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Hierarchical Algorithms for Causality Retrieval
in Atrial Fibrillation Intracavitary Electrograms

David Luengo*, Member, IEEE, Gonzalo Rios-Mufioz*, Victor Elvira, Member, IEEE, Carlos Séanchez,
Antonio Artés-Rodriguez, Senior Member, IEEE,

Abstract—Multi-channel intracavitary electrograms (EGMs),
are acquired at the electrophysiology laboratory to guide radio
frequency catheter ablation of patients suffering from atrial
fibrillation (AF). These EGMs are used by cardiologists to
determine candidate areas for ablation (e.g., areas corresponding
to high dominant frequencies or complex fractionated electro-
grams). In this paper, we introduce two hierarchical algorithms
to retrieve the causal interactions among these multiple EGMs.
Both algorithms are based on Granger causality, but other
causality measures can be easily incorporated. In both cases,
they start by selecting a root node, but they differ on the way in
which they explore the set of signals to determine their cause-
effect relationships: either testing the full set of unexplored
signals (GS-CaRe) or performing a local search only among
the set of neighbor EGMs (LS-CaRe). The ensuing causal model
provides important information about the propagation of the
electrical signals inside the atria, uncovering wavefronts and
activation patterns that can guide cardiologists towards candidate
areas for catheter ablation. Numerical experiments, on both
synthetic signals and annotated real-world signals, show the good
performance of the two proposed approaches.

Index Terms—electrocardiography, intracavitary electrograms,
atrial fibrillation, radio frequency ablation, Granger causality

1. INTRODUCTION

TRIAL fibrillation (AF) is a cardiac pathology charac-

terized by a rapid and unsynchronized contraction of the
atria. AF is the most common cardiac arrhythmia in clinical
practice [1], having reached epidemic proportions: one out of
four people over 40 years old are predicted to suffer from
AF throughout their lifetime [2]. Although AF is not deadly
per se, it causes a substantial discomfort on patients, results
in a large number of hospitalizations and is an important
risk factor for other pathologies like sudden death [3] or
stroke [4]. However, the underlying causes for the initiation
and maintenance of AF are still not fully understood, and
several hypotheses have been proposed [5], [6]. The prevailing
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hypothesis for AF maintenance still relies on the existence of
multiple wavelets randomly propagating through the atria [7],
[8]. More recently it has been hypothesized that stable spatio-
temporal re-entrant waves (rotors) may be responsible for
AF initiation and maintenance [9]. According to this theory,
ablating those specific areas of the myocardium should lead to
AF termination. Consequently, radio frequency (RF) ablation,
where an RF catheter is introduced inside the heart and used to
ablate potentially arrhythmogenetic areas, is increasingly used.
This approach has shown promising results for paroxysmal AF
patients, with success rates around 70-80 % by performing
pulmonary vein isolation (PVI), but has not been so effective
for persistent AF [10]. In this case, other ablation strategies
(e.g., ablating areas with complex fractionated EGMs [11] or
high dominant frequencies [12]) have been tested, but their
results are still unsatisfactory in many cases.

The lack of satisfactory performance of RF ablation strate-
gies for some patients is our main motivation. We believe that
there is an urgent need of more advanced signal processing
and machine learning methods that can assist cardiologists
during RF ablation therapies. These techniques should focus
on determining the direction of information transfer in the
multiple EGMs recorded in the electrophysiology laboratory.
This information will help both to better understand the
propagation of the action potential (AP) inside the atria of AF
patients and to identify candidate sites for RF ablation. With
these goals in mind, Granger causality (G-causality or GC) is a
well established methodology to infer causal relations among
multiple time series [15]. Several authors have investigated the
inference of causality relationships among different biomedical
signals [16], [17]. In particular, causality discovery tools have
been extensively used in neurology [15], and GC has been used
to investigate the relationship between several physiological
time series (heart period, arterial pressure and respiration
variability) [18], [19]. The use of partial directed coherence
to investigate propagation patterns in intra-cardiac signals was
considered in [20], [21], whereas GC maps have been built in
[22], [23], [24]. However, all of these approaches are based on
the standard approach to causality discovery, i.e., computing
the pairwise or full-conditional G-causality as described in
Section 2. More recently, [25] proposed alternative multi-
variate causality measures that involve the computation of GC
conditioned only on neighbor nodes.

'Complex fractionated EGMs are electrograms that do not exhibit the quasi-
periodic shape of regular electrograms, but a much more complex and irregular
shape [13]. The dominant frequency (DF) corresponds to the highest peak of
the frequency spectrum measured in a certain area inside the atria [14].
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In this paper, a hierarchical framework for causality retrieval
in EGMs is described. The first stage of the proposed method-
ology consists of finding the EGM having the “strongest” GC
links with other EGMs and selecting it as the root node. The
remaining nodes are then processed sequentially, starting from
the set of candidate children of the root node. Two alternative
algorithms are proposed for this purpose: global search causal
retrieval (GS-CaRe) and local search causal retrieval (LS-
CaRe). GS-CaRe processes the candidate children of the
current node sequentially according to their causal strength,
accepting them as true children if their GC is statistically
significant conditioned on all the previously accepted children.
LS-CaRe also processes the candidate children sequentially,
but only takes into account the neighbor nodes, thus avoiding
many false alarms. An exhaustive evaluation of the proposed
algorithms has been performed, using both synthetic signals
and annotated real-world signals from AF patients acquired at
the electrophysiology laboratory of Hospital General Universi-
tario Gregorio Marafién (HGUGM). Note that the GS-CaRe
algorithm was already described in [26], [27]. With respect
to [26], [27], a completely novel algorithm (LS-CaRe) is
proposed, and an exhaustive set of simulations (using synthetic
and real data) are performed to validate both algorithms.

