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Abstract—Nonconvulsive status epilepticus is a condition where
the patient is exposed to abnormally prolonged epileptic seizures
without evident physical symptoms. Since these continuous
seizures may cause permanent brain damage, it constitutes
a medical emergency. This paper proposes a method to de-
tect nonconvulsive seizures for a further nonconvulsive status
epilepticus diagnosis. To differentiate between the normal and
seizure electroencephalogram (EEG), a K-Nearest Neighbor, a
Radial Basis Support Vector Machine, and a Linear Discriminant
Analysis classifier are used. The classifier features are obtained
from the Canonical Polyadic Decomposition (CPD) and Block
Term Decomposition (BTD) of the EEG data represented as
third order tensor. To expand the EEG into a tensor, Wavelet
or Hilbert-Huang transform are used. The algorithm is tested
on a scalp EEG database of 139 seizures of different duration.
The experimental results suggest that a Hilbert-Huang tensor
representation and the CPD analysis provide the most suitable
framework for nonconvulsive seizure detection. The Radial Basis
Support Vector Machine classifier shows the best performance
with sensitivity, specificity, and accuracy values over 98%. A
rough comparison with other methods proposed in the literature
shows the superior performance of the proposed method for
nonconvulsive epileptic seizure detection.

Index Terms—Hilbert Huang Transform, Multiway Data Anal-
ysis, Nonconvulsive epileptic seizures, Wavelet Transform.

I. INTRODUCTION

This work has been supported by the Belgian foreign Affairs-Development
Cooperation through VLIR-UOS (2013-2019) (Flemish Interuniversity
Council-University Cooperation for Development) in the context of the
Institutional University Cooperation program with Universidad de Oriente.

The research leading to these results has received funding from imec
funds 2017 and the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC Advanced Grant:
BIOTENSORS (no. 339804). This paper reflects only the authors’ views
and the Union is not liable for any use that may be made of the contained
information.

Y. Rodriguez Aldana is with the Universidad de Oriente. Center of
Neuroscience and Signals and Image Processing, Santiago de Cuba, Cuba.(e-
mail:yadana@uo.edu.cu)

B. Hunyadi is with Stadius Center for Dynamical Systems, Signal Pro-
cessing and Data Analytics and IMEC, Leuven, BE. Leuven, Belgium.(e-
mail:borbala.hunyadi @esat.kuleuven.be)

E.J. Maraiién Reyes is with the Universidad de Oriente. Center of Neu-
roscience and Signals and Image Processing, Santiago de Cuba, Cuba.(e-
mail:emaraon @uo.edu.cu)

V. Rodriguez Rodriguez is with ICU-Almeijeiras Clinic Surgical Hos-
pital, La Habana, Cuba and Aston University, United Kingdom. (e-mail:
v.rodriguez @aston.ac.uk)

S. Van Huffel is with Stadius Center for Dynamical Systems, Signal
Processing and Data Analytics and IMEC, Leuven, BE. Leuven, Belgium.(e-
mail:sabine.vanhuffel @esat.kuleuven.be)

TATUS epilepticus (SE) is a condition where the patient

is exposed to abnormally prolonged epileptic seizures.
This condition could have long-term consequences as neuronal
death, neuronal injury, and alteration of neuronal networks,
depending on the seizure type and duration [1]. SE can be
divided into two major categories, convulsive SE (CSE) and
nonconvulsive SE (NCSE). CSE is characterized by muscular
spasms typical for epileptic convulsive seizures (ECS). On the
other hand, NCSE symptoms are too subtle to be noticed since
this status is characterized by nonconvulsive seizures, which
show persistent epileptic activity in the EEG without evident
physical symptoms.

Nonconvulsive epileptic seizures (NCES) can be found
associated with coma/stupor or not (i.e. absence status, focal
SE). Patients without coma/stupor are often awake and are
treated in emergency services. Symptoms such as automatisms,
facial twitching, eye deviation or jerking might help NCES
diagnosis. On the other hand, patients with coma/stupor treated
at Intensive Care Units (ICU) are usually unconscious or
unresponsive. Consequently, these NCES have no physical
observable symptoms at all. Then, the diagnosis can only
be accomplished by means of EEG monitoring. As explained
before, these seizures are often associated with serious brain
damage with very poor prognosis [2]. Therefore, it is crucial
to monitor the EEG at the ICU, in order to allow physicians
to detect a seizure when it is still possible to prevent it from
causing permanent brain damage.

