.

Smart homes are an emerging technological solution, based on the use of embedded sensors 

to enhance homes’ intelligence, enabling the unobtrusive monitoring of resident’s behavior 

[7]. Real-life data can be gathered non-stop in a completely naturalistic way, offering a 

complete and ecologically valid view of older adults’ behavior and allowing the detection of 

changes that might indicate the onset of a disorder. If smart home-based behavior shifts were 

mapped to AD, many disadvantages of the usual assessment methods could be overcome: 

detection could be made without the need for older adults to travel to a health center to 

receive expensive and invasive diagnostic testing. In contrast, smart home monitoring may 

detect cognitive changes as they occur, resulting in less expensive and more timely 

diagnosis.

In order to map detected behavior shifts to AD symptoms, machine learning-based models 

can be used. Machine learning is a subdiscipline of artificial intelligence (AI) aimed at 

building algorithms that are able to learn and/or adapt their structure based on a set of 

observed data (i.e., example data or past experience) [8], [9]. This technique offers an 
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approach for the analysis of high-dimensional and multimodal biomedical data. A wide 

variety of methods exist within this area, including both regression (e.g. Support Vector 

Regression, Linear Regression or k Nearest Neighbors) and classification methods (e.g., 

Support Vector Machines, AdaBoost, Multilayer Perceptron or Random Forest). Whereas 

regression models predict continuous variables (e.g., a score for a standardized assessment 

test), classification models determine symbolic class labels for the data (e.g., affected vs. 

non-affected by a disease). For a detailed explanation of specific machine learning 

algorithms, we refer the reader to the literature [10], [11].

Our goal in this paper is to assess the possibility of detecting changes in psychological, 

cognitive and behavioral symptoms of AD by making use of unobtrusively collected smart 

home behavior data and machine learning techniques. The affirmation of this hypothesis 

would result in development and implementation of an early detection system for disorders 

that provoke behavioral changes, such as AD. Such a system could alert patients and 

relatives of likely changes, making it possible to take timely action.

Previous research has demonstrated that the combination of machine learning techniques 

and longitudinal monitoring of smart home-based behavioral data can be useful not only to 

assess older adults’ health states but also to detect onset and monitor progression of some 

age-related diseases and disorders. Dawadi et al. found that the overall cognitive and 

mobility states of older adults could be predicted from unobtrusively collected in-home 

behavior data [12]. For that purpose, they introduced an algorithm called Clinical 

Assessment using Activity Behavior (CAAB) and tested its validity for global cognition 

(measured by the Repeatable Battery for the Assessment of Neuropsychological Status, or 

RBANS) and mobility (measured by the Timed Up and Go, or TUG) using time series-based 

descriptive statistics of daily activities. Hayes et al. [13] found Mild Cognitive Impairment 

(MCI), as measured by the Clinical Dementia Rating (CDR) and Mini-Mental State 

Examination (MMSE) tests, to be correlated with in-home walking parameters and mobility 

measures. MCI implies cognitive decline in one or more domains of cognition (e.g., 

memory, language, executive function) that is greater than what could be attributed to 

normal aging, but does not meet the threshold for a diagnosis of a dementia disorder like AD 

[14].

In related work, Galambos et al. [15] discovered associations between overall in-home 

activity and outing patterns with both dementia and depression, which is also known to be a 

common AD symptom. The Geriatric Depression Scale (GDS), as well as the MMSE and 

Short Form Health Survey-12 scales were used to determine subjects’ state. Petersen et al. 
[16] also found emotional states, specifically mood and loneliness, to be correlated to outing 

patterns, whereas they also verified the possibility of predicting other overall health 

predictors such as physical activity from these data. Austin et al. also predicted the 

loneliness of older adults by analyzing behavioral data [17]. A comparative summary of the 

sample sizes, techniques used, symptoms predicted, and observed results are given in Table 

I.

Nonetheless, there’s still much work to do towards the development of models to reliably 

detect AD symptoms from unobtrusively collected in-home behavioral data. The 
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predictability of the wide range of multi-modal symptoms of AD is yet to be analyzed, as 

well as the contribution of many behavioral traits to these models. Moreover, the possibility 

of detecting a Reliable Change [18] in AD multimodal symptoms from smart home data is 

yet to be researched. In addition, solutions have not been heavily explored to handle 

imbalanced class distributions (i.e., a much larger number of negative cases than positive 

cases) that are common in such environments. Furthermore, there are few studies where 

quantitative detection results have been given.

This paper aims at filling this research gap. Previous work has demonstrated the validity of 

daily behavioral statistics for the prediction of cognitive and mobility skills of older adults 

[12]. Building on this foundation, we will introduce new behavioral features and will 

analyze their validity for the detection of reliable changes in multi-modal AD symptoms.

The main contributions of this work can be summarized as follows. We analyze the 

predictability of several multi-domain symptoms often found to be impaired in AD, we 

analyze the contribution of behavioral features to the prediction of these health assessment 

scores, and we introduce and assess new smart home-based behavior features to quantify 

global daily routine. In addition, we offer an approach to detect a reliable change in health 

assessment scores based on unobtrusively collected behavioral data and to address the 

accompanying imbalanced class distribution problem.