The rest of the paper is organized as follows. Firstly, Section
2 provides an introduction to Granger causality, describing
both pairwise and conditional causality. The notation used
throughout the text is also summarized here in Table 1. Then,
Section 3 describes the two hierarchical causality discovery
algorithms proposed: GS-CaRe and LS-CaRe. This is fol-
lowed by Section 4, where numerical experiments (using both
synthetic and real data) are used to validate the developed
algorithms. Finally, the paper is closed in Section 5 with a
discussion that includes potential future lines.

2. GRANGER CAUSALITY
A. Pairwise Causality

Let us assume that we have N samples of a multi-variate
time series composed of () interrelated signals, z4[n] for ¢ =
1, ..., @Qand n = 0, 1, ..., N — 1. Granger causality
measures the increase in predictability on the future outcome
of a signal, z4[n], given the past values of another signal, z,[n]
with ¢ # ¢, with respect to (w.r.t.) the predictability achieved
by taking into account only past values of z4[n] [15], [28].
In short, G-causality determines whether past values of x[n]
can be useful to forecast future values of x,[n] or not.

In order to provide a rigorous formulation of GC, let us
define the linear autoregressive (AR) predictor for x4[n] given
its past samples (i.e., the g-th self-predictor) as

Tq[n] = Tgsqln] = Z Qgq[m]zeln —m| = cx;qxq[n], (1)

where M is the order of the predictor, obtained typically
using some penalization for model complexity to avoid over-
fitting [29]; agq[m] are the coefficients of the model; &,, =
[agq[1], ..., cgq[M]]T and &, denotes the transpose of otq;
and x,[n] = [z4[n — 1], ..., z4[n — M]]". Similarly, let us
define the linear AR predictor for z4[n] given the past samples

of both z4[n] and z,[n] (i.e., the cross-predictor from the ¢-th
signal to the ¢-th signal) as

Zoyq[n] = quTqu [n] + OLZZXg [n] = &4[n] + (XZZXg [n], (2)

where oy = [aug[l], -..y a[M]]T; xen] = [xen —
1], ..., z¢[n — M]]T; and 2,[n] is given by (1).

The residual errors of these two predictors in (1) and
(2) can now be defined as ¢4[n] = z4[n] — &4[n] and
gr—q[n] = x4[n] — Z4q[n], respectively. The pairwise G-
causality strength is then measured by the logarithm of the
ratio of the two variances of the residuals [30]:

Var(eq[n])

G£—>q =1In m

3)
Note that Var(ey—4[n]) =~ Var(ey[n]) when x,[n] does
not provide any useful information w.r.t. x4[n], whereas
Var(ey—q[n]) < Var(gq[n]) if x¢[n] allows us to improve the
prediction of z4[n]. Hence, 0 < G¢_,4 < oo, with larger values
of G4 indicating a stronger evidence of causality from ¢ to
q. Using these pairwise values, we can build a pairwise G-
causality strength matrix, G, such that its (¢, g)-th entry is

given by?
Ge,q _ Gé—)qa 14 7é q; (4)
0, {=q.

Finally, it is important to remark that we should add a
causality link from ¢ to ¢ only when the decrease in the resid-
ual’s noise variance from (1) to (2) is statistically significant. In
order to construct this causality graph, we define the pairwise
G-causality connection matrix, C, whose (¢, ¢)-th element is

C _ ]-7 X(Gfﬁq) <
“7 N0, x(G
3 X( f—)q) >,

where x(G¢_,) denotes some appropriate statistic and ~ is
the threshold value (i.e., significance level) used to determine
whether the value of G, is statistically significant. In order
to retrieve the potential causality link between two nodes, we
resort to p-values, and thus we denote v = 7, [31].> The
typical values of p in biomedical engineering which will be
used here are p = 0.05, p = 0.01 or p = 0.001. Finally, for
the sake of simplicity we will use the following short-hand
notation for Cy 4 in (5):

C[,q = [[X(Glﬁq) < lyp]]u (6)

where [L£C] = 1 if the logical condition £C is true and [£C] =
0 otherwise (i.e., if LC is false), whereas v, is the threshold
value obtained from the corresponding user-defined p-value.

®)

Note that Var(gq—q[n]) = Var(gq[n]), since #4[n] = £4—q[n], and thus
the definition in (4) is consistent with (3), since Gq—q4[n] =1In1 = 0.

3Let us note that some alternative and more complicated approaches than p-
values have been proposed in the literature [32]. However, p-values are simple
to understand and set by the users, their use is widespread in biomedical
applications (as well as in other scientific areas), and they are enough for our
purposes. Indeed, we have tested several values of p in the simulations (see
Section 4), noticing that the value of p has little influence on the results, as
long as it is small enough (i.e., p < 0.05).
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TABLE I
SUMMARY OF THE MAIN NOTATION USED IN THE DEFINITION OF THE HIERARCHICAL GRANGER CAUSALITY ALGORITHM.
[ Variable | Description
xq[n] Observed signals (1 <¢<Q,0<n <N —1).
Myq Maximum delay in the prediction from the ¢-th to the g-th signal. Can be user-defined or determined automatically.
x¢[n] Vector containing all the previous My, samples of x¢[n]: xo[n] = [ze[n — 1], ..., ze[n — Myy)]T.
aug[n] Coefficients of the linear predictor from the ¢-th to the g-th signal.
Qg Vector containing all the coefficients of the linear predictor from the ¢-th to the g-th signal: otgq = [ayg[l], ..., g [ng]}T.
Gy_yg Pairwise G-causality strength from the ¢-th signal to the g-th signal.
Pairwise G-causality strength matrix s.t. Gy, = Gyq for 1 < £, < Q.
Coq Pairwise G-causality connectivity from the ¢-th signal to the g-th signal, Cyq = xp(Go—q)-
C Pairwise G-causality connection matrix s.t. Cg g = [X(Gr—q) > Vp], i€, Cpq = 1if x(Ge—q) > 7p and Cy 4 = 0 otherwise.
Yp Threshold used to determine whether a causal link exists or not. It is a function of the user-defined p-value.
Goqz Conditional G-causality strength from the ¢-th signal to the g-th signal given the set of nodes in 7.
Gz Conditional G-causality strength matrix s.t. Gz(¢,q) = Gy, q|z-
Cosqz Conditional G-causality connectivity from the ¢-th signal to the g-th signal given the set of nodes in Z.
Czr Conditional G-causality connection matrix s.t. Cz(¢,q) = [x (Ge—qz) = Yol-
Cq = cand{iq} | Set of candidate sons of the g-th node (1 < ¢ < Q).
Sq = son{iq} Set of sons of the g-th node (1 < g < Q).
Pq = pa{iq} Set of parents of the g-th node (1 < ¢ < Q).