Due to the nature of long-term EEG recordings, its analysis
is a time-consuming task. This analysis can be performed
by doctors or seizure detection software. The visual analy-
sis performed by clinicians might lead to intra-observational
inconsistencies in the results (the same expert can produce dif-
ferent outputs if (s)he reviews the data at different times) [3].
Software approaches are more time efficient, more consistent
and objective.

Most of the available automated seizure detection software
has been extensively trained on seizures obtained from patients
with seizure disorders without brain injuries. Nevertheless,
these seizures and those from comatose/brain-injured patients
are different. The ictal activity from brain-injured/comatose
patients has a longer duration, is less defined in time (un-
clear on-set /off-set), less organized and lower in maximum
frequency [3].

A big number of published seizure detection methods ad-
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dress CES [4], [5] and only a few of them address NCES [6].
The proposed methods for NCES detection published until
2015 are summarized in the work of Ansari and Sharma [6].
These methods can be split according to their principal aim:
those that detect NCES without coma/stupor (i.e. absence
seizures) [7], [8], [9], [10], [11] and the ones that perform
the NCES detection on ICU patients [12], [13], [14], [15],
[16]. All databases used are private and very dissimilar in size
and composition, thereby complicating objective comparison
between the diverse methods.

The methodology used in these studies is also very di-
verse. Classifiers such as Support Vector Machines, Neural
Networks, and Linear Discriminant functions are the most
commonly used ones. For the data description, the most
widespread features are Wavelet Transform (WT) scales [7],
[81, [9], [16], Entropy [10], [11] and nonlinear parameters [8],
[11], [12]. The major drawbacks of these methods are related
to the arbitrary nature of the selected thresholds for performing
the detection. Seizure duration and the number of channels
affected by the seizure activity are the most popular criteria for
thresholding [9], [14], [15], [16]. Seizures are not detected if
they are too short in time or too localized (just a few channels
affected by the seizure activity). NCES are heterogeneous
across patients, the patterns present in the EEG will depend
on the etiology of the seizure. Therefore a threshold which
works for one patient will not necessarily work for another.
Also, there are more meaningful ways to describe the seizure’s
spatial localization than the number of channels; that is, the
seizure topography.

This research aims to propose a method to detect NCES,
which alleviates these shortcomings. In particular, this method
attempts to identify the NCES based on their similarity to
the first NCES detected by the physician at the EEG [17].
The explored features are obtained by means of a multiway
analysis of the EEG signal represented as a third order tensor
X € REXTXCh) with axes frequency X time x channels.
The tensors are computed by expanding the EEG segments
using WT or Hilbert Huang Transform (HHT). WT is a
popular tool for seizure EEG tensor construction [18], [19].
However, we propose the HHT since it resolves time X
frequency events with a finer resolution than WT and thanks
to the adaptive nature of the Empirical Mode Decomposition
(EMD) provides a more meaningful physical interpretation
of the underlying EEG data. The tensor decomposition is
performed with CPD and BTD. It has been shown that tensor
decompositions of multiway EEG representations can extract
seizure sources and accurately characterize the seizure pattern
[18], [19], [20]. The multiway analysis exploits the EEG
high dimensional structure by analyzing its spectral, temporal
and spatial properties simultaneously. As such, this approach
represents a neat and practical alternative to analyze large,
heterogeneous and multidimensional feature sets. Moreover,
it eliminates the need for thresholding since the classifiers
will implicitly evaluate the similarity of the signatures. Fig.1
displays the general block diagram of the proposed method.
Clinically, the goal of the algorithm is twofold. First, it
indicates all seizure occurrences (sz flag). Besides, it sets an
alarm at the very first seizure, indicating that the patient has
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a seizure disorder, and subsequently set an alarm in case of
continuous seizure activity, indicating that the patient might
develop status epilepticus.

II. MATERIAL AND METHODS
A. EEG Data

EEG data were collected as part of patients’ clinical as-
sessment at the Epilepsy Unit of the Cuban Neurological
Restoration Center (CIREN) and at the ICU of the Clinical
Surgical Hospital Hermanos Ameijeiras, both in Havana City.
Data were anonymized prior to its use in this study. The
visual inspection and labeling were performed by three neuro-
physiologists (including VRR). Since the patients come from
different hospitals and areas, the acquisition protocol shows
some differences; yet the sampling rate for all recordings is
200H z. The number of electrodes used for the recordings
varies between 8 and 19. In all cases, the electrodes were
placed according to the 10-20 montage system. The use of the
10-20 montage for all records guarantees that the electrodes’
name and position do not change in the records.

