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Abstract

Compact binary representations of histopathology images using hashing methods provide efficient 

approximate nearest neighbor search for direct visual query in large-scale databases. They can be 

utilized to measure the probability of the abnormality of the query image based on the retrieved 

similar cases, thereby providing support for medical diagnosis. They also allow for efficient 

managing of large-scale image databases because of a low storage requirement. However, the 

effectiveness of binary representations heavily relies on the visual descriptors that represent the 

semantic information in the histopathological images. Traditional approaches with hand-crafted 

visual descriptors might fail due to significant variations in image appearance. Recently, deep 

learning architectures provide promising solutions to address this problem using effective semantic 

representations. In this paper, we propose a Deep Convolutional Hashing (DCH) method that can 

be trained “point-wise” to simultaneously learn both semantic and binary representations of 

histopathological images. Specifically, we propose a convolutional neural network (CNN) that 

introduces a latent binary encoding (LBE) layer for low dimensional feature embedding to learn 

binary codes. We design a joint optimization objective function that encourages the network to 

learn discriminative representations from the label information, and reduce the gap between the 

real-valued low dimensional embedded features and desired binary values. The binary encoding 

for new images can be obtained by forward propagating through the network and quantizing the 

output of the LBE layer. Experimental results on a large-scale histopathological image dataset 

demonstrate the effectiveness of the proposed method.
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I. Introduction

Recently, digitized histopathological images are frequently analyzed and interpreted to 

diagnose and grade different diseases. Unfortunately, the process of manual interpretation is 

time consuming, challenging and error-prone due to their large size and inter/intra-observer 

variation [1]–[3]. To address these problems and improve the efficiency of the procedure, 

different content-based image retrieval (CBIR) methods for automated computer aided 

diagnosis (CAD) have been proposed [4]–[10]. CBIR aims to directly utilize a visual query 

to find the most similar cases (nearest neighbors) among the images previously diagnosed 

and stored in databases. Pathologists could directly utilize these retrieved cases to measure 

the likelihood of the abnormality of the query image and render better diagnosis. In addition, 

CBIR systems could also be used for various other applications including effective archiving 

and management of digitized histopathology images and pathologists’ training [11].

In the biomedical image retrieval community, a typical approach to find nearest neighbors is 

using predefined distance measurement and compact image representations (features/

signatures), which are usually real-valued [12], [13]. The nearest neighbor search could be 

performed with an exhaustive comparison of the query image via each of the samples in the 

database [7]; nevertheless, this method becomes infeasible as the number of samples in the 

database increases rapidly. This restricts the scalability of the exhaustive search and makes it 

unsuitable for practical settings where a large number of images are available. Alternatively, 

it has been shown that Approximate nearest neighbor (ANN) methods could be a sufficient 

solution in many applications that aim at large-scale information search and retrieval [14]. 

Subsequently, ANN that utilizes the real-valued image features has been used for CBIR in 

large-scale biomedical image databases [4], [5]. However, the real-valued image 

representations become a critical bottleneck, because the storage requirement for these 

representations increases with the number of samples.

Fortunately, the problem could be addressed with similarity-preserved hashing methods for 

ANN search, which has low storage requirement and high retrieval efficiency [15], [16]. In 

recent years, many hashing methods, particularly learning-based, have been proposed for 

both natural and biomedical images [17]–[23]. These hashing techniques map image 

representations in the original feature space to more compact binary representations in a 

Hamming space, yet preserving the semantic similarity of the original feature space. 

Specifically, these techniques aim to generate neighboring binary representations for the data 

points that are close in the original space, and vice versa. One of the advantages of binary 

representations is that the fast image search could be carried out by simple Hamming 

distance (binary pattern matching) measurement, which has a low computation cost.

Supervised hashing methods [6], [18], [19], [24]–[29], which take advantage of supervised 

information of the images such as class labels, have shown superior performance and great 
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potentials to learn binary code representations. These methods rely on image representations 

and similarity information. Traditionally, most of them first encode the images as a set of 

hand-crafted visual descriptors, e.g., scale-invariant feature transform (SIFT) [30], to capture 

image information before learning binary representations. However, these visual descriptors, 

which are usually extracted in an unsupervised manner, do not guarantee the accurate 

representation of semantic information. This limits the performance of many hashing 

methods. Recently, deep learning based methods have shown that the performance of various 

vision tasks including hashing could be significantly improved by learning successive 

nonlinear image representations using large datasets [31]–[37]. Most of these deep learning 

based hashing methods optimize the network based on the semantic “pair-wise” relation, 

which requires creating a computationally inefficient pairwise similarity matrix from the 

label information. Although these methods achieve good retrieval performance, they are 

limited in scalability due to the high storage and computational requirement of pair-wise 

optimization problem. Therefore, direct “point-wise” optimization of deep learning methods, 

similar to other vision tasks, to learn binary codes is preferable since it does not restrict the 

scalability of these methods.