B. Conditional Causality

Unfortunately, pairwise GC is unable to discriminate be-
tween direct causation (e.g., xi[n] — x3[n]) and indirect
causation (e.g., r1[n] — x2[n] — x3[n]). In both cases, the
pairwise G-causality approach would lead to C; 5 = 1, imply-
ing that x1[n] has caused z3[n]. However, when building the
causality network we are only interested in direct causes, since
all the spurious links created by indirect causes may obscure
the flow of information among signals. In order to avoid these
undesired links returned by pairwise causality, conditional G-
causality was introduced in [30]. In short, conditional GC
attempts to determine whether x[n] has caused z,[n] given
another set of intermediate signals.

In order to provide a precise mathematical definition of
conditional GC, let us define the set containing the indexes of
the conditioning variables as Z. Following a similar procedure
as before, we define the conditional self-predictor

Eqzln] = etjyxq[n] + Y o) xp[n], (7)

rel
where &g = [ag[l], ..., apg[M]]T and x,[n] = [z,[n —
1], ..., xx[n—M]]" for all r € Z, and the conditional cross-

predictor from the ¢-th signal (with £ ¢ 7) to the ¢-th output

Fomsgizln) =g xgln] + 3 o ln] + o xeln]
rel

:ﬁqg[n] + “LX@ [TL] ®)

Now, by defining the residual errors from the conditional
predictors as eqz[n] = x4[n] — 24 z[n] and g/ qz[n] =
xq[n] — #4_4z[n], the conditional G-causality strength can
be defined, in a similar way to (3), as

Var(5q|z [n])

U Var(z o gzln])

Grogz =1 9
Again, 0 < Gy_qz < oo, with larger values of Gy 1
indicating a stronger evidence of causality from ¢ to ¢ given
the set of signals in Z; and we define two conditional con-
nection/strength GC matrices, Gz and Cz, whose (¢,¢)-th

elements are, respectively, Gy g7 = Gyqz and Cy gz =
[[X(GZ—W\I) <Yl

Note that the pairwise GC connection/strength matrices
are unique, whereas many conditional GC connection/strength
matrices can be constructed. The most usual situation is
setting Z = S—p = {1, ..., £—=1, ¢+1, ..., Q} =
{1, ..., Q}\ {¢} and constructing the full conditional GC
connection/strength matrices as Gy g(s_, Giqls., and
Crgs.. = IX(Gisgs.,) < 7pl, respectively. However,
conditional causality can also be used to build hierarchical
models by conditioning on specific sets of nodes in a structured
way, as described in Section 3.

3. HIERARCHICAL GRANGER CAUSALITY FOR
INTRACAVITARY ELECTROGRAMS

On the one hand, pairwise GC may provide misleading
results, as discussed in Section 2.1. On the other hand, the
“brute-force approach” to conditional causality (i.e., applying
conditional causality on the whole data set all at once) may
obscure some of the existing relationships. Let us consider
again the three-node causal network z1[n] — z3[n] — x3[n].
Now, by applying the full-conditional GC approach we would
typically obtain a single dependence relation: G933 = 1.
The other desired link, zo — 3, would typically not be
included, since G_,3); = 0 unless a very short lag (M) is used
to ensure that only signals from neighbor nodes are taken into
account (i.e., that the contribution of z1[n—1],...,x1[n— M]
to the prediction of z3[n] is negligible).

In this paper we propose two hierarchical methods that are
able to exploit the advantages of both approaches while min-
imizing their drawbacks. Both algorithms start by searching
for the node with the “strongest” G-causality links with the
remaining nodes and selecting it as the root node.* Then, the

4Note that the proposed framework essentially tries to identify the propaga-
tion direction of the AP. In order to do so, we propose a hierarchical approach
based on Granger causality (although other causality measures could also be
used) to measure the direction of the transfer of information throughout the
available electrodes. In this setting, the root node becomes the entry point of
the waveform to the set of electrodes, and thus it is essential to determine the
desired propagation direction.
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children of the root node are processed, adding new causality
links if the corresponding causality test is passed. This process
is repeated iteratively until there are no more nodes to process
and a poly-tree has been constructed. The assumed premises
are the following:

1) No feedback links can exist from lower nodes to higher
nodes in the hierarchy. This restriction is a consequence
of the refractory period of the AP: a period of time
following the excited phase when additional stimuli
evoke no substantial response [33].°

2) Causal interactions typically occur between neighbor
nodes. This behavior is due to the continuous propa-
gation of the waveform through the cardiac tissue.

In the sequel, we first describe the common initial step (i.e.,
the selection of the root node) and then we detail the two
hierarchical causality algorithms proposed: GS-CaRe and
LS-CaRe.