The dataset comprises 14 adult patients between 18 and
57 years old with various brain disorders that present NCES.
A total of 139 seizures have been registered, all of them
NCES according to the neurophysiologist’ diagnosis (55 with
coma/stupor). A more detailed description is given in Table
I. All procedures were reviewed and approved by the Ethical
Committees of the CIREN and Hermanos Ameijeiras Hospital
respectively.

B. Tensor formulation

The EEG from each recording is divided into segments
(epochs) of 3 seconds long. All epochs are expanded in the
time-frequency domain using a WT or HHT. A 3" order
tensor is built from every epoch with frequency x time x
channels axes.

1) Wavelet Transform: The Continous WT (CWT) per-
forms a multi-resolution analysis of a signal x(t) decomposing
it into sub-band signals representing activity at different time
scales. WT has been reported in the literature as one of the
preferred techniques by the authors to perform the epileptic
seizure detection [5]. The signal decomposition is achieved
by convolving scaled and shifted versions of a mother wavelet
1(n) with z(t) and it is defined as follows,

\/1|?| /_O; (6" (T’)dt 0

Where ()* indicates the complex conjugate, 1 is the ana-
lyzing wavelet, a (> 0) is the scale parameter and b is the
shift parameter [21].

To expand the EEG into a three-way tensor expressed
as X € RIXTXCh) the CWT is applied to each channel
transforming it in a matrix, where the rows are the wavelet
scales (F'), the columns time instants (7") and the elements
are coefficients. The Ch dimension represents the spatial
distribution among the channels. Since the NCES activity is
below 5Hz [22], five wavelet scales were computed, which

Toy(a, b) =
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Fig. 1. General block diagram of the proposed method.
TABLE I
DETAILED DESCRIPTION OF THE EEG DATABASE
| Patient data | Record | Protocol |
| Patient | Gender | Diagnosis | Type | Duration(h:min:s)  Seizures # | Channels ~EKG ~EOG EMG  Video |
1 M Temporal lobe epilepsy. Ambulatory 00:38:48 6 19 o o o 0
2 M Focal Epilepsy. Ambulatory 00:16:44 3 19 o o o o
3 M Temporal lobe epilepsy. Ambulatory 00:48:29 13 19 4 4 4 4
4 F Partial Temporal Lobe Epilepsy. | Ambulatory 00:14:05 5 19 o o o 0
5 F Fartial psychic seizures. Ambulatory 00:16:05 2 19 o o o 0
6 F Lenns-Gastaut. Atonic Neck. Ambulatory 00:39:30 2 19 o 0 o 0
7 F Head trauma. Ambulatory 00:28:15 12 17 X X X 0
8 F Spike wave and Polispike wave. Ambulatory 08:05:58 6 17 X X X 0
9 M Absence seizures. Ambulatory 07:42:52 34 17 X X X 0
10 F Leukosytosis. ICU 19:36:38 40 19 X X X X
11 M Higly malignant astrocytoma. ICU 03:34:50 2 13 X 4 X X
12 F Unknown IcU 21:12:46 6 8 x x X X
13 F Connective tissue mixed disease. ICU 00:47:20 5 19 X X X X
14 F Cerebral gliomatosis. Icu 01:02:32 3 15 X X o X

correspond to 1 — 5H z frequencies, with 1H z resolution. As
mother wavelet, a Mexican Hat is used as reported in [18],
[19]. The tensors obtained with CWT will be referred further
on as W_Tensor.

2) Hilbert-Huang Transform: The HHT is a method that
uses two steps to analyze the data. First, the data are de-
composed into a number of components and a residual using
the EMD. Second, the Hilbert transform is applied to those
components to construct a frequency X time X energy
distribution, designated as the Hilbert spectrum. In this spec-
trum, all events in the time domain will be preserved by the
instantaneous frequency computed by the Hilbert transform
[23].

The main characteristic of EMD is to decompose a signal
into a so-called Intrinsic Mode Function (IMF) plus a residue
which is conventionally defined as the temporal trend of
the series. By definition, an IMF satisfies two conditions:
(i) for the entire data set, the number of extrema and the
number of zero crossings must be either equal or differ at
most by one and (ii) the mean at any point of the contour
defined by interpolating the local maxima (upper envelope)
and the contour defined by interpolating the local minima
(lower envelope) is zero [24]. For any one-dimensional discrete
signal, EMD can be presented with the following equation,

a(t) =Y imfu(t) +r(t) 2)
k=1

where im f, is the k" IMF of the signal, and r is the residue
[23].