II. METHODS

A. Data collection

First, we unobtrusively collected in-home behavioral data for older adults living in smart 

homes in two senior-living communities and we gathered corresponding biannual 

neuropsychological assessment data. This data was collected by the Center for Studies in 

Adaptive Systems (CASAS) and the Neuropsychology and Aging Laboratory at Washington 

State University (WA, USA). Review and approval by the Washington State University 

Institutional Review Board was obtained for the study. Part of this data (n=18 older adults) 

was analyzed in previous work [19]. For this work, a larger sample is available thanks to a 

longer monitoring time and to the inclusion of more subjects in the study.

The current study focuses on cognition, mobility, and mood (depression) scores (see Table 

III), which were collected as part of the biannual assessment and have been found to be 

affected by AD [5]. Cognitive abilities of the older adults were measured by means of the 

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) [20], the 

Prospective and Retrospective Memory Questionnaire (PRMQ) [21] and a Digit 

Cancellation test, while mobility was assessed by Timed Up and Go (TUG) [22] and Arm 

Curl [23] tests. Whereas the RBANS is a brief, individually administered battery to measure 

cognitive decline or improvement across several domains (Immediate Memory, Visuospatial, 

Language, Attention and Delayed Memory), PRMQ is a 16-item self-report measure of 

prospective and retrospective memory slips in daily life. The Digit Cancellation test is a 

user-friendly assessment of various aspects of prefrontal cortex functioning (namely, 

information processing speed, the ability to focus attention and executive functioning) [24]. 

TUG and Arm Curl are physical tests to measure patients’ risk for falling and upper body 

Alberdi et al. Page 4

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strength, respectively. The Geriatric Depression Scale - Short Form (GDS-15) [25] was used 

to assess the depression level of the participants. The 15-item GDS is the reduced version of 

the original 30-item GDS scale, which is a screening measure used to detect clinical levels 

of depression in older adults. A score of 10 or greater is suggestive of clinical depression.

The smart home sensor data used for this study was collected from 2011 through 2016, a 

period in which the data were collected continuously for durations ranging from <1 month to 

60 months (M=19.95 months, SD=17.98 months) depending on the residence. Health 

assessment data was also collected for 29 of the older adults who were living independently 

in the smart homes. Participants were classified as either cognitively healthy, at risk for 

cognitive difficulties or experiencing cognitive difficulties. See Table II for group 

demographic information. Participants in the cognitive risk group had lowered performance 

on one or more cognitive tests (relative to an estimate of premorbid abilities), but did not 

meet criteria for MCI or dementia. One participant in the cognitive difficulties group was 

diagnosed with a brain tumor with marked reductions in cognition following diagnosis. The 

remaining participants in the cognitive difficulties group met criteria for mild cognitive 

impairment (MCI) as outlined by the National Institute on Aging-Alzheimer’s Association 

workgroup [26].

B. Preprocessing

1) Day-level behavior feature extraction: Smart homes were set up to collect all 

sensor events that took place in each residence during the study period. Each data stream 

entry described a single sensor event in terms of the event’s timestamp, ID of the sensor 

detecting the event, and type of event (activation/deactivation).

Note that, a raw-sensor data entry by itself is meaningless: the same sensor event can occur 

when performing different activities and multiple occurrences of a specific activity may 

yield different event sequences. Therefore, in order to interpret the event data, it was first 

necessary to assign an activity label to each sensor entry, taking into account the context in 

which the sensor event occurred. For that purpose, the AR Activity Recognition algorithm 

[32] was used. This algorithm maps each of the sensor events to a value from a predefined 

set of activity labels in real-time, by applying an adaptivelength sliding window to the raw 

sensor data stream. The predefined set of activities include both ambulatory activities (such 

as mobility inside the home) and specific activities of daily living (ADLs), which were 

encoded by numbers from 1 to 12 (i.e., Sleep=1, Cook=2, Relax=3, ..., Other=12). This 

approach not only takes into account recent sensor events but also contextual information 

such as the activity label that was assigned to the previous time window. The reliability of 

this algorithm has been demonstrated in previous work, where accuracy greater than 98% 

was achieved on 30 testbed smart homes using three-fold cross validation [32]. Figure 2 

shows an extract of an AR activity labeled sensor data stream.

Once activity-level information was available, we computed 17 daily behavior features for 

each subject, explaining their daily sleep and mobility patterns, time spent in several specific 

ADLs (e.g., cook, eat) and overall characteristics of their routines. A detailed list of the 

computed features can be seen in Table IV.
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The daily distance that the subjects traveled inside their homes was estimated by computing 

the distance between areas of the home covered by each passive infrared (PIR) motion 

sensor as determined from based on the floor plan and sensor layout (see example in Figure 

3). Three of the apartments lacked specific information about the positioning of the sensors 

within the houses. In those cases, it was first necessary to estimate the positions of the 

sensors, which was done by considering these apartments to be of a similar shape to the rest 

and checking the activation order of the sensors in the raw sensor data files. Once all sensor 

positioning information was available, we computed the daily sum of the Euclidean 

distances between the consecutively-activated motion sensors in order to estimate the total 

walking distance traveled by the inhabitants. Note that this approach only provides an 

approximation of the real covered distance, as it does not consider the existence of walls or 

other obstacles between the sensors that must be avoided or navigated.