In this work, we are interested in taking advantage of convolutional neural network (CNN) 

models, which can be trained “point-wise”, to generate efficient compact binary codes for 

histopathological image representation. To this end, we propose a DCH that exploits the 

CNN structure for binary encoding, as shown in Figure 1. It introduces a LBE layer 

(between fully connected layers and the classification layer) for low dimensional feature 

embedding. Unlike many other existing hashing methods that utilize pair-wise inputs, we 

devise a joint point-wise optimization approach with a carefully designed loss function, 

which could leverage the supervised label information to generate optimized binary codes 

for linear classification. To guarantee optimal learning of binary codes, we impose two 

simultaneous constraints at the LBE layer and the top classification layer of the DCH 

network: (1) the quantization loss between real values and quantized binary values of the 

LBE is minimized, and (2) the classification loss between original and learned labels is 

minimized. The joint constraints encourage the real values of the low dimensional feature 

embedding layer to be close to quantized values while simultaneously improving the 

discriminative power of the learned binary codes, thereby preserving the semantic structure 

in the Hamming space. We argue that the learned binary codes are the non-linear low 

dimensional embedded feature vectors of the original data, and the label information is 

exploited to easily differentiate these learned binary feature vectors. Finally, binary image 

representations are obtained by first feedforward propagating through the network and then 

quantizing the output of the LBE layer. The overall contributions of the paper can be 

summarized as follows:

• We propose an effective CNN-based method to simultaneously learn binary 

codes and feature representations. The key ideas are to introduce a binary 

encoding layer in the CNN architecture and a loss function that generates the 

binary codes with minimized quantization errors for classification. The overall 

architecture could be easily implemented such that it could be trained seamlessly 

with a joint optimization of modified loss functions in a point-wise manner. The 
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point-wise learning of binary codes makes it easier to scale the method to large 

dataset in comparison with traditional pair-wised approaches.

• The proposed DCH method is evaluated on a large-scale histopathological image 

dataset comprised of skeletal muscle disease and lung cancer specimens, and the 

superior experimental results demonstrate the effectiveness of the proposed 

method over other state-of-the-art hashing approaches.

The novelty of the proposed method is to introduce a binary encoding layer into the 

conventional CNN for binary representation learning and a modified loss function to 

minimize quantization errors for classification. The proposed framework can be trained 

“point-wise” and end-to-end with the stochastic gradient descent algorithm.

II. Related Works

A. Hashing methods

Various hashing methods to learn binary representations have been proposed in the literature 

over the years [15], [16], [20], [38]–[44]. Traditional data-independent methods, such as the 

family of Locality Sensitive Hashing (LSH) [15], [45], [46] that use random projections to 

generate compact binary codes, in general, require longer binary codes to achieve desired 

performance. This in-turn introduces huge storage overhead that limits practical applications 

on large datasets. Therefore, tremendous effort to improve LSH is observed. In particular, 

learning-based data-dependent hashing methods, which use available training data to learn 

the similarity preserved hashing functions, have gained more popularity. Some 

representative approaches include unsupervised hashing (Spectral Hashing (SH) [38], 

Discrete Graph Hashing (DGH) [44], Iterative Quantization (ITQ) [40]), supervised/semi-
supervised hashing (Graph Cuts Coding (GCC) [47], CCA-ITQ [40]; Minimum Loss 

Hashing (MLH) [24], Semi-Supervised Hashing (SSH) [42]), kernel-based hashing (Binary 

Reconstruction Embedding (BRE) [16]; Kernel-Based Supervised Hashing (KSH) [41], 

Supervised Discrete Hashing (SDH) [20]) and deep learning based hashing ([25]–[27], 

[33], [48], [49]).

The main goal of most learning-based data-dependent hashing methods is to preserve data 

similarity in the Hamming space. Unsupervised hashing methods aim to learn image 

representations in the Hamming space and preserve the Euclidean similarity defined in the 

original feature space. For instance, ITQ [40] learns binary codes by imposing the binary 

constraints to minimize the quantization error to reduce the gap between image 

representations in the original feature space and binary representations in the Hamming 

space. The major drawback of these methods is that they cannot effectively eliminate the 

“semantic gap”, which is the difference between high-level semantic meanings of images 

that are represented by similar low-level features. Therefore, to address these problems, 

supervised hashing methods leverage semantic labels of the training dataset. MLH [24] uses 

weakly labelled training data to minimize a hinge-like loss to learn the hashing functions, 

and SSH [42] minimizes the empirical loss over the labeled training samples and maximizes 

the variance and independence of individual bits for both labeled and unlabeled training 

samples. Furthermore, kernel-based hashing methods advocate the usage of kernels to learn 
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the hashing functions in the non-linear space to capture data patterns. One of the most 

prominent existing methods in this category is SDH [20]. Specifically, SDH jointly 

optimizes the classification loss and the fitting error of the binary codes using a continuous 

embedding function to achieve highly discriminative binary representations. However, the 

kernel-based hashing methods use explicitly defined non-linear functions, which lead to the 

problem of scalability.