Once the IMFs are computed each of them is transformed
with the Hilbert Transform defined as,

yimfk(t) = %P/jo Mdt

t —to ©)

where P indicates the Cauchy principal value. Yy, (t)
and imfi(t) form a complex conjugate pair that describes
an analytic signal z;pm, , (t),

Zim f (t) = imfy (t) + JYimfy (t) = Qimfy, (t)ejeimfk ®) 4)

where @, is the instantaneous amplitude and 0y, is
the instantaneous phase defined as,

im gy (8) = \J i (O + [yims, (1)) 5)
and
Yim fr (t)
Oimy, (t) = arct N 6
56 = arctan (222228 ©
respectively.
Then the instantaneous frequency is computed as
daimf (t)
im it () = UL A NS 7
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The z g g (w,t) matrices are now constructed, representing
the energy at each time point ¢ and at each instantaneous
frequency w the in following way,

n

D

k=1
w=wimp, (t)

rgp(w,t) = Sim i (1) ®)

where the n is the number of IMFs and the energy s;mf,
is defined as

Sim fr (t) = Qim fy, (t)2 )

As implemented with CWT, the HHT is applied to every
EEG channel. The Hilbert spectrum is truncated at 5H z. The
g (w,t) matrices are arranged as frontal slices of a tensor
X € REXT*Ch) fyrther on defined as HH_Tensor, where F
indicates the 1 —5H z frequency values, 7' the number of time
samples and Ch the number of EEG channels.

C. Tensor Decomposition

The tensor obtained by WT or HHT will be analyzed
using CPD and BTD. CPD provides a trilinear description of
the data, which is a very compact and interpretable model.
This model assumes that the seizure pattern maintains the
same frequency and topography within a certain period of
time. CPD has been applied successfully in several studies
that represent the EEG as a third-order tensor to recognize
epileptic seizure activity [18], [19], [20], [25]. This fact makes
CPD an attractive method for our study. On the other hand,
BTD is more flexible, and facilitates a more accurate model
when the data frequency or topography change over time.
Some studies have demonstrated that BTD outperforms CPD
for EEG applications where the pattern of interest shows
evolution in frequency, morphology and/or topography [19],
[26]. Epileptic seizures have been reported as having such kind
of behavior. Therefore, BTD exploration is also interesting for
this application.

1) Canonical Polyadic Decomposition (CPD): The CPD
represents a third-order tensor X € R(F*XT*XCh) a5 the outer
product (represented as ‘o’) of rank-1 tensors in the following
way,

R
XzZaTObrocr (10)
r=1

Where a, € R b, € RT, and ¢, € R¢" are nonzero
vectors that define the mode-n signature, n = 1,..., N (for
N =3). With1 <r<R.

The tensor rank of X is equal to the minimal number of
components R that generates an ‘exact’” CPD of X, where
‘exact’ means that there is equality at (10) [27]. A tensor CPD
is unique under mild conditions up to permutation and scaling
[27]. Let A=[ay...ag], B=[b1...bg] and C = [c1 ...cR]
be the factor matrices corresponding to each mode-n, and k4,
kp, and ko their respective k-rank . The k-rank ks of a
matrix A is the maximum value ensuring that any subset of
ka columns are linearly independent, with k4 < r4 (r4 rank
of the factor mattrix A). According to Kruskal’s theorem [28]
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a sufficient condition for the uniqueness of a third-order tensor
CPD up to permutation and scaling uncertainty is given by,

(11)
2) Block Term Decomposition (BTD): The (L,M,0)-BTD
of a third-order tensor X € REXTXCh) ig written as,

R
X:ZDT.IAT.QBT.SCT

r=1

ka+kg+kc>2R+2

(12)

where e, denote the mode-n product, D, € R(LxMxO0)
are full rank — (L,M,0), A, € RE*L) (with F > L),
B, € RIXM) (with T > M), and C, € R(E"*O) (with
Ch > O) are full column rank, 1 < r» < R. BTD is unique
up to permutation and scaling inherited from CPD under more
restrictive conditions. Essential uniqueness conditions for the
(L_M,0)-BTD can be found in [29].

The two tensor sets obtained, W_Tensor and HH_Tensor,
are decomposed using, CPD and BTD. The EEG epochs that
contain seizure activity will be labeled as positives and the
rest as negatives.

To differentiate the features sets, those obtained from a
tensor built with HHT are denoted by ‘h’, ‘w” is used for those
obtained with WT. Space, Frequency and Time signatures
obtained from the tensor decomposition, are referred as ‘spac’,
‘freq’, and ‘time’. The training using all assembled signatures
together is specified as ‘asm’. To tag the decomposition
method ‘CP’ and ‘BT’ will be used to refer to CPD and BTD
respectively. As an example, the Space signature obtained by
the CPD decomposition of a tensor built with WT, will be
denoted as: w_spac_CP .