To compute daily-routine features, we first extracted the daily activity sequence from the 

AR-labeled sensor data stream. Shannon entropy was used to measure the complexity of the 

daily routine. To compute this entropy value, we estimated the daily probability distribution 

(histogram) of the activity sequence (P) and then applied the entropy formula shown in 

Equation 1,

Complexityroutine = ∑
activity = 1

12
Pactivity − log2Pactivity (1)

where Pactivity was the probability of a certain activity to occur for a given day based on the 

actual day’s histogram.

The same encoded activity sequence was used to compare the daily routines of consecutive 

days. For this purpose, we used an implementation of the “gestalt pattern matching” 

algorithm [33]. This SequenceMatcher function, available in Python, expresses the similarity 

of any two sequences as a value between 0 and 1. We use this function to determine the 

degree of similarity between consecutive days. Finally, we checked the timestamps of the 

daily activity events and computed the daylength as the time elapsed between the first and 

the last detected activity of the day. The remaining features in Table IV are self-explanatory.

2) Between-assessments behavior statisticś computation: The previous step 

yielded a set of daily activity features for each subject. We then applied the CAAB 

algorithm, which was introduced earlier [19], using RStudio for R to the daily activity data 

in order to extract behavior statistics for each between-assessment period.

In summary, the CAAB algorithm was used to apply the following processing steps to the 

daily behavior data: 1) Take each subject’s between-assessment daily behavior data (which 

was 6 months in length as assessments were performed twice a year), 2) Apply a log 

transform and a Gaussian detrending to each time-series (behavioral variable), 3) Compute 

five summarizing time-series statistics (variance, skewness, kurtosis, autocorrelation, and 

change) for each behavioral feature in this period using a sliding window of length 7 days, 
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and 4) Compute the 6-month average of each timeseries statistic and use the set of averages 

for the final predictions.

The resulting preprocessed dataset for further analysis was a collection of 85 (5 time-series 

statistics of 17 behavioral features) biannual summary behavior statistics for each of 29 

older adults who were living alone in their sensorized apartments for a period of 24.0 

± 13.68(SD) months.

3) Health assessment scores: Our goal is to create prediction models that map smart 

home-based behavior features to health assessment values that might capture AD symptoms. 

In this study, our target variables are the Arm Curl and TUG mobility test scores, cognition 

assessment based on Digit-Cancellation test, RBANS and PRMQ scores and subscores, as 

well as depression symptoms represented as GDS test-scores. All these values were 

collected from the participants at the end of each corresponding 6-month period.

Self-reported scores are usually strongly subject dependent. In addition, two people might 

achieve different results in the same test even if they have similar skills, due to their intrinsic 

characteristics. As a measure to avoid this inter-subject variability in the scores, we used a 

standardization method based on the Reliable Change Index (RCI) [18] computation. RCI 

compares assessment scores for each participant at one time point to previous scores for the 

participant to determine whether the participant has undergone a significant change in 

his/her performance. Detecting a significant change implies that the subject’s scores have 

changed sufficiently (exceeding a specified threshold) so that the change is unlikely to be 

due to measurement unreliability (i.e., due to repeat testing or practice effects). We looked 

for two types of reliable absolute changes: the first one compares each assessment value to 

the participant’s baseline values (RCIbaseline), whereas the second one compares each 

assessment point to the same participant’s previous assessment point (RCIconsecutive).

In order to calculate the RCIs for the scores used herein, we gathered test-retest reliability 

(rscore) and standard deviation (SDscore) values that the tests have shown in their 

development cohorts and/or in previous work, as shown in Table III. Therefore, the RCIs for 

each subject were computed as:

RCIbaseline(i) =
Scorei − Scorebaseline

2SEm
(2)

RCIconsecutive(i) =
Scorei − Scorei − 1

2SEm
(3)

where SEm or Standard Error of Measurement represents the expected variation of the 

observed test scores due to measurement error and is computed as 

SEm = SDscore 1 − rscore, rscore is the test-retest reliability measuring the consistency of the 

test scores over time, Scorei is the test score at assessment point i, Scorebaseline is the test 
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score at the first/baseline assessment and Scorei−1 is the test score at the previous assessment 

point.

Some of the assessment scores result in very few positive instances (data instances where a 

reliable change was observed), resulting in highly imbalanced class data. For the following 

analyses, we removed from the study those tests which were extremely imbalanced (<5% of 

positive instances). We distinguished the remaining tests as imbalanced (5%−30% of 

positive instances) and balanced data (30%−50% of positive instances).

Additionally, we also considered the possibility of detecting improvement and decline in test 

scores among consecutive assessment points as a method to reduce inter-subject variability. 

Comparing an individual’s score to his/her own previous one allows us to standardize the 

results, since it is a way to evaluate the improvement or decline of each individual’s skills in 

the time period under analysis, regardless of the absolute values of the scores. In this case, 

the difference between each consecutive assessment point was computed for each self-

reported test score of each subject. Every data instance with an improvement in the scores 

(≥0) was considered as a positive point whereas a decline in the performance of the skill 

being evaluated by tests (<0) was labeled as a negative point.