A. Initialization: Selecting the Root Node

The initialization stage, which is common for both the GS-
CaRe and the LS-CaRe algorithms, seeks to find the optimal
root node for the causal graph. This is done by computing the
pairwise GC among all nodes and selecting the one with the
“strongest” causal connections to other nodes. More precisely,
the steps performed to select the root node are the following:
1) Compute G4—¢ and Gy—q (for £,g =1, ..., Q — 1),
and set the corresponding entries in G and C.

2) Calculate the GC strength of the g¢-th node (¢ =
1, ..., @ — 1) as the sum of the strength of its causal
links to the remaining nodes:

Q Q
9q = Z qu = Z Gq—)€~
(=1 (=1

Calculate also the number of links for each node as

(10)

Q Q
Kg=> Cor=> [x(Gqur) <7l (11
=1 =1

3) Determine the node with the largest number of outgoing
causal links (i.e., links from that source node to some

other sink node), selecting it as the root node:°
i1 = argmax K, (12)
1<q<Q

with g, being used only to discriminate among nodes
with identical values of K.

SNote that this assumption holds regardless of the type of catheter used,
as long as the measurements taken by this catheter are all concentrated in a
certain area of the atria (i.e., it may not hold for basket catheters that try to
cover all of the atria). The only exception for the circular catheter used in
the experiments (see Section 4) concerns the initial and final points in the
hierarchy when we have circular dependencies like the ones shown in Figs.
3(p), (n) and (o). In this case our algorithm is unable to discover this last
connection, and thus would always have at least one missing link.

6In [26], the root node was obtained by maximizing gq instead of K, but
we have observed that this can lead to an erroneous selection of the root node
when a single very strong causal connection (i.e., a single very large value of
G) dominates over the rest.

B. Global Search Hierarchical Algorithm (GS-CaRe)

The GS-CaRe algorithm was initially proposed in [26] and
later on refined in [27]. Figure 1 shows the flow diagram of
the GS-CaRe algorithm. After the selection of the root node,
as described in Section 3.1, GS-CaRe sets the root node as
the current node and processes this current node (e.g., node %)
recursively as shown in Figure 1:

o Finds the candidate children of the current node, C; =
cand{i} = {¢: C; , = 1}, using pairwise GC.’

e Sorts the candidate children according to their pairwise
GC strength, in such a way that Gi—)Ci(l) > Gise,2) 2
Gise3) =

« Finds the true children sequentially using conditional GC,
starting with the “strongest” candidate and conditioning
on all the previously accepted true children.

If the current node has some true children, the strongest one is
selected as the current node, removed from the true children
list and the aforementioned process is repeated again. It the
current node does not have any true children (either because
they have already been processed or because the end of the
causality chain has been reached), then the parent of the
current node is set as the current node and the process is
repeated again. The algorithm ends when the current node is
again the root node and does not have true children to process
anymore. At the end of this process, GS-CaRe returns the
strength/connection GC matrices, G and C, which define a
poly-tree with its children and parents.

FIND the root node

SET the root node as the
current node

le
FIND candidate children

of current node using
pairwise G-causality

|

SORT candidate children
using their pairwise G-
causality strength

l

FIND true children of
current node using
conditional G-causality

N |
>

SET the strongest child
as current node and
remove from list

True
Children?

Current
node is root
node?

SET parent of current
node as current node

Fig. 1. Flow diagram of the GS-CaRe algorithm.

"Note that the search for candidate children is only performed on the
currently unprocessed nodes. See [26] or [27] for further details.
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C. Local Search Hierarchical Algorithm (LS-CaRe)

Figure 2 shows the flow diagram of the LS-CaRe algo-
rithm. LS-CaRe processes the nodes directly according to
their causal strength (starting from the root node, which is
the “strongest” one), considering only causal links among
neighbors up to a maximum user-defined distance, dyax. First
of all, let us define the distance among nodes as

d(¢,q) = min{((£ = q))q, ((¢ — £))@}, (13)

for any ¢,q € {1,2,...,Q} and with ((-))g denoting the
modulo operation, i.e., for any three integer numbers m, k
and @, m = ((k))g < k = rQ + m, where r and m are the
only integers such that —oo < r < ooand 0 < m < Q — 1.
Then, using the K, computed in Section 3.1, construct an
ordered set of nodes, Z = {i1,i2,...,iq} with i; being the
root node, such that K, > K, for all £ < q.8 Initialize the set
of neighbors of each node by including only the own nodes
(i.e., Nq(o) ={q} forg=1,...,Q). Set ¢ = 1 and d = 1.
Now, the LS-CaRe algorithm proceeds in the following way:
1) Update the set of neighbors by including those neighbors

at distance d from i, i.e., set No¥ = V(D U £{? with

L ={t:d(ig,0)=d, £=1,...,Q}. (14

Hence, ./\fq(d) includes now all those nodes whose dis-
tance to node i, is lower or equal than d.

2) For any node ¢ € Eéd), add an edge from i, to ¢
if Ciqﬁe = 1 and the following two conditions are
fulfilled:

a) There is no connection from any of the neighbors
in Nq(d_l) to/from i,. Mathematically, defining

Séd) = Z (Cé—m‘q + Cz‘q—w)a 15)
LeN{Y

an edge can only be added if &ﬁd) = 0. This
condition implies that edges should not be added
to nodes far away if connections to closer nodes
already exist.
b) The /¢-th node is not already connected, i.e.,
Z?:l Cjﬁg =0or Z?:l Ceﬁj =0.
3) If ¢ < @, then set ¢ = ¢ + 1 and return to step 1.
Otherwise, set ¢ = 1 and check d. If d < dpax, set
d =d+ 1 and return to step 1.
At the end of this process, GS-CaRe returns again the
strength/connection GC matrices, G and C, for the whole set
of nodes.