D. Multilinear Rank Analysis

Before performing CPD and BTD, the tensor rank must be
determined. The multilinear rank (ml_rank) of a high-order
tensor is the n-tuple of the mode-n ranks. Contrary to the ma-
trix case, each mode-n rank may be different. In order to find
the best low ml_rank approximation for the computed tensors,
the multilinear singular value decomposition (MLSVD) is used
[30]. The MLSVD is a multilinear generalization of the matrix
SVD. The MLSVD of a third-order tensor X € RUFxT*Ch)
can be written as,

X=Ze0 U oy U?) o, U (13)

where U™, n = 1,...,N, N = 3, are the orthonormal
basis for the n different subspaces of the mode-n vectors
and Z € RUXMXO) g an all-orthogonal and ordered tensor
[31]. Essentially, the MLSVD considers a given tensor as
N sets of mode-n vectors and computes the matrix SVD of
these sets. The truncation of the MLSVD gives a suboptimal
solution to the tensor best low ml_rank approximation problem
which can be used as initialization to iterative algorithms
such as the low multilinear rank approximation (LMLRA).
The LMLRA can be formulated as MLSVD, the difference
between these two algorithms lies in the computation and the
optimality of the decomposition. LMLRA refines the MLSVD
initial guess using an optimization based method (i.e. nonlinear
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Fig. 2. LMLRA analysis Frequency, Time and Space modes histograms. Axis X and Y represent the number of components and tensors respectively.
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Fig. 3. Obtained MP and DP for HH_Tensors and W_Tensor CPD signatures computed for several numbers of factors. The displayed MP values are computed
for the features matrices of the first NCES. The MP and DP values displayed on the charts are averaged over the number of features of each mode.

unconstrained optimization, nonlinear least squares, adaptive
cross approximation) [31].

To determine the tensor ml_rank, the MLSVD is performed
on all tensors obtained from the first seizure and the seizure-
free EEG prior to it for both tensor sets (for more information
about the available data see Table II). Then, the obtained
singular values (SV) are inspected in order to truncate the
MLSVD core where the SV represented more than 95 % of
the data variance. The truncated MLSVD core was used to
initialize the LMLRA. The LMLRA method is then performed
to find the multilinear rank that best approximates the tensor
in the least squares sense [31].

As before, this procedure is performed for all tensors ob-
tained from the EEG epochs corresponding to the first seizure
and all available seizure-free epochs prior to it. Therefore,
for every segment, we obtained a rank value in each of
the 3 modes (i.e. frequency, time and space, (R, R¢, Rer)).
Afterwards, rank histograms are constructed by counting the
number of tensors with a certain rank, as shown in Fig.2 Based
on these histograms, the most frequently occurring ranks at
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each mode are selected as upper bound to perform CPD and
BTD.

The best tensor model for the classification task is selected
by computing the modeling power (MP) and the discrimination
power (DP) of the signatures obtained from the CPD and
BTD with a certain rank. The MP describes the relevance of
the variable for the model and the DP expresses how well a
variable discriminates between different classes. The MP and
DP were proposed by Wold et. al. in [32] for feature selection
in chemical applications. Subsequently, these measures have
been used for feature selection in diverse applications as image
processing [33], DNA samples selection [34], and biomedical
problems modeling [35], [36]. The MP and DP analysis
were performed for the signatures obtained from the tensors
computed from the EEG epochs corresponding to the first
seizure and all available seizure-free epochs prior to it.

Before introducing the DP and MP computation, let us
define the feature matrices H* € RIaxF  HB ¢ RIsxT
and H¢ € RIe*Ch corresponding to the Frequency, Time
and Space modes respectively. 4 = Ep- L, Ig = Ep- M,
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Fig. 4. Sensitivity, Specificity and Accuracy scores obtained in the classification for KNN, SVMRB and LDA.