C. Cognition and mobility change prediction

The preprocessed dataset was analyzed using Weka [34], a free machine learning software 

written in Java. First, we performed a correlation analysis between the mobility, cognition, 

and mood assessment scores and the smart home behavior data. For this purpose, we used 

four different regression models using all behavior features computed in the previous step 

for each one of the scores. The four models we evaluated were Support Vector Regression 

(SVr) with a linear kernel, Linear Regression (LinearR), SVr with a Radial Basis Function 

(RBF) kernel and k nearest neighbors (kNN) algorithms. We compared the correlation 

coefficients (r) and Mean Absolute Errors (MAE) of the models using 10-fold cross 

validation (CV) approach. Corresponding pairwise random algorithms were built and 

evaluated in our dataset following the same process. These random algorithms provided a 

basis of comparison to ensure that performance results are not due to chance. The random 

algorithms were built using a uniformly distributed random data-matrix of the same size as 

the real behavioral data while respecting each variableʹs data range as in the original dataset. 

A corrected paired t-test was used to detect a significant improvement of smart home-based 

algorithms in comparison to the random data algorithms. Adjusted p-values (*p<0.01, 

**p<0.001) were used to avoid Type 1 error when checking for significance.

In order to analyze the types of behavior features that are most correlated with each one of 

the tests, we built activity-specific models for the main test scores with a linear SVr and 

evaluated the models using 10-fold cross validation. The behavior features that were 

included in each one of the models are shown in Table V. Again, we searched for statistically 

significant improvement in comparison to pairwise random algorithms using a corrected 

paired t-test and adjusted p-values (*p<0.01, **p<0.001).

Regarding RCI detection, we used different approaches for the imbalanced and balanced 

datasets. First, balanced datasets containing all behavioral features were reduced by means 
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of a Principal Component Analysis (PCA). PCA is a popular statistical technique based on 

the projection of the data to a lower-dimensional subspace, useful for finding patterns in 

high-dimensional datasets [35]. Principal Components that explained 95% of the variability 

in the behavior data were kept to create the reduced datasets. The SVM, AdaBoost, 

Multilayer Perceptron (MLP) and Random Forest (RF) algorithms were trained and 

validated using ten-fold cross validation. Evaluation metrics include area under the ROC 

curve (ROCauc), area under the Precision-Recall curve (PRCauc), Fscore, and sensitivity. The 

combination of these metrics offers an excellent overview of both the models’ overall 

performance and the capability to detect the event of interest (the reliable change event), and 

are especially suitable when the data distribution is skewed. A corrected paired t-test was 

used to detect a significant improvement of smart home-based algorithms in comparison to 

the pairwise random data algorithms, and an adjusted p-value (*p<0.0125) was employed to 

avoid Type 1 error.

For the imbalanced datasets, a different approach was required. Common machine-learning 

algorithms tend to create models that are biased towards the majority class when being 

applied to imbalanced datasets, resulting in high accuracies but very low sensitivity. In most 

of the health-related machine learning applications, the events in which we are more 

interested are the rare events or the minority class, highlighting the need to use alternative 

methods to improve the detection of these minority events. Two algorithmic approaches are 

tested in the current work to overcome this issue. The first one, SMOTEBoost [36], is a 

method combining boosting techniques with SMOTE [37] oversampling techniques. 

Whereas boosting aims at creating a “strong” classifier using a set of “weak” classifiers, 

SMOTE is a technique that oversample the minority class by creating synthetic data 

instances and thus reducing class imbalance. SMOTEBoost combines these processes 

iteratively in order to improve the sensitivity of the models without affecting the overall 

accuracy.

The second approach, the wrapper-based Rapidly Converging Gibbs sampler (wRACOG) 

[38], is a minority-class oversampling algorithm based on Gibbs sampling. Unlike 

SmoteBOOST and most of the minority-class oversampling techniques, wRACOG takes 

into account the underlying probability distribution of the minority class and the 

interdependencies of the data attributes when synthetically generating rare-event samples. 

This results in a better representation of the minority class. Moreover, wRACOG learns the 

models iteratively, selecting from the Markov chain generated by the Gibbs sampler the 

samples that have the highest probability of being misclassified by a learning model 

(wrapper) at each step, often leading to better classification rates. wRACOG stops iterating 

when there is no further improvement with respect to a chosen performance metric.

First, we built prediction models for imbalanced datasets using SMOTEBoost and kNN with 

k=5 as the “weak” classifier which we validated using 3-fold cross validation. Pairwise 

random algorithms were also built using the previously-mentioned random data and were 

validated for prediction of our data following the same 3-fold CV process. Again, we 

computed ROCauc, PRCauc, Fscore and sensitivity of the models. McNemar’s test was 

applied to check whether a significant improvement (for an adjusted p-value (*p<0.005)) 
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was observed using smart home-based prediction of reliable change in the scores in 

comparison to random data algorithms.

Next, we built the prediction models for the same imbalanced datasets following the second 

approach, i.e., using the wRACOG algorithm. For this purpose, it was first necessary to 

discover the interdependencies of the data attributes. In order to reduce the dimensionality of 

the data and to make it easier to map the interdependencies between the attributes, we used 

the PCA-based reduced datasets explaining the 95% of the data variance. Moreover, 

wRACOG assumes that the data attribute values are categorical, so we first discretized all of 

the principal components (PCs) into five uniform bins. We then constructed the Bayesian 

tree of dependencies following the Chow-Liu algorithm in Weka. The Chow-Liu algorithm 

[39] aims at constructing a maximal weighted spanning tree in a graph, allowing each 

attribute to have exactly one parent on which its value depends. Thus, the interdependencies 

between the PCs were discovered. Figure 4 shows the Chow-Liu interdependency tree for 

the PCA-reduced and discretized baseline dataset.