4. NUMERICAL EXPERIMENTS

In this section, we first define the performance measures that
will be used in Section 4.1. Then, we describe the numerical
experiments performed using synthetic data in Sections 4.2
and 4.3. Finally, the validation using annotated real data
is provided in Section 4.4. In order to implement the four
algorithms tested in this section (GS-CaRe, LS-CaRe, the
pairwise approach and the full-conditional method), we have
used the Granger causal connectivity (GCCA) toolbox [34].

8 As indicated in Section 3.1, when K ¢ = K for two nodes £ and g, we
use gy and gq to break the tie.

FIND the root node

|

SORT nodes according to their
G-causality strength

le

'l"

SET strongest node as current
node and remove from list

|

FIND candidate children of
current node within distance
dmax using pairwise G-causality

|

FIND true children using
pairwise G-causality and
additional conditions

YES

Nodes in
list?

END

Fig. 2. Flow diagram of the LS-CaRe algorithm.

A. Methods and Performance Measures

In order to gauge the performance of the two novel hier-
archical algorithms (LS-CaRe and GS-CaRe), we compare
them against the following methods:

o Pair: pairwise causality discovery approach, which sim-
ply performs a pairwise causality check among all nodes.

o Full: full-conditional causality discovery technique,
which performs a causality check among pairs of nodes
conditioned on all the other nodes.

o Alcaine et al.: the approach proposed in [25], which
defines a local propagation direction measure based on
conditional causality relations among four adjacent nodes.

For this comparison we use several standard statistical per-
formance measures. Let us denote the true causal connection
from the ¢-th to the g-th EGM (with ¢ # q) as Cy,,° and the
estimated one as C ¢,q- Noting that our main goal is discovering
the causal links among the different EGMs, we can have the
following situations:

o True positive (TP): The correct detection of an existing
causal link, i.e., Cpq = Cpq = 1.

« False negative (FN): The failgre to detect an existing
causal link, i.e., Cgq =1 and C;, = 0.

 True negative (TN): The correct absence of a non-

existing causal link, ie., Cpq = Cy 4 = 0.

False positive (FP): The detection of a causallink when

no causal link truly exists, i.e., Cy, =0 and C;, = 1.

Let us denote the total number of positive cases (i.e., true
causal links) as P, the total number of negative cases (i.e.,
non-existing or false causal links) as F, and the total number

9Remember that Cy,q = 1 corresponds to the presence of a causal link
and Cy , = 0 corresponds to the absence of that causal link.
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of possible connections as 7' = Q(Q — 1). Now, we can define
the following performance measures:'”

o Sensitivity: Also known as True Positive Rate (TPR).
Measures the proportion of causal links that are correctly
identified out of the total number of causal links:

TPR = ™ _ AALIELA,.
P TP + FN

« Specificity: Also known as True Negative Rate (TNR).
Measures the proportion of non-existing causal links that
are correctly identified:

™N TN
F  TN+FP’
o Accuracy: Measures the proportion of true causal detec-
tions (both for existing and non-existing links) among the
total number of possible connections:

A TP + TN TP + TN
cc = = .
T TP + FP + TN + FN

o F-Score: Also known as F} score. An alternative global
measure of performance, obtained as the harmonic mean
of sensitivity and precision (a. k. a. Positive Predictive
Value (PPV), and defined as PPV = TP/(TP + FP)):

_ PPV xTPR 2TP
" PPV+TPR 2TP+ FP+FEN’

Altogether, these complementary measures provide a complete
characterization of the performance of the different algorithms.
On the one hand, a high sensitivity implies a low rate of
false negatives, indicating that the method is unlikely to miss
existing causal links (i.e., all the true causal relations in the
data are likely to be discovered). On the other hand, a high
specificity is related to a low level of false positives, meaning
that the algorithm is unlikely to introduce spurious causal links
(i.e., all the causal links introduced are likely to correspond
to true links). Finally, the accuracy and the F-Score provide
a single global performance measure that takes into account
both the false positives and the false negatives.

(16)

TNR = (17)

(18)

Iy

19)

B. Simple Synthetic Intracardiac Electrograms

In this section, we test the performance of the two algo-
rithms proposed (LS-CaRe and GS-CaRe) on simple syn-
thetic EGMs. In order to generate these signals, the network
of modified stochastic FitzHugh-Nagumo (FH-N) oscillators
described in [35] has been used as in silico model. FH-N
oscillator networks are a simple, well-known and widely used
model for waveform propagation in excitable media [33]. In
cardiology, the FH-N equations can be used to replicate the AP
of the sinoatrial node, and the FH-N dynamics has also been
applied in the study of cellular coupling or the mechanism of
defibrillation [36]. Regarding the analysis of AF, this model
does not generate realistic EGMs in the time domain, but it
is able to reproduce the propagation patterns observed in real
patients (see the description below, Figure 3, and the videos
attached as accompanying material). Therefore, we believe that

10Note that the range for all the performance measures is from 0 to 1, with
1 indicating the best possible result and O indicating the worst one.

it is a useful model to perform an initial validation of the
proposed methods.