FREQUENCY SIGNATURE
1.000
0.800
¥ 0600
L 0400
o ||
0.000 - - |
KNN SVMRB LDA
mw_freq CP 0.491 0.396 0.393
mh_freq CP  0.385 0.467 0.340
mw_freq BT  0.731 0.868 0.770
mh_freq BT  0.036 0.029 0.194
SPACE SIGNATURE
3.000
2.500
2.000
£ 150
1.000
0 B _Ha u la B_H
KNN SVMRB LDA
mw_spac_CP 0.661 0.478 0.808
mh_spac CP 0.019 0.014 0.070
mw_spac_BT  0.672 0.695 0.849
mh_spac_ BT  0.287 0.270 2.710

Fig. 5. FPR values displayed by the KNN, SVMRB and LDA classifiers during the different trainings.

and I = Ep - O where, Ep is the number of EEG epochs
analyzed, L, M, and O are the ml-rank and A; € RF*L |
Bj € RT*M and C; € RY" O are the factor matrices of
the Frequency, Time and Space modes respectively, of the j**

epoch, j =1,..., Ep with
a5
pao |
AL,

and HP and H® similarly defined.

To compute the MP and the DP, at first stage, principal
component analysis (PCA) is carried out on the feature ma-
trices H4, H® and H ¢ separately The number of principal
components PC) A )\H and \E that represents 95%

6
100
B 90
80
70
60
ES 50
40
B I i
Spec  Sen Acc  Spec Sen Acc  Spec  Sen Acc
KNN SVMRB LDA
mw_time_CP 898 243 793 420 879 482 05 996 185
mh_time_CP 986 909 980 750 858 788 0.0 1000 167
w_time_BT 745 297 689 550 490 544 04 996 193
mh_time_BT 854 279 728 623 486 582 0.3 99.7 183
Axis Title
100
D 90
80
70
60
X 50
40
30
20 I
10
S i
Spec  Sen Acc  Spec  Sen Acc  Spec Sen Acc
KNN SVMRB LDA
mw_asm_CP 805 525 772 691 753 703 05 994 169
mh_asm_CP 982 999 985 985 990 987 0.0 1000 167
w_asm_BT 100.0 0.2 834 999 496 911 0.0 1000 167
mh_asm_BT 962 279 852 909 66.1 870 0.0 1000 167
TIME SIGNATURE
1.600
1.400
15
& 0800
0.600
N I |
| . -
0.000 KNN SVMRB LDA
mw_time_CP 0.129 0.799 1.486
mh_time_CP 0.010 0.436 1.493
mw_time_BT 0.461 0.694 1.488
mh_time_BT 0.089 0.078 0.684
ASSEMBLED SIGNATURES
1.600
1.400
15
& 0800
w 0.600
-
0-000 KNN~ SVMRB LDA
mw_asm_CP 0.278 0.421 1.492
mh_asm_CP 0.019 0.015 1.493
mw_asm_BT 0.000 0.001 1.493
mh_asm_BT 0.005 0.049 1.493
of the variance of the feature matrices H4, HB and HC

respectively are retained.

Let us take the 4 feature matrix to exemplify the MP and
DP computation. For more clarity in the notation, let H* be
replaced by H and substitute the number of frequency scales
F by the index J as the number of columns of H A Then, the
MP of the jth column of H (H; ) is defined as [32] [34]:

\/Zz—l (n —1)

nH (Hij—pi)?
—;
Zz—l nH -1

M P; (14)

Where Mf is the mean of H;, n* is the number of elements
in Hj, e;j H'is the (i,7)"" entry of the residual matrix EX
obtained from H as follows:

T
P QY

Ef=H (15)
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Fig. 6. H_Tensors BTD: false positive classification example. Misclassified seizure-free epoch shows a short paroxysm of approximately Is of seizure-like
activity in the EEG. This activity is captured by highly similar signatures as the first seizures time and frequency signatures. This leads to the detection of
the paroxysm as a seizure. Signatures are represented in the following order: Space, Frequency and Time.

Where P, are the A\¥ retained PC and Q% are the retained
PC loadings respectively after truncated PCA.

This measure takes values between 0 and 1. An MP value
close to 1 implies that the variable is relevant for the class
description. If this value is close to O, then it can be concluded
that the variable in terms of modeling is less significant [32].

To compute DP, let us define NCES and non-NCES as two
classes sz = NCES and nsz = non — NCES with feature
matrices Hg, and H,, for certain tensor representation. H,,
and H,,,, are analyzed separately with PCA and the A"+ and
Mns= PCs that represent 95% of the features variance (for
each class) are retained. Then, two PCA models are obtained
with A== and Ar== PCs. The DP between the two classes,
sz and nsz, of the feature j is defined as,

Hnsz Héz 2
SJ (HSZ) + S ( TLSZ)

Hpsz Hs.
Sj (Hnsz) +Sj (Hsz)

DP]H527Hnsz — _ 1 (16)