All of the aforementioned methods use hand-crafted image representations, which do not 

necessarily generalize well in the real-world image data that show redundancy and high-

range variance, and thus degrade the retrieval performance. Recently, deep learning based 

methods, which are non-linear models that can be learned from raw image data, have shown 

tremendous success in various computer vision tasks. Following along the success, different 

deep learning based hashing methods have also been proposed [25]–[27], [33], [48]–[50] to 

simultaneously learn non-linear image representations and compact binary codes. All of 

these methods train a CNN to learn the binary representations using pairwise similarity 

matrices. However, the large memory requirement to compute and store these similarity 

matrices could restrict the amount of data for CNN training. This could degrade the 

performance of the CNN-based methods and could be a serious drawback. To deal with the 

issue, the work in [33] provides an alternative online approach to create a similarity matrix 

during training, but it creates additional computational overhead. The method in [27] 

suggests direct utilization of label information and point-wise train CNN with binary-like 

hidden representations as features for image classification tasks. This approach does not 

require computation of the pairwise similarity, and it enforces the network to learn binary-

like outputs to preserve the semantic similarity based on classification performance. 

However, this approach simply binarizes the real-valued outputs of hidden layers such that it 

does not guarantee optimal binary codes. Our method builds on top of this approach to 

address this issue.

B. CAD with Hashing

The importance of CBIR systems for CAD has been recognized [12], [51], [52] for a long 

time in the biomedical community. CBIR is valuable in medical image analysis, because it 

provides doctors with diagnostic support for case based and evidence based reasoning, 

which usually requires studies of archived cases. However, the vast majority of the CBIR 

methods fall short of scalability and cannot handle the increasing amount of data for 

practical applications. With the increasing popularity of binary hashing methods, the 

problem of scalability is greatly addressed, and there is a recent trend to utilize them for the 

CAD [6], [8], [17], [22], [28], [34], [39], [53]. For instance, authors in [22] have investigated 

a scalable mammogram retrieval system for breast cancer diagnosis, which uses anchor 

graph hashing (AGH) method for binary hashing and aggregated features to improve the 

search accuracy. Similarly, authors in [8] have proposed a CAD system to diagnose masses 

in mammogram. They have reported a scalable retrieval and diagnosis system to query 

mammographic regions of interest, which are represented as SIFT features and quantized in 

a vocabulary tree.
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In the context of histopathological images, authors in [6] have proposed a joint kernel-based 

supervised hashing method to map the multiple high-dimensional features of breast cancer 

images into much smaller binary features and search in a Hamming space to distinguish 

between actionable and benign cases. In [28], authors have proposed a modification to KSH 

to handle online training and generate efficient binary codes. The binary representations are 

then utilized to diagnose the breast cancer images based on a majority voting. Therefore, the 

compact binary representations allow for scalable CBIR for medical image analysis. 

Additionally, compact representations have a low storage requirement that allows to easily 

store and manage the growing histopathology image collection.

III. Methods

In this section, we first introduce the general binary hashing framework and then formulate 

our proposed DCH method for binary hashing as a classification problem with a hard binary 

constraint at the LBE layer. Next, we define a continuous relaxation of the binary constraint 

and introduce the quantization error in the loss function to improve binary representation, as 

shown in Figure 1. Finally, we show how to minimize the loss function using the back-

propagation algorithm to train the network.

A. Binary Hashing

The goal of hashing methods is to learn compact binary code representations for images 

such that the codes are discriminative enough for dissimilar data. Formally, given N training 

samples X = x1, x2, …, xN ∈ ℝd × N, where xn ∈ ℝd is the n-th training sample in X, the 

hashing methods aim to learn multiple hashing functions that map and quantize the samples 

into a set of compact binary codes B = [b1, …, bN] ∈ {−1, 1}K×N, where bn ∈ {−1, 1}K×1 is 

a K-bit binary code for xn. The mapping of xn to the k-th binary bit bkn is computed as:

bkn = gk xn = sgn f k xn = sgn wkxn , (1)

Where wk ∈ ℝ1 × d is a projection vector in k-th hashing function gk, and sgn(u) = 1 if u > 0 

and sgn(u) = −1 otherwise. Therefore, given a projection matrix W = w1, …, wK ∈ ℝK × d

the mapping of the xn is computed as: f(xn) = Wxn that is binarized to get the binary codes 

as:

g xn = bn = sgn f xn . (2)

Different hashing methods to learn the projection matrix W have been proposed. Most of 

earlier methods suffer from the limitation of linear projections, unscalable non-linear 

representations or inefficient hand-crafted features. Recently, deep learning based hashing 

methods have been proposed to learn the non-linear image representations and compact 

binary codes simultaneously. In this work, we propose an end-to-end CNN based hashing 

approach, which inserts a binary representation layer between the fully connected and 

Sapkota et al. Page 6

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification layer. We train the network “point-wise” using a set of images and their 

corresponding labels such that the learned binary image representations can preserve the 

semantic similarity. The loss function has been designed to encourage the activation of the 

binary layer to approach discrete values suited for good classification. In this scenario, the 

optimized network would learn similar binary representations for the data with the same 

label.