A kNN algorithm was used as the wrapper classifier and two different stopping criteria for 

the iterative process were tested: 1) First, as in many applications where the detection of the 

reliable change might be critical, we searched for the maximum sensitivity of the models. 2) 

Second, for cases where the overall prediction ability of the models might be more 

interesting, we used the maximized ROCauc metric as the stopping criteria for the algorithm. 

A 5-fold CV was performed for validation purposes and ROCauc, PRCauc, Fscore, and 

sensitivity of the models were evaluated. As in previous cases, in order to check for 

statistically significant smart homebased prediction of reliable change in the scores, we 

compared model outputs to those of their pairwise random algorithms by means of a 

McNemar’s test. An adjusted p-value (*p<0.005) was used to avoid family-wise (Type 1) 

error rate. The PCA-reduced random dataset was discretized following the same process as 

the actual smart home dataset.

Finally, for the detection of a person’s improvement/decline from smart home data, we used 

the PCA-based reduced dataset as in the previous case. The SVM, AdaBoost and RF 

algorithms were trained and validated following a 10-fold CV approach to discriminate the 

positive class (a score improvement)) from the negative class (a score decline). ROCauc, 

PRCauc, and Fscore were computed for each one of the algorithms and compared to the 

values of their pairwise-random algorithms. As the detection of a decline in self-reported 

skill performance might be more important than the detection of an improvement, we also 

computed the sensitivity of the algorithms towards these negative events. All statistical 

significances were checked for adjusted p-values (*p<0.01, **p<0.001). Figure 1 provides 

an overview of the research methods.

III. RESULTS

A. Absolute test scores’ prediction

Figure 5 shows the results of predicting the absolute test scores using all smart home 

behavioral features with regression learners. For mobility tests, whereas Arm Curl had low 

correlation with behavioral data, TUG demonstrated a moderate to strong correlation. For 

Alberdi et al. Page 10

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the cognition overall scores and subscores, the measures showed mostly moderate 

correlations with behavioral data. Exceptions included the visuospatial and immediate 

memory subscores of the RBANS test and the digit cancellation test scores, which were 

found to correlate weakly. In fact, the digit cancellation test didn’t show any statistically 

significant improvement compared to random models, whose MAE is also the highest. 

Finally, depression showed a weak correlation with the global set of smart home behavioral 

data.

Regressions based on specific activities, which can be seen in Figure 6, showed some 

interesting results. The Arm Curl mobility test showed weak but statistically significant 

correlations with outings, and cooking and eating features. In contrast, the TUG test showed 

significant moderate correlations with daily routines, overnight toileting and the combination 

of overnight toileting and sleep, as well as a significant weak correlation with cooking and 

eating features.

Regarding the self-report questionnaire, the global PRMQ score was moderately associated 

with daily routine and with the overnight patterns, as well as weakly correlated with sleep 

and overnight toileting. RBANS was moderately correlated with overnight patterns, whereas 

it was also showing weak yet statistically significant correlations with mobility, daily 

routine, and overnight toileting behaviors. Digit Cancellation processing speed was found to 

be moderately correlated with sleep and overnight patterns, and weakly yet significantly 

correlated with overnight toileting features.

Finally, for the geriatric depression assessment, we did not find any significant correlations 

but we perceived a significant reduction of the MAE of the models for mobility alone as well 

as for the mobility, outings, and sleep feature sets.

The overview of the trends shows that sleep and overnight behavior patterns, together with 

daily routine features presented in this paper, are the behavioral features that contribute the 

most to the prediction of the several health assessments.

B. RCI detection

The detection of reliable change on attention and language skills were excluded from our 

objectives due to the uncertainty that their low test-retest reliability would introduce in the 

results obtained for these labels. Global PRMQ and subscores, consecutive global RBANS 

scores, RBANS subscores related to immediate memory, Digit cancellation, and the GDS 

test score were excluded from the RCI detection analyses as they were capturing less than 

5% of the reliable change instances. Among the remaining labels, only the reliable change in 

Arm Curl scores from baseline had enough positive instances to be considered a balanced 

dataset. The remaining scores (RBANS, RBANS delayed memory, RBANS visuospatial and 

TUG change from baseline, and RBANS delayed memory, RBANS visuospatial and TUG 

change between consecutive assessments) were considered imbalanced and were processed 

as such.

Table VI shows the results for Arm Curl reliable change detection from baseline using 37 

PCs explaining the 95% variability of the data. All four classifiers demonstrated a 
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statistically significant improvement in terms of Area under the PR curve, Fscore and 

sensitivity for the adjusted p-value, whereas area under the ROC curve showed reasonable 

results surpassing the 0.6 barrier.