Where SH"“( nsz)Q and SJI»T{SZ(HSZ)2 are the standard
deviation computed from the residual matrices Efns= and
EHs= obtained for H,,5, and Hy, PCA models with (15), and
are defined as,

ansz

oHns?
ij

Hys»
S 'S
(nli nsz — Ali nsz

j (Hnsz)2 = Z

i=1

5 0D

and
anz Hsz2
St (H,) = “ (18)
sz P ( H,, _ )\Hsz _ ]_)

where A<= and A\Hs: are the number of retained PCs for
H,,. and H,, PCA models respectively. The SH“Z( H,.)

and S ]H 5z (Hnsz) terms are the residual standard deviation of
H,,, and H,, when fitting samples from the class H,, onto
the PCA model obtained for class H,s, , and when fitting
samples from the class H,s, onto the PCA model obtained
for class Hg, respectively [32], these terms are defined as,

H’fLSZ
2 J "
SHsz sz — Hnsz 2 19
( ) ansz (J _ )\Hsz) ; (61] ) ( )
and

nHSZ

St () = T S o)
J sz anz (J — )\Hnsz) Pl L)

Where J is the number of columns of H,,.. and H,,, n== and

nH

nsz are the number of rows of H,,, and H,, respectively.
If the DP value is close to 0, low discriminatory power is
observed. If it is much higher than 1, a good discriminatory
power is observed [32].
Fig.3 shows the computed MP and DP values for the

signatures obtained from HH_Tensor and W_Tensor after
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Fig. 7. W_Tensors BTD: false negative classification example. Seizure epoch classed as a non-seizure. The EEG seizure patterns from the misclassified
epoch are dissimilar to the patterns from the first seizure. The space signature from the misclassified epoch shows a maximum activation pattern which is
more spread than the showed by first seizure, giving an idea of a more violent crisis. The second frequency component from the first seizure shows a rise in
the frequency values at 5 Hz while the second component from the misclassified epoch maximum is around 1 Hz. The time signatures are more difficult to
interpret by visual inspection. However, it is possible to note that there are some differences between the ones from the first seizure and the ones from the
misclassified epoch. These dissimilarities explain the classifier failure. Signatures are represented in the following order: Space, Frequency and Time.

applying CPD. Based on the LMLRA (see Fig.2) the element
of the mi-rank triplet (R, R¢, R.,) most commonly occurring
at each mode is inspected. Then, the largest rank among the
three modes, denoted as R, is selected as an upper bound to
perform CPD. This led to performing CPD with R = 1,2,3
for HH_Tensor and R = 2,...,6 for W_Tensor. BTD is
applied to all rank combinations of Ry = 1,2, Ry = 1,2,3
and Rc, = 1,2,3 for HH_Tensor and Ry = 2, R; = 4,6
and R., = 2,3 for W_Tensor (where Ry, R;, and R, are
the possible rank values of the Frequency, Time and Space
modes respectively). This results in a total of 17 different
tensor representations for HH_Tensor (excluding the mi_rank-
(1,1,1) since it is equivalent to an R = 1 CPD) and 4 tensor
representations for W_Tensor.

The average MP value is computed by averaging the values
obtained by the three signatures for each tensor representation.
The same procedure is performed for the DP. Then, the tensor
representation with the average MP closest to 1 and the largest
DP (over 1) is chosen. From this analysis, it is decided to
decompose the W_Tensor set with ml-rank-(2,6,2) and R = 1
for BTD and R = 2 for CPD. For HH_Tensor BTD analysis
is performed with ml-rank-(1,2,1) and R = 1 for both BTD
and CPD.

Note that in the case of HH_Tensor, the maximum average
MP and DP values of the signatures for CPD are achieved for
different tensor representations. The maximum average MP is
obtained for R = 2 with M P = 0.68 and DP = 3.82 and the
maximum average DP is obtained for R = 1 with M P = 0.66
and DP = 5.58. As can be appreciated the difference in MP
values for these tensor representations is small compared to

the difference in DP values. Since the task to be solved is a
classification task, we do not look for an exact approximation
of the data but a sufficiently good approximation that allows
separating between seizure and non-seizure data. Therefore,
the R with higher average DP value is selected.

E. Classification

Three classifiers are used to perform the NCES detection:
A K-Nearest Neighbor classifier (KNN) with K = 3, a Radial
Basis Support Vector Machine(SVMRB), and a Linear Dis-
criminant Analysis (LDA). The implementation used for the
SVMRB estimates automatically the optimal radial basis ker-
nel and the regularization parameter. The kernel optimization
is performed by quadratic programming using the QP solver
provided by MatLab. The regularization parameter is estimated
by the leave-one-out cross-validation. The classifier selection
is based on a previous study [37] where it was concluded
that these are the best classifiers when using tensor-based
signatures as features. The KNN and SVMRB implementation
are available at the MATLAB toolbox PRTools [38].