B. DCH

The proposed DCH network consists of consecutive layers of convolution, max-pooling, 

non-linear transformations, fully connected layers, followed by an LBE and finally a 

classification layer, as shown in Figure 1. The binary representations for X in the RGB space 

is obtained with first forward propagation through the network and then quantization of the 

output of the LBE layer. Assume that there are L layers in the DCH network and each layer 

(l|l = 1, …, L) has ml units. Then the output of the first hidden layer, for a given sample 

xn ∈ ℝd, is : z1 = h(W1xn + c1), where W1 ∈ ℝm1 × d is the learned projection matrix, 

c1 ∈ ℝm1
 is the bias, and h(·) is a nonlinear activation function. The result of the previous 

hidden layer is passed to the next hidden layer. Therefore, we compute the output of the l-th 

layer of the network as follows:

zl = h Wlzl − 1 + cl , (3)

where z0 = xn, z0 = xn, Wl ∈ ℝml × ml − 1
 and cl ∈ ℝml

 are the learned projection matrix and 

bias for the l-th layer, respectively. Similarly, the output for the LBE layer in the proposed 

network is:

zL − 1 = h WL − 1zL − 2 + cL − 1 . (4)

We binarize the output of the LBE layer of the network to get the binary codes as follows:

bn = sgn zL − 1 . (5)

With Equations (1), (2), (3) and (5), g(xn) = sgn(zL−1) maps the sample in the RGB space to 

K binary bits: g( ⋅ ):ℝd ℝmL − 1
, such that mL−1 = K and g(·) is parameterized by 

Wl, cl
l = 1
L

, which are learned.

Our goal is to optimize the parameters of the DCH network such that the mapping from the 

sample space to the K-bit binary code space preserves the semantic similarity among 

images. To this end, we design a loss function to optimize the binary codes for classification 

that preserves semantic structure in the Hamming space. Specifically, given Mb mini-batches 
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of training images with individual training example xn and its corresponding label, y = [y1, 

…, yc], where yj = 1 if and only if the instance xn is associated with the j-th label, we 

formulate the mapping, similar to [20], into the following optimization problem:

W,c
min E = ∑

n = 1

Mb
Eς(y, y),

s.t. bn ∈ −1, 1 K × 1,

(6)

where y = h aL  is the output of the classification layer, aL = WLb + cL is the linear 

activation at the output layer, Eς(y, y) is the classification loss function. Here, we introduce 

an additional notation for linear activations at the l-th layer, al = Wlzl−1 + cl, to simplify the 

subsequent computational representation.

C. Relaxation

Unfortunately, the discrete variable b in Equation (6) will make the problem intractable. 

Direct optimization of binary codes using the entire training set [20], [44] might not be 

suitable, since the CNN is trained on batches of data which are much less and the optimality 

of binary codes produced from the CNN with the same formulation will be questionable. To 

address this problem, we relax the hard-quantization constraint b into continuous embedding 

b = tanh aL − 1 ∈ [ − 1, 1]K × 1. Therefore, we rewrite the objective function as follows:

W,c
min E = ∑

n = 1

Mb
Eς(y, y)

s.t. bn = tanh aL − 1 ,

(7)

where y = h aL . However, the relaxation will introduce the accumulated quantization errors 

between b and relaxed b and subsequently decrease the retrieval accuracy. Therefore, to 

reduce the accumulated errors, we add a penalty term E𝒬 bn, bn
L − 1  with a regularization 

coefficient y into Equation (6). Then Equation (6) can be rewritten as:

W,c
min E = ∑

n = 1

Mb
Eς(y, y) + γ

2 ∑
n = 1

Mb
E𝒬 bn, bn

s.t. bn = tanh aL − 1 , bn = sgn bn .

(8)
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We adopt a joint optimization of softmax and quantization losses to train the DCH for binary 

feature learning. We choose softmax at the output layer for DCH because we formulate the 

binary hashing as a multiclass classification problem. The formulation is given as follows:

W,c
min E = − ∑

n = 1

Mb
log e

ayn
L

∑ j e
a j

L + γ
2 ∑

n = 1

Mb
bn − bn

2

s.t. bn = tanh aL − 1 , bn = sgn bn .

(9)

In Equation (9), yn represents the class membership of xn, and a j
L represents the linear 

activation of the j-th neuron in the output layer. With this modified objective function, the 

network is trainable and can be optimized using standard stochastic gradient descent (SGD) 

with the back-propagation algorithm.

Our proposed method is inspired by the work in [27]; however, we modify its loss function 

and impose a quantization constraint to learn better binary representations. Different from 

[20], our approach uses a deep CNN to simultaneously learn the feature representation and 

binary codes, and we solve the entire optimization problem with the back-propagation 

algorithm.