In our simulations, we construct a 2D grid composed of
J x J nodes (J = 32), where each node corresponds to
a dynamical system following the classic FH-N equations,
discretized using Euler’s method with an integration time step
Ty =5x 1072 s, plus an additive stochastic noise term, and a
coupling term gathering the interaction with neighbor nodes.
Altogether, this yields the following system of difference
equations:

Ui,j [Tl + 1] = Ui,j[n] + UQ\/EBiJ [n + 1} + Ty (pg(Um- [HD

1
_Vu[n]—l-ﬁ Z Ugvr[n]—l—mi,jG[n—Fl}),
(L,r)eEN; ;

(20a)

Vijln +1] = Vi jn] + Ty (BoUi j[n] + B1Vi j[n] + B2),
(20b)

where

e n=20,1,2,... are the discrete-time instants, correspond-

ing to continuous-time instants ¢t = n1y;

o {Ui j[n|}n=0,,.. is the signal sequence (representing the
AP of a cell) at the (7, j)-th node for 1 <4, j < J;

o p3(u) = Zi:o a,u” is a polynomial of order 3 with
known fixed coefficients «,. for r € {0,1,2,3};

o {VijIn]}n=0,1,. is the recovery sequence at the same
node, which depends on the known parameters 3, for
r€{0,1,2};

o the set N ; C {1,...,J} x {1,..., J} contains the neigh-
bors, within the grid, of the (4, j)-th node;

« the coupling coefficient, D > 0, is known and fixed;

e G[n] is a known, non-negative and typically periodic
forcing signal;

o the {m; ;}1<ij<s € {0,1} are (known and fixed) binary
indicators that determine which nodes are excited by the
forcing signal F[n];

o and the {B;;[n|}n=01,.. are iid. Gaussian random
variables with zero mean and unit variance.

Using this model, we have generated a database composed
of 17 sets of synthetic multi-variate EGMs that mimic AP
wavefront propagation patterns observed in real signals. The
parameters used for the simulations were set empirically in
order to reproduce waveform propagation patterns observed
in real signals (see [35] for further details): ap = as = 0,
o =—-28 a3=1,45=45x1073 5y =21, B, = —0.6,
B = 0.6, and 0> = 1. Regarding F[n], it consists of a
periodic sequence of pulses. Rotors are generated by applying
a forcing signal at one node right after the wavefront has
passed through it. Then, we select 10 nodes from the 2D
grid according to a circular layout resembling the topology
of a 10-pole spiral catheter. With the virtual recording devices
placed at these locations, the 9 synthetic bipolar EGMs used
in the simulations are obtained. Figure 3 shows the different
propagation patterns (see also the accompanying videos in the
supplementary material), grouped into three categories:

« Single, corresponding to the AP wavefront propagation

pattern observed when a single-loop rotor is present.
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Fig. 4. (Top) Example of the nine synthetic signals (ordered from bottom to top as 1 — 9) generated for three different cases: Single 1, Flat 2, and Circular
4. (Bottom) Binary intensity plots of the true causality matrices C. A black square corresponds to Cy , = 1, whereas a white square means Cp , = 0.

« Flat, associated to a flat propagation pattern (as observed
when the catheter is placed far away from the focal
source) plus a double-loop rotor (except in the first case).

o Circular, where a circular propagation pattern (corre-
sponding to the catheter being placed close to the focal
source) plus a double-loop rotor (once more, in all cases
except for the first one) is observed.

The following information is shown in Figure 3:

+ Wavefront propagation: Orange swirls of different in-
tensities to show the local propagation pattern and direc-
tion of the electrical wavefront.

o Nodes: The locations of the nodes of the virtual recording
device. Red and blue circles are used to denote source and
sink nodes, respectively.

o The true causal links (blue lines and arrows) among the
synthetic EGMs.

Figure 4 shows an example of the noiseless synthetic signals
for three cases (single 1, flat 2 and circular 4), altogether with
the intensity plots (using black squares for the ones and white
squares for the zeros) of their true causality matrices.

In the first experiment, we analyze the performance of the
different methods (in terms of the F-score) as a function of
the two parameters of the model: the p-value and the lag (M).
Tables II and III show the results. On the one hand, in Table II
it can be seen that the results are rather stable w.r.t. the p-value,
with slight decreases in performance for all the methods at low

SNRs and small increases at large SNRs. On the other hand,
from Table III we notice that a similar situation occurs (except
for the full-conditional approach) for M. Therefore, instead
of selecting specific values of p and M for the subsequent
simulations, we present the results averaged over all the con-
sidered significance levels (p € {0.05,0.01,0.001,0.0001})
and orders of the AR models (M € {10, 15, 20,25, 30}).