Table VII summarizes the results for the prediction models for the imbalanced datasets that 

are sampled based on the SMOTEBoost algorithm. McNemar’s tests for an adjusted p-value 

of 0.005 found significant improvement of the smart home-based prediction compared to 

random classifiers for the reliable change detection between consecutive assessments of 

TUG-based mobility. However, and even having used a method to overcome class-

imbalance, models still remain biased and lacking in sensitivity.

Table VIII shows the results of the RCI detection models based on the wRACOG algorithms 

for the imbalanced datasets, using the sensitivity maximization as the criteria for the 

algorithm to stop. Compared to previous SMOTEBoost based algorithms, the sensitivity of 

the models is highly improved, which might be very interesting for some applications. 

However, some models’ ROCauc values lie below 0.5 and their PRCauc is also low, which 

might again be an indicator of a biased model. In this case, the bias is towards the minority 

class. McNemar’s tests for an adjusted p-value of 0.005 only found enough statistical 

significance to accept predictability of delayed memory skills between consecutive 

assessment points.

Table IX shows the results of the RCI detection models based on the wRACOG algorithms 

for the imbalanced datasets, using the ROCauc metric as the stopping criteria for the iterative 

algorithm. The sensitivity of the models using this second approach is, overall, higher than 

the SMOTEBoost-based models and lower than the models presented in Table VIII. 

Interestingly, in some cases the areas under the ROC and PR curves, as well as the Fscores, 

are greater than the ones obtained with the previous approaches. This suggests a better 

suitability of the wRACOG based models maximizing ROCauc for some of the RCI 

detection problems. After controlling for the p-value to reduce the family-type error rate, 

only the model for the detection of reliable changes on consecutive Arm Curl mobility 

scores was showing a statistically significant prediction ability.

C. Detection of improvement/decline in cognition & mobility skills

Table X shows the results of detecting mobility and cognition score improvement/decline. 

After adjusting the p-value for a reduced family-wise error rate (*p<0.01,**p<0.001), only 

the detection of improvement and decline in mobility as measured by the Arm Curl test 

seemed to be possible. A significant improvement both in ROCauc and PRCauc values was 

detected using RF and AdaBoost classifiers in comparison to their pairwise random data 

classifiers, as well as a significant improvement in Fscore and sensitivity of the RF-based 

model.

IV. DISCUSSION

The problem addressed in this work is not an easy task to solve. Our goal was to predict the 

multi-modal symptoms commonly seen in AD from unobtrusivelycollected behavior data in 

smart homes with older adults residents. Despite the complexity of the task, our results show 
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that measures of cognition, mobility, and depression are predictable using activity-labeled 

smart home data.

A regression analysis of the smart home-based behavior data with all the tests under analysis 

has shown several moderate yet significant correlations. As expected, behavior data were the 

most correlated to mobility assessment scores, followed by cognitive skills, whereas the 

most difficult task seems to be mood prediction. Nonetheless, almost all models, with the 

exception of cognition level prediction based on Digit Cancellation scores, showed a 

significant improvement compared to models based on random data.

The feature selection analysis has brought to light such valuable information as the 

predictability of mobility scores from outing patterns, daily routine, and patterns of cooking 

and eating. In the specific case of TUG scores, there was a significant correlation with global 

overnight activities including bed-to-toilet transitions. This finding suggests that individuals 

who take longer to complete the TUG (indicative of slowed movement) tend to be more 

active at night. This is supported by the AD literature that finds both impaired mobility and 

sleep disturbances to be related to dementia [40], [41]. In [12], TUG showed significant 

correlations with mobility, outings, sleep and ADL (cook, eat, relax and personal hygiene 

activities) features.

While we did not observe statistically significant predictability based on outings, mobility 

and sleep after adjusting the p-value for reduced family-wise error rate, we did based on 

global daily routine patterns, which were not analyzed previously, and for cooking and 

eating activities, which likely reflect part of the ADLs of the previous work. Cognition was 

mainly correlated to sleep and overnight patterns, but also to daily routine, mobility, and 

outings. These results also agree with previous work [12], where correlations between total 

RBANS scores and smart home activity data were analyzed and statistical significance for 

sleep, mobility, outings, and ADLs was found. Also in agreement with these results, sleep 

and sleep-related disturbances have been found to be related to cognitive impairment in 

other research [42], [43], as well as time spent out of home to cognitive state as measured by 

the Clinical Dementia Rating (CDR) scale [16].

Finally, yet lacking statistical significance for the correlation scores, depression assessed 

with the GDS scale was found to be predictable based on mobility, outings, and sleep 

features. This agrees with previous work [15] where correlation of GDS scores with overall 

in-home mobility and outing patterns was discovered. Trends showing that sleep and 

overnight behavior as well as daily routine features contribute most to the prediction of 

several health assessments are also consistent with behavior literature [42]–[45]. Thus, our 

results validate those reported in the literature, in addition to analyze in greater detail each 

aspect of mobility and cognition skills thanks to the use of more tests and their subscores. 

Part of the data used for these correlation analyses overlaps with the data used previously 

(n=18) [12], so similar conclusions would be expected. Nonetheless, we have reaffirmed and 

given more strength to most of those conclusions by including data collected over a longer 

period and from more subjects (i.e., using a bigger sample size), as well as discovering new 

correlations with daily routine patterns. In fact, the novel overall daily-routine features 
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presented in this paper showed predictability both for mobility and cognition skills of the 

elderly.