D. Backpropagation

To train the network, we need to compute the gradients of the objective function in Equation 

(7) with respect to the parameters Wl, cl
l = 1
L

 of the network. In the following, we define 

several notations. w ji
l  is a component of projection matrix Wl and denotes the weighted 

connection of the i-th neuron in the (l−1)-th layer to the j-th neuron in the l-th layer; c j
l  and z j

l

are components of the vectors c and z, and denote the bias and the activation, respectively, of 

the j-th neuron in the l-th layer; a j
l = ∑iw ji

l zi
l − 1 + c j

l  is a component of the vector al and 

denotes the input to the activation function of the j-th neuron in the l-th layer, i.e., the 

weighted sum of outputs of all neurons in the (l − 1)-th layer.

To compute the gradients, we compute the partial derivatives 
∂Exn

∂w ji
l  and 

∂Exn

∂c j
l  for a single 

training example xn, and then recover the overall gradients by averaging over all the training 

examples. Therefore, the gradient of the loss function with respect to the parameters at the 

output layer is computed as follows:
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∂Exn

∂w ji
L =

∂Eς

∂a j
L

∂a j
L

∂w ji
L ,

= biδ j
L,

∂Exn

∂c j
L =

∂Eς

∂a j
L

∂a j
L

∂c j
L ,

= δ j
L .

(10)

Here, we introduce an error term for j-th neuron of L-th layer, δ j
L =

∂Eς
∂a j

h′ a j
L , where h′ .  is 

the derivative of the nonlinear function. For the classification loss with a softmax cross 

entropy as defined in Equation (9), we can compute the error using the chain rule of 

derivatives [54], [55] as:

δ j
L = y j − y j . (11)

In a vector form, we have

δL = y − y . (12)
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Next, we compute the gradient of the objective function with respect to the parameters of the 

LBE layer as follows:

∂Exn

∂w ji
L − 1 =

∂Eς

∂a j
L − 1

∂a j
L − 1

∂w ji
L − 1 + γ

2
∂EQ

∂a j
L − 1

∂a j
L − 1

∂w ji
L − 1 ,

= zi
L − 2 ϑ j

L − 1 + γ
2ϱ j ,

= zi
L − 2δ j

L − 1,

∂Exn

∂c j
L − 1 =

∂Eς

∂a j
L − 1

∂a j
L − 1

∂c j
L − 1 + γ

2
∂EQ

∂a j
L − 1

∂a j
L − 1

∂c j
L − 1 ,

= ϑ j
L − 1 + γ

2ϱ j,

= δ j
L − 1,

(13)

where δ j
L − 1 is the error at the j-th neuron of the LBE layer, and it consists of two 

components: ϑj error due to classification loss and ϱj error due to quantization loss. For the 

loss function defined in Equation (9), the components are computed using the chain rule of 

derivative and represented in a vector form as follows:
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ϑL − 1 = WL TδL ⊙ 1 − tanh2 aL − 1 ,

ϱ = − 2 b − zL − 1 ⊙ 1 − tanh2 aL − 1 ,

(14)

where zL − 1 = b and ⊙ denotes the Hadamard product. Similarly, we can compute the 

gradient for the rest of the layers using standard back-propagation as follows:

∂Exn

∂w ji
l = zi

l − 1δ j
l ,

∂Exn

∂c ji
l = δ j

l ,

(15)

where δ j
l  is the j-th component of the error vector at the l-th layer computed as:

δl = Wl Tδl + 1 ⊙ h′ al , (16)

The parameters are then updated for all the training samples in mini-batches (Mb) using the 

gradient descent algorithm as follows:

w ji
l = w ji

l − α ∑
n = 1

Mb ∂Exn

∂w ji
l , (17)

c ji
l = c ji

l − α ∑
n = 1

Mb ∂Exn

∂c ji
l , (18)

where α is the learning rate. The overall learning algorithm for the proposed DCH is given 

in Algorithm 1.

IV. Implementation Details

Architecture:

The proposed DCH method is implemented with Keras [57]. The network architecture used 

in the paper is illustrated in Table I. It consists of four convolution-pooling layers followed 

by one fully connected layer, one LBE layer and finally the output layer. The convolution 

layers are comprised of 32, 32, 64, and 64 kernels of size 3 × 3. The architecture uses 2 max-

pooling, each with a window of size 2 × 2 with stride 2. Additionally, batch normalization 
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[58] layers are used before the nonlinear activation for each of the convolution and fully 

connected layers. The fully connected layer consists of 2048 nodes, and the LBE layer 

consists of K nodes, where K is the length of binary code. For all of the convolution and 

fully connected layers, ReLU [56] is used as the nonlinear activation function. We choose 

ReLU in hidden layers of DCH because networks with ReLU nonlinear activations, which 

are non-saturating, can be trained faster than those with a saturating nonlinearity [59]. Note 

that we design a relatively simple architecture because of the limitation of the available 

computation resources and training dataset. The proposed DCH method is generic, and a 

more complicated architecture could be easily used to achieve better binary representation of 

the images.

Parameters & Training:

The network is initialized with a uniform distribution scaled by the square root of the 

number of inputs [60] during training. We use a fixed mini-batch of 32 images to optimize 

the DCH network. We train the network using the adaptive learning rate optimization 

method called ADADELTA [61] because of its desirable property that does not require a 

specific hyperparameter tunning. The network is trained with 200 epochs.