Figures 5(a)—(c) show the averaged sensitivity (TPR), speci-
ficity (TNR) and F-score for the different methods tested.
Alcaine’s approach attains the best performance in terms of
TPR and F-score (followed closely by LS-CaRe in both
cases), whereas LS-CaRe attains the best TNR (with Al-
caine’s method performing slightly worse). The pairwise ap-
proach achieves good TPR values, but its performance is very
poor in terms of TNR. On the contrary, the full-conditional
and GS-CaRe techniques obtain good TNR values, but very
poor TPRs. The F-score for these three cases (pairwise, full-
conditional and GS-CaRe) is much lower than the F-score
of Alcaine’s method and LS-CaRe. Note the threshold effect
in the sensitivity and F-score: below a certain SNR (around 0
dB) all methods fail. This effect is rather common in statistical
inference problems (e.g., see Fig. 1 in [37], Fig. 2 in [38] or
Fig. 6 in [39]), and here is due to the incorrect estimation
of the underlying AR models used for GC computation: no
causal links are detected at all, and thus the sensitivity and
F-score are zero, whereas the specificity is close to one.
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TABLE 11
F-SCORE FOR THE DIFFERENT METHODS TESTED AS A FUNCTION OF THE p-VALUE USED FOR M = 10 AND TWO VALUES OF SNR.
Method p-value (SNR = 10 dB) p-value (SNR = 40 dB)
0.05 0.01 0.001 0.0001 0.05 0.01 0.001 0.0001
Full 0.3891 | 0.3768 | 0.3022 | 0.2373 0.4184 | 0.4551 | 0.4726 | 0.4691
Pair 0.4724 | 0.4908 | 0.4773 | 0.4522 0.4340 | 0.4620 | 0.4838 | 0.4791
GS-CaRe 0.3357 | 0.3391 | 0.3178 | 0.2866 0.3075 | 0.3328 | 0.3290 | 0.3584
LS-CaRe(dmax = 1) | 0.8505 | 0.8237 | 0.7628 | 0.7004 0.7820 | 0.8272 | 0.8386 | 0.8111
LS-CaRe(dmax = 2) | 0.8488 | 0.8268 | 0.7702 | 0.7137 0.7808 | 0.8301 | 0.8355 | 0.8152
LS-CaRe(dmax = 3) | 0.8525 | 0.8301 | 0.7842 | 0.7334 0.7822 | 0.8287 | 0.8424 | 0.8268
Alcaine et al. [25] 0.7742 | 0.7829 | 0.7745 | 0.7767 0.8756 | 0.8805 | 0.8801 | 0.8805
TABLE IIT
F-SCORE FOR THE DIFFERENT METHODS TESTED AS A FUNCTION OF THE LAG (M) USED FOR p = 0.05 AND TWO VALUES OF SNR.
Method M (SNR = 10 dB) M (SNR = 40 dB)
10 15 20 25 30 10 15 20 25 30
Full 0.3891 | 0.2567 | 0.0634 | 0.0126 | 0.0029 0.4184 | 0.3935 | 0.1082 | 0.0206 | 0.0056
Pair 0.4724 | 0.3916 | 0.3308 | 0.3096 | 0.2973 0.4340 | 0.3915 | 0.3295 | 0.3036 | 0.2829
GS-CaRe 0.3357 | 0.2978 | 0.2689 | 0.2584 | 0.2264 0.3075 | 0.2958 | 0.2726 | 0.2443 | 0.2238
LS-CaRe(dmax = 1) | 0.8505 | 0.8157 | 0.7755 | 0.7423 | 0.6879 0.7820 | 0.8615 | 0.8168 | 0.7750 | 0.7013
LS-CaRe(dmax = 2) | 0.8488 | 0.8221 | 0.8041 | 0.7714 | 0.7116 0.7808 | 0.8649 | 0.8309 | 0.7957 | 0.7145
LS-CaRe(dmax = 3) | 0.8525 | 0.8219 | 0.7943 | 0.7733 | 0.7161 0.7822 | 0.8669 | 0.8193 | 0.7870 | 0.7227
Alcaine et al. [25] 0.7742 | 0.8108 | 0.8402 | 0.8852 | 0.8944 0.8756 | 0.8534 | 0.8916 | 0.8914 | 0.9089
1 1 1
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Fig. 5. Averaged results, over the considered significance levels (p € {0.05,0.01,0.001, 0.0001}) and orders of the AR models (M € {10, 15, 20, 25, 30}),
for the synthetic signals using different performance measures (sensitivity, specificity and F-score). (a)-(c) Using the simple model of Section 4.2. (d)—(f)
Using the more realistic model of Section 4.3.

Finally, Figure 6 shows examples of true causal connections
and recovered causality maps (using SNR = 20 dB, M =
10, p = 0.05 and dyax = 1 for LS-CaRe) for three cases:
single 1, flat 2, and circular 4. All the methods add many
spurious links, except for LS-CaRe and Alcaine’s approach,
which recover causality maps similar to the true ones.

C. Realistic Synthetic Electrograms

As a second case study, realistic electrograms were simu-
lated using a complete 3D model of human atria [40]. Sim-
ulations were performed as in a previous study [41]: cellular
electrophysiology was simulated using an AF-remodeled ver-
sion of the Maleckar et al. model [42], whereas propagation of
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Fig. 6. Synthetic signals: example of the true causality graphs [(a), (g) & (m)] and the graphs recovered using the pairwise approach [(b), (h) & (n)], the
full-conditional technique [(c), (i) & (0)], GS-CaRe [(d), (j) & (p)], LS-CaRe [(e), (k) & (q)], and Alcaine et al. [25] [(f), (1) & (r)] for three different cases.
(a)—(f) Single 1. (g)-(1) Flat 2. (m)—(r) Circular 4. Red lines correspond to bidirectional causal links.

the action potential was computed by solving the monodomain
equation with a finite element method-based software called
ELVIRA [43]. The integration time-step used for the 3D atria
simulations was 0.04 ms, so that the fast upstrokes of the
action potentials could be properly generated, but the output
voltages were only post-processed every 1 ms, facilitating
comparison with real-world signals, typically acquired at 1
kHz (see Section 4.D). Three situations were simulated for
10 seconds each: sinus rhythm (periodic stimulation at the
sinoatrial node every 500 ms), stable rotor at the right atrial
appendage (not significant wavefront meandering during the
whole simulation of AF), and chaotic activity at the right
atrium (collisions of wavefronts, unstable rotors, and large
wavefront meandering). In order to analyze the efficacy of the
hierarchical algorithms, two grids of 16x16 virtual electrodes
located at 2 mm distance from the atrial surface were used
to compute unipolar electrograms: one in the right atrial
appendage, and the other in the center of the right atrium.

Figure 5(d)—(f) shows that the results for this more realistic
model are similar to those of the simpler one: LS-CaRe and
Alcaine’s method still attain good values of TPR, TNR and
F-score (although lower than in the previous example); the
pairwise approach achieves good values of TPR, but poor
values of TNR and F-score; and GS-CaRe and the full-
conditional scheme obtain a good TNR, but not so good values

of TPR and F-score. Indeed, the main difference w.r.t. the
simpler model is that LS-CaRe obtains a better performance
than Alcaine’s method for the three performance measures.