Regarding reliable change detection, we see that activity-labeled smart home data can 

actually be used to build quite accurate models when a complete and balanced dataset is 

available. This is the case for the Arm Curl test change from baseline, which has been seen 

to be predictable in a quite accurate manner and with a high sensitivity. We verified in all 

four models built for this reliable change prediction that the use of smart home activity data 

significantly contributes to the detection of such events. Unfortunately, a balanced dataset 

was not available for all cases. Despite that problem, by applying the SMOTEBoost 

technique to overcome class imbalance, we were able to demonstrate that consecutive 

reliable change on mobility measured by TUG test is predictable using smart home activity 

labeled data. A McNemar’s test with an adjusted pvalue has supported this hypothesis, yet 

we are aware that the model lacks sensitivity to be considered a final model. The use of the 

wRACOG algorithm has resulted in some models with better prediction characteristics: 

improved sensitivity and ROCauc, PRCauc and Fscores were found in some cases. Changes 

in consecutive Arm Curl and delayed memory scores also showed enough statistical 

significance compared to random classifiers in a McNemar’s test to be considered reliably 

predictable from smart home data.

Now that we know that behavioral data can be used to at least automatically assess changes 

in mobility and memory skills, we can keep collecting more longitudinal data to create better 

models in the future. This might also result in the discovery of other significant associations. 

Note that these results were also achieved by using all the behavioral features, whereas a 

feature-selection process can also help in improving them. Furthermore, we used a kNN 

algorithm as the wrapper model for the wRACOG approach, but other algorithms can also 

be considered and might improve the results. Maximization of PRCaucs of Fscores could 

also be tested as stopping criteria for the iterative process, possibly leading to different 

conclusions.

Analysis of the ability to detect changes in cognitive and mobility skills has demonstrated 

the possibility of predicting a decline or an improvement in a person’s mobility as measured 

by the Arm Curl test. This not only confirms the results of the previous RCI analysis, where 

we saw that reliable changes in the Arm Curl tests were detectable by smart home activity-

labeled data but also adds value to the results suggesting that the direction of the change is 

also predictable. Literature also supports the idea of the relationship between Arm Curl test 

scores and ADLs [23]. This finding may prove useful not only to monitor the progress of a 

disorder like dementia but also to closely examine individuals who are undergoing 

rehabilitation.

None of the other tests showed enough evidence of predictability after adjusting the 

significance level. There are several contributing factors to the difficulty of this task. On one 

hand, in this case, we were considering all fluctuations as labels (either positive or negative) 

without considering their magnitude or without taking into account their reliability (i.e., not 

only reliable changes were considered but all changes). This might have included “noise” in 

the dataset by considering changes that might have appeared due to reasons other than an 
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actual change in the skills (such as low reliability on tests), making the classification task 

more difficult. On the other hand, the time-series statistics that we were extracting from the 

smart home behavior data do not necessarily reflect a positive or negative change in 

behavior, but an absolute change.

V. CONCLUSION

In summary, this work has demonstrated the possibility of predicting mobility, cognitive, and 

mood-related symptoms from unobtrusively collected in-home behavior data. We believe 

that the results shown herein are of high relevance, as they suggest the possibility of 

implementing a system that could bring huge benefits to our aging society. The models 

shown in this paper are early models aimed at demonstrating the feasibility of such a system 

and providing insight into the behavioral features that might be used for this purpose.

Completion and improvement of the results shown in this paper must be done by collecting 

more data and by applying algorithmic solutions that might better adapt to the imbalanced 

detection problems posed herein before their implementation in real-world settings. 

Collecting more data will also be useful to have a complete dataset with confirmed cases of 

transition from healthy state to cognitively impaired, which is necessary to build accurate 

prediction models. Thus, future work will focus on continued collection of data for further 

analysis, designing and testing more suitable algorithms for imbalanced datasets, and 

performing a more in-depth feature selection analysis in order to improve the sensitivity of 

the models shown herein, without the overall accuracy of the models being affected.
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Fig. 1: 
Overview of the research methods.
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Fig. 2: 
Extract of an AR activity-labeled sensor event data stream.
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Fig. 3: 
Floor plan and sensor layout of one of the smart home sites.
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Fig. 4: 
Chow-Liu tree for the PCA-reduced dataset.
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Fig. 5: 
Regression results for the absolute test scores using all behavioral features based on 10-fold 

CV (statistically significant improvement for r (adjusted *p<0.01,**p<0.001) and for MAE 

(†p<0.01, ††p<0.001) in comparison to the corresponding pairwise random algorithm)). 

Bars represent r and lines represent MAE.
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Fig. 6: 
Regression results for the absolute test scores by behavior feature type based on 10-fold CV 

(statistically significant improvement for r (adjusted *p<0.01,**p<0.001) and for MAE 

(†p<0.01) in comparison to the corresponding pairwise random algorithm)). Bars represent r 

and lines represent MAE.
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Table II:

Participants’ characteristics (m=male, f=female. Age and Education are specified by mean (range)).