To obtain different binary codes using DCH, it is required to train distinct models with 

different numbers of neurons (K) at the LBE layer. Training all the models from scratch is a 

severe waste of the computation time, and results in slow convergence. Additionally, the 

number of parameters that need to be learned increases with the code length, and the 

network becomes more prone to overfitting. One can observe that for all of these models, 

layers preceding the LBE layers are common, and these parameters could be pre-trained and 

easily shared by all the models. Pre-training has also been reported to improve the 

performance of the network [33]. Therefore, we choose to pre-train the network without the 

LBE layer to learn a pure classification model and then fine-tune the network with a desired 

code length in the LBE layer.

V. Experiments

A. Datasets and Evaluation Metrics

To verify the effectiveness of our proposed DCH method and other state-of-the-art methods, 

we create a large dataset comprised of digitized histopathological skeletal muscle and lung 

cancer images. The skeletal muscle images represent two major categories of Idiopathic 

Inflammatory Myopathy (IIM): Polymyositis (PM) and Dermatomyositis (DM); The lung 

cancer images represent two major categories of the disease: adenocarcinoma (AC) and 

squamous cell carcinoma (SC). We select non-overlapping regions and crop 5256 (2572 PM 

and 2678 DM) skeletal muscle images corresponding to 41 individual subjects and 2904 

(1456 AC and 1448 SC) lung cancer images corresponding to 126 individual subjects, 

respectively. Details on the dataset are provided as follows.

Skeletal Muscle Images: The whole slide scanned skeletal muscle images are prepared 

by the Medical College of Wisconsin Neuromuscular Laboratory (MCWNL) using a 

Hamamatsu NanoZoomer Microscope. The images are captured at a 40× objective with 
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pixel resolution of 0.25 micron. All ground-truth are provided by MCWNL. All of the 

images are analyzed by 3 independent pathologists and a final label is assigned to each 

image based on the common consensus among them.

Lung Cancer Images: The images are downloaded from the The Cancer Genome Atlas 

(TCGA) Data Portal. TCGA consists of a collection of cancer specimens with clinical 

information about participants including metadata about the samples, histopathology slide 

images from sample portions and molecular information derived from the samples. The 

images are supervised by National Cancer Institute (NCI) and National Human Genome 

Research Institute (NHGRI) and are freely available to researchers.

In our experiments, the raw RGB image data are directly used as input for all of the deep 

learning based methods, and they are wrapped to patches with a size of 128 × 128 before 

inputting to the learning pipeline. The semantic similarity between the images are defined by 

their corresponding labels, i.e., images from the same category are considered similar, and 

dissimilar otherwise. We sample and use 25% of the images per class for testing and rest of 

the images for training. The image patches obtained from the same case are never used 

simultaneously in training and testing stage. For conventional hashing methods, images are 

represented by the 2048-D deep learning features and 2000-D histogram using bag-of-words 

BoW [62], [63] that encodes the SIFT [64] features.

Following previous work, we use following evaluation metrics to compare the performance 

of different methods: (1) accuracy based on the top-ranked retrieved images; (2) mean 

average precision (MAP) computed as area under the precision-recall curve for different bit 

values; (3) precision-recall curve for different bit values; and (4) mean precision for 

Hamming look-up within the Hamming radius of r.

B. Effects of Parameter γ

The hyperparameter γ controls the strength of the quantization loss and balances the two 

loss functions. The parameter is essential to train our DCH model. Therefore, we conduct an 

experiment to investigate the sensitiveness of the learned binary values with respect to this 

parameter. We vary the value of γ from 10 to 10e−6 to learn different models. Without loss 

of generality, we only test for the number of bits K = 8 for the proposed DCH method. We 

report the MAP and the classification accuracy using the learned binary codes.

Figure 2 summarizes the experimental results. We can observe that the retrieval performance 

improves significantly by setting the value of γ in a reasonable range (i.e. [10e−1, 10e−6]). 

We also see that the accuracy and MAP increase from 10e−1 to 10e−4, and the performance 

drops slightly as we further decrease the value of gamma. On the other hand, for the value of 

γ = 0 (equivalent to having no influence of quantization error) inferior performsance is 

observed. The range to improve accuracy suggests that the imposed quantization constraint 

can reduce the gap between real-valued representations and binary codes, therefore 

improving the overall retrieval accuracy. Increasing the influence of the quantization error 

(setting value of γ = {1, 10) has adverse effects on the retrieval performance, observed both 

in MAP and the accuracy. This is expected since weakening the influence of classification 

error decreases the discriminative power of the binary codes, and the neighboring points in 
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the output space are mapped to different binary representations. We find that the proposed 

method attends highest MAP and accuracy at value of γ = 10e−4. Therefore, we set the value 

of gamma to 10e−4 for all the experiments in the paper.