D. Real-World Signals

Intracavitary EGMs were recorded in 5 patients with persis-
tent AF prior to an ablation procedure in the electrophysiology
laboratory at HGUGM. Using a 10 pole spiral catheter (Lasso,
Biosense Webster), 9 bipolar signals were obtained and bass-
pand filtered within the 30-500 Hz band (LabSystem Pro,
Boston Scientific). Data was digitized at 16-bit resolution with
1 kHz sampling frequency, and exported using custom soft-
ware implemented in Labview (National Instruments). Signals
were visually inspected and annotated for rotor presence by
electrophysiologists from HGUGM. A total of 10 short EGM
segments where the signal can be considered stationary were
used as dataset for our algorithm, including 6 cases exhibiting
normal AP wavefront propagation (wedge shaped) and 4 with
circular propagation patterns (rotors). For all the cases, ground
truth graphs displaying the electrode activation sequences from
source to sink node(s) were constructed. An example of one
true causality graph, altogether with the reconstructed causality
graphs is shown in Figure 7. Note again the good performance
of LS-CaRe and Alcaine’s methods, especially compared to
the large number of spurious links introduced by the pairwise,
full-conditional and GS-CaRe approaches.
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Fig. 7. Real-world signals: example of the true causality graph (a), and the graphs recovered using the pairwise approach (b), the full-conditional technique
(c), GS-CaRe (d), LS-CaRe (e), and Alcaine et al. [25] (f) for a real signal. Red lines correspond to bidirectional causal links.

TABLE IV
F-SCORE FOR THE DIFFERENT METHODS TESTED AVERAGED OVER THE FIVE LAGS AND THE FOUR SIGNIFICANCE LEVELS CONSIDERED.

Signal Pairwise Full GS-CaRe LS-CaRe Alcaine et al. [25]

1 0.3234 0.2451 0.1734 0.5120 0.7022

2 0.4003 0.3902 0.2773 0.7030 0.7072

3 0.3440 0.2567 0.2474 0.3795 0.4464

4 0.3940 0.4097 0.3213 0.8224 0.8007

5 0.2575 0.1890 0.2124 0.3963 0.5808

6 0.4261 0.2909 0.4115 0.6853 0.5533

7 0.3226 0.2284 0.2602 0.5648 0.5000

8 0.2822 0.2033 0.1576 0.4983 0.5006

9 0.3470 0.2711 0.1395 0.5249 0.3486

10 0.4743 0.5153 0.3677 0.7129 0.7006
Avg. + Std. | 0.3571 &+ 0.0665 | 0.3000 &+ 0.1050 | 0.2568 &+ 0.0903 | 0.5799 + 0.1457 0.5840 + 0.1410

TABLE V
AVERAGED RESULTS FOR SEVERAL PERFORMANCE METRICS, THE FIVE LAGS AND THE FOUR SIGNIFICANCE LEVELS CONSIDERED.

Signal Pairwise Full GS-CaRe LS-CaRe Alcaine et al. [25]
Sensitivity | 0.6607 £+ 0.2062 | 0.4772 4+ 0.1984 | 0.2439 + 0.1026 0.6059 £ 0.1772 0.6110 £ 0.1333
Specificity 0.7723 4+ 0.0854 0.8152 +0.0750 | 0.9350 £0.0205 | 0.9508 +0.0162 0.9470 £ 0.0188
Accuracy 0.7614 £+ 0.0619 0.7819 £ 0.0597 | 0.8656 = 0.0209 | 0.9162 £ 0.0250 0.9135 £ 0.0290

F-Score 0.3571 £+ 0.0665 0.3000 £ 0.1050 | 0.2568 £ 0.0903 0.5799 £ 0.1457 0.5840 + 0.1410

The results for the 10 real signals tested are displayed
in Tables IV (F-Score for each case) and V (sensitivity,
specificity, accuracy and F-Score averaged over the 10 cases).
The following conclusions can be drawn from these two tables:

o The pairwise approach attains the highest sensitivity,
with Alcaine’s method and LS-CaRe obtaining slightly
worse results. The full-conditional approach and GS-
CaRe obtain much lower sensitivity values, due to the
large number of true causal connections missed.

o In terms of specificity, LS-CaRe, GS-CaRe and Al-
caine’s methods behave much better than the other
two (with LS-CaRe performing slightly better than
Alcaine’s). This is due to the fact that the other two
approaches introduce many more false positives.

 In terms of global performance, LS-CaRe provides the
best accuracy and Alcaine’s method attains the highest F-
score. The global performance of the other three methods
is much worse, with the pairwise approach attaining the
lowest accuracy and GS-CaRe the lowest F-score.

5. CONCLUSIONS

A generic hierarchical framework and two specific algo-
rithms for causality retrieval in intracavitary EGMs, based on
G-causality, have been described in this paper. Both algorithms
rely on the initial discovery of the root node, but the influence

of this node on their performance is very different: GS-CaRe
depends critically on a proper selection of this root node,
since a global search is then started from it and an erroneous
choice invariably leads to poor results, whereas LS-CaRe only
needs this root node as the starting point for its local search
and thus is much more robust w.r.t. an erroneous selection.
This robustness, altogether with the reduced number of false
alarms introduced by the local search, explains the much
better performance of LS-CaRe, which shows a comparable
performance to the method proposed in [25] by Alcaine et al.
Indeed, both LS-CaRe and Alcaine’s approach have the same
goal: restricting the search for causal connections to neighbors.
However, the procedures followed to achieve this goal are very
different: defining a novel local propagation direction measure
(Alcaine’s) and performing a structured hierarchical search
(LS-CaRe). From a clinical point of view, the developed
methods can be used by cardiologists for two purposes: (1)
discriminating among different propagation patterns (e.g., flat
or circular propagation vs. rotors); and (2) determining the
direction of the received AP wavefront. In future work, we
plan to incorporate other alternative measures of causality, like
transfer entropy or the phase slope index, as well as Alcaine’s
novel local propagation direction measure, into the flexible
framework described here.
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