Cognitive status Healthy At risk Difficulties

Group Size N=13 N=10 N=6

Age 82.85 (73–92) 86.20 (73–97) 84.50 (82–90)

Education 17.58 (16–20) 17.20 (12–20) 17.67 (16–20)

Gender m = 4, f = 9 m = 3, f = 10 m = 1, f = 5
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Table III:

Modality, test-retest reliability, and standard deviations of the scores used in the study.

Domain Score rscore SDscore Ref.

Mobility
Arm Curl 0.96 4.98 [27]

TUG 0.96 3.18 [26]

Cognition / Memory

Digit Cancellation 0.85 37.20 [28]

RBANS:

[29]

+total 0.84 15.58

+attention 0.16 19.00

+delayed memory 0.77 13.29

+immediate memory 0.75 16.58

+visuospatial 0.76 15.31

+language 0.33 15.31

PRMQ:

[30]
+total 0.89 9.15

+prospective memory 0.85 4.91

+retrospective memory 0.89 4.98

Mood GDS 0.68 2.20 [31]
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Table IV:

Day-level activity features included in the study.

Type Day-level features

Duration of specific activities (6 
features)

Time spent per day in cooking, eating, relaxing, and performing personal hygiene and nighttime 
toileting activities as well as time out of the home.

Sleep-related (2 features) Daily sleep duration and frequency.

Mobility-related (2 features) Total number of activated sensors and total distance covered walking inside the home per day.

Routine-related (7 features) Complexity of the daily routine, number of total and of non-repeated activities performed per day, 
maximum and minimum inactivity times, day length and similarity with the previous day.
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Table V:

Task-specific grouping of daily features.

Group Day-level features

Daily-routine Complexity of the daily routine, number of total activities and number of non-repeated activities performed per day, 
maximum and minimum inactivity times, day length and similarity with the previous day

Mobility The total number of activated sensors and the total distance covered walking inside the apartment per day

Outings Time spent per day in being out of home

Mobility & outings Mobility + Outings

Sleep The daily sleep duration and frequency

Overnight toileting Time spent per day in nighttime toileting activities

Overnight patterns Sleep + Overnight toileting

Cook & eat Time spent per day in cooking and eating
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Table VI:

Reliable change detection of Arm Curl scores from baseline (*: statistically significant improvement (adjusted 

p<0.0125) in comparison to the corresponding pairwise random algorithm. All algorithms can build 

statistically significant prediction models, but the RF algorithm beats the rest in terms of Fscore and 

Sensitivity, with similar PRCauc.

ROCauc PRCauc Fscore Sens.

RF 0.58 0.73* 0.77* 0.92*

SVM 0.59 0.69* 0.77* 0.89*

AdaBoost 0.64 0.76* 0.76* 0.84*

MLP 0.58 0.75* 0.69* 0.71*
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Table VII:

Reliable change detection of the imbalanced scores using SMOTEBoost (*: statistically significant 

improvement (adjusted p<0.005) in comparison to the corresponding pairwise random algorithm). Only 

TUGconsecutive shows predictability.

ROCauc PRCauc Fscore Sens.

RBANSbaseline:

+total 0.52 0.05 0.00 0.00

+delayedmemory 0.69 0.18 0.31 0.50

+visuospatial 0.45 0.09 0.08 0.08

TUGbaseline 0.48 0.17 0.06 0.11

ArmCurlconsecutive 0.40 0.18 0.13 0.12

RBANSconsecutive:

+delayedmemory 0.40 0.03 0.00 0.00

+visuospatial 0.68 0.20 0.35 0.50

TUGconsecutive 0.56* 0.22* 0.15* 0.50*
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Table VIII:

Reliable change detection of the imbalanced scores using wRACOG and sensitivity maximization as stopping 

criteria for the algorithm (*: statistically significant improvement (adjusted p<0.005) in comparison to the 

corresponding pairwise random algorithm). Only RBANSbaseline − delayedmemory subscores show 

predictability.

ROCauc PRCauc Fscore Sens.

RBANSbaseline

+total 0.72 0.07 0.09 1.00

+delayedmemory 0.63 0.10 0.13 0.60

+visuospatial 0.72 0.20 0.21 1.00

TUGbaseline 0.52 0.21 0.32 0.84

ArmCurlconsecutive 0.54 0.22 0.40 0.83

RBANSconsecutive

+delayedmemory 0.69* 0.06* 0.11* 0.80*

+visuospatial 0.52 0.09 0.17 1.00

TUGconsecutive 0.48 0.18 0.35 0.96
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Table IX:

Reliable change detection of the imbalanced scores using wRACOG and ROCauc maximization as stopping 

criteria for the algorithm (*: statistically significant improvement (adjusted p<0.005) in comparison to the 

corresponding pairwise random algorithm). Only ArmCurlconsecutive shows predictability.

ROCauc PRCauc Fscore Sens.

RBANSbaseline

+total 0.77 0.07 0.17 1.00

+delayedmemory 0.66 0.10 0.19 1.00

+visuospatial 0.64 0.14 0.20 0.23

TUGbaseline 0.51 0.17 0.39 0.60

ArmCurlconsecutive 0.62* 0.22* 0.49* 0.63*

RBANSconsecutive

+delayedmemory 0.67 0.03 0.08 1.00

+visuospatial 0.53 0.09 0.19 0.80

TUGconsecutive 0.59 0.18 0.29 0.48
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