C. Comparison with State of the Arts

Setup: We compare our DCH method with the following state-of-the-art approaches: 

KSDH [65], KSH [41], SDH [20], CCA [19], COSDISH [66], DLBHC [27], CNNH [67], 

SFL [26], and DSRH [49]. All of these methods are implemented using the source codes 

provided by the authors except for SFL1 and DSRH1. For fairness, all of the deep learning 

based methods (i.e., DLBHC, CNNH, SFL, and DSRH) are trained using the same network 

architecture.

For all of the comparative methods, we use the parameters suggested by the authors in their 

respective publications. For our proposed DCH, we set the value of hyperparameter γ = 10e
−4. Additional experiments on the sensitivity of network with respect to the parameter γ is 

reported in Section V-B. Furthermore, following observations are made during training:

1. To achieve equivalent performance, the DCH network trained with ADADELTA 

converges faster than SGD with momentum.

2. With the addition of batch normalization before ReLU activation, we have a 

performance (measured as classification accuracy on validation dataset) boost of 

6% for our dataset. Even without the dropout layer, no overfitting is observed 

while using batch normalization; Adding dropout with batch normalization 

actually degraded the performance of the network.

3. Comparable performance is observed for networks trained on various mini-batch 

with size ranging from 8 to 64. In our implementation, the mini-batch size of 32 

is chosen as a tradeoff between the training speed and memory requirement.

Results: Table II shows the accuracy based on top 10 ranked retrieved images and the 

MAP using different contrastive hashing methods. As we can see, our proposed DCH 

achieves the best accuracy in all of the cases among all the hashing methods. This suggests 

better ranking of the retrieved images. Additionally, superior ranking performance is 

observed for DCH with MAP ranging from 0.94 to 0.96 using different numbers of bits, 

outperforming all the other methods by 2%–4%. CNNH shows similar MAP compared to 

DCH for 64-bit representation but underperforms for all the other bits. CNNH and DLBHC 

provide comparable ranking performance in terms of MAP but exhibit inferior accuracy 

compared to DCH. SFL and DSRH, which use triplet ranking based losses to train the 

networks, show inferior performance both in terms of accuracy and MAP. Meanwhile, all of 

the traditional methods trained on handcrafted features underperform significantly. We can 

observe the performance boost ranging from 5% to 20% for these methods when trained 

with deep learning features, which makes the results comparable to other end-to-end trained 

deep learning based hashing methods.

1We used our implementation of the method for experiment because source codes for the method is not publicly available.
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Figure 3 and Figure 4 show the precision-recall curve using different numbers of bits and the 

precision using different numbers of bits with different hamming radiuses (@r), respectively. 

The results are consistent with previous observations, which demonstrate that our proposed 

DCH method provides superior performance. Examples with qualitative representations of 

the retrieval results using the proposed DCH with 8-bit representation are shown in Figure 5. 

It also shows incorrectly retrieved results matched to different class for a case of DM and a 

case of AC. The incorrectly retrieved cases are observed to share common visual and 

morphological attributes, which is common in histopathological images [68].

D. Discussion

In the traditional methods such as KSDH H and KSDH B, binary encoding with learned 

features outperforms that using the handcrafted features. This validates the effectiveness of 

the learned features over the handcrafted features, and also demonstrates the importance of 

good feature representations for effective hashing. Although these results are comparable to 

other deep learning based hashing methods, the two-stage strategy, which consists of first 

training the deep learning network for feature extraction and then utilizing these features to 

learn the hash function for binary encoding, makes the training process complicated. 

Therefore, the end-to-end learning capability of deep learning based hashing methods make 

them preferable to the two stage methods.

Among the deep learning based methods, it can be observed that our DCH provides the 

highest ranking performance. Higher accuracy and MAP of DCH suggest that the images 

that match the most to the query image are among the top-ranked results. The CNNH 

method first computes the discriminative binary codes and then trains the model to fit the 

pre-computed codes. The relatively poor performance of the CNNH suggests that separating 

the binary code and network learning generates a lot of noise in the training labels and 

cannot optimize the final binary codes. DSRH and SFL methods use label information to 

create a triplet ranking matrix and minimize variations of the triplet loss to learn binary 

codes. Triplet loss based methods show relatively poor performance among the deep 

learning based methods probably because the loss is based on the distance between the 

features of positive and negative image pairs rather than directly utilize the supervised 

information to optimize the network. DLBHC, on the other hand, takes an approach similar 

to ours where the model is trained with binary-like hidden layers optimized for 

classification. The relatively poor performance of the encoded binary values suggests that 

there is discrepancy between the learned real values and discrete binary values. However, it 

should be noted that the proposed approach to “point-wise” train the network still captures 

the semantic relation between similar images (as well as dissimilar image). Our DCH 

method further reduces the discrepancy between real-valued feature representations and 

binary codes by penalizing the network to reduce the gap between them, therefore improving 

the performance.

E. Training Time and Space Complexity Analysis

This section analyzes the computation complexity of the loss functions of our DCH method 

and other deep learning based hashing methods: DLBHC, CNNH, SFL, DSRH and base 

classification model (Class). For fair comparison, all of the methods are implemented with 

Sapkota et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the same version of Keras. The experiments are carried out on a PC with Intel i7–5930 

processor and 128GB memory, and 12GB NVIDIA Titan GPU with CUDA-8.0.

First, the CNN architecture used in this work has approximately 130M parameters. For all of 

the deep learning based methods, computational complexity of the loss function is very 

limited compared to the training time for the entire CNN. We should also note that all of the 

deep learning based method add no additional test time since binary representation for 

images is obtained by forward pass through the network. Next, we compare the training time 

of the deep learning based methods as shown in Figure 6. It shows the time plot to run 5 

epochs of training iteration averaged over 5 independent runs for all the deep learning based 

methods. Without loss of generality, we only report the time consumption for 64 bit codes. 

As illustrated in figure, DCH and DLBHC methods, which are trained point-wise, have 

similar training time compared to the base Class model. This suggests that they do not have 

additional computational overhead. SFL and DSRH have greater training time because they 

require to gather and employ a triplet ranking matrix, in which each sample is repeatedly 

used. Training the network for the CNNH has comparable training time to DCH but it 

requires additional offline processing time to learn the binary codes. This suggests that our 

proposed method has less training overhead and better training time than other pairwise 

trained deep learning methods.

Additionally, during the optimization of the network, the maximum storage complexity for 

the DCH and DLBHC is 𝒪 Mb , which is comparable to the base Class model. For CNNH, 

network optimization has similar space requirement as DCH but the offline training to learn 

binary codes requires 𝒪 N2  space for the pairwise similarity matrix. SFL and DSRH require 

additional memory to store the triplet ranking matrix. Therefore, the storage complexity for 

these methods are at least 𝒪 Mb
3 . For most of the pairwise similarity based approaches such 

as [33], they require at least 𝒪 Mb
2  space to store the pairwise similarity matrix. This 

suggests our proposed method is memory efficient than other pairwise similarity based 

methods.

VI. Conclusion And Future Work

In this paper, we propose a deep learning based hashing method called DCH to encode 

images into binary codes. The proposed network consists of an embedded LBE layer that 

can be trained in the “point-wise” manner. The effectiveness of the proposed method is 

illustrated by the superior performance on the histopathology image dataset. The improved 

performance can be directly attributed to modified loss functions that jointly optimize the 

network for classification and binary representation learning. The classification loss in the 

optimization encourages the network to preserve semantic similarity of learned binary codes 

and the quantization loss helps the network to reduce the gap between the real-valued low 

dimensional embedded features and desired binary values. The proposed approach is 

scalable and general; more complicated networks could be easily exploited to further 

improve the effectiveness of the learned binary codes. In practice, the improved binary 

representation can be utilized for efficient management of the histopathological images. This 
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framework provides a fast image query and retrieval of similar cases, thereby assists experts 

in the evidence-based study of the diseases for diagnosis. They can also study the retrieved 

similar cases to understand the morphological and biological characteristics of a disease. 

This could help experts in early diagnosis and provide effective personalized treatment.

Currently, the model optimization is relaxed using a saturating non-linear tanh function, 

which might restrict the performance of the learned binary codes. In the future, we will work 

on improving the quantization loss with better optimization formulation. Additionally, this 

work assumes image labels do not have noise, i.e., data annotation is consistent. Label noise 

would have a negative impact on the learning of the proposed model and then in the ultimate 

disease diagnosis. Therefore, in the future, we will work on developing noise-insensitive 

learning algorithms to train the network and also statistically evaluate the robustness of the 

proposed method on disease diagnosis. We will also focus on diagnosis of the whole slide 

images or images at the organ level based on the analysis of the multiple regions of interest 

from the same organ. This might require reformulating the problem with new constraint to 

learn the anatomical spatial organization of the images. We will also compare DCH with 

human pathologists to measure interrater or annotator reliability using standard statistical 

tests.
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Fig. 1: 
The network architecture of the proposed DCH method.
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Fig. 2: 
MAP (a) and classification accuracy (b) of the models with respect to γ, which regulates the 

strength of quantization error in overall loss computation.
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Fig. 3: 
Precision-recall curves for different algorithms using different numbers of bits. For each 

curve, we compute the precision and recall in the range of 300 to 6000 retrieved images with 

with an interval of 300.
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Fig. 4: 
Precision vs bit using different algorithms on Top 1000 results for different Hamming 

radiuses (@r).
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Fig. 5: 
Six examples of top 5 ranked retrieval results (query marked in yellow, correct retrieved 

images marked in blue, and incorrect retrieved images are marked in red) for the proposed 

DCH using 8-bit image representation. Rows 1 and 2 represent images AC; 3 and 4 

represent images DM; 5 and 6 represent images PM, and SC, respectively, where DM and 

PM are types of myopathies and AC and SC are lung carcinomas.
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Fig. 6: 
Training time for different deep learning based methods for 64 bit hashing. Deep Training 
represents the time to run 5 epochs of training iteration averaged over 5 independent training 

runs, and Offline Training represents additional time spent to learn the binary codes.
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