The classification is performed for each patient individually.
The training set for each case is assembled with the epochs
from the first seizure (= positive class) and the same number
of non-seizure epochs from the EEG prior to the first seizure
(=negative class). Details about the training sets are given in
Table II. It was impossible to balance the training sets for
the cases 2 and 3 since the duration of the EEG prior to the
first seizure was too short to meet the number of epochs from
the seizure (the first seizure started after a few seconds of
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recording). Yet, this does not seem to affect the classifier per-
formance. The classification was performed in two ways: (1)
with the signatures from the different modes (Frequency, Time,
Space) separately, (2) with all mode signatures assembled.

The classifiers’ performance is evaluated in terms of sensi-
tivity, specificity, accuracy and false negative rate. Where the
sensitivity is calculated as,

TP
SN = T L FN @D
The specificity is defined as,
TN
== 22
SPeC = TN T FP 22)
The accuracy is termed as,
TP+TN
Acc = 23
“TTPYFP+TN+FN 23)

The false positive rate denotes the Type I error ratio (false
epochs classified as positives) and is defined as

FP
FP+TN
Where TP is the number of seizure epochs correctly detected,
FP is the number of seizure-free epochs classified as seizure,

TN is the number of seizure-free epochs correctly detected
and FN is the number of missed seizure epochs.

FPR = 4)

III. RESULTS AND DISCUSSION

The classification results are presented for the epoch based
analysis since the duration of the epochs is the minimum
duration of an epileptic event in the EEG. This means that
an alarm should be displayed after each positive detection.
This is not a practical implementation in real life dynamical
setting. For the real-life setting, an alarm will be set at the
seizure activity onset. Then, subsequent alarms are suppressed
and a new alarm is allowed after 10 minutes (lower bound
established for NCSE diagnosis [1]) of continuous seizure
activity.

The classifiers’ performance for the Frequency signatures is
shown in Fig.4 A. The best classification results are obtained
by a KNN classifier for h_freq_ BT signatures with a 94.1,
97.1, and 94.15% of specificity, sensitivity and accuracy values
respectively, and with a false detection rate per hour of 0.036.
According to the analysis of MP values, Frequency signatures
offer the best model of the data when they are obtained from
the decomposition of the W_Tensor set either with CPD or
BTD. On the other hand, the highest DP is obtained for
h_freq_ BT signatures followed by the h_freq_CP signatures.
This analysis revealed that even if the signatures allow an
accurate prediction model of the original data, as is the case
for W_Tensors signatures, discrimination between classes is
not guaranteed. The rest of the Frequency signatures achieved
sensitivity and accuracy values under 80%.

Regarding the Time feature, the highest DP value is obtained
with h_time_CP signatures. Consequently, the best classifi-
cation results for this feature are achieved by h_time_ CP
signatures with a KNN classifier (see Fig.4 B). The classifier
reached 98.6, 90.9 and 98.0% of specificity, sensitivity and
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accuracy values respectively. This feature achieved a false
positive detection rate of 0.010.

The false positive detection number for the Time feature
increases for the h_time BT, w_time_CP, and w_time_BT
signatures. This could be explained by the increase in the
number of factors used for these signatures. The greater the
number of factors, the more uninteresting patterns are modeled
by the signatures, which increases the uncertainty in the
classification task.

The combination of the signatures obtained with CPD and
BTD is unique. Yet, the components computed (signatures)
on their own are not. When more than one component is
computed, it is expected that some of them fit the pattern of
interest (hopefully most of them), and others model the noise
in the data or other underlying patterns that may appear. The
order in which these components are obtained is not unique
and may vary from epoch to epoch. It is not possible to
determine which component contains NCES information based
on it. Hence, the features computed from different epochs
may not correspond to each other, thereby hampering the
classification based only on the signatures.

We further discuss the Space signature performance. As low
DP values were obtained for W_Tensors CPD and BTD space
signatures, the classifier performance for these signatures is
lower than that obtained for the HH_Tensors signatures, Fig.4
C. The highest specificity, sensitivity and accuracy values for
the Space feature are achieved by SVMRB with 99.0%, 98.8%
and 99.0% respectively for the h_spac_CP signatures.The
KNN classifier obtained similar results for these signatures
with a specificity of 98.6%, a sensitivity of 99.8%, and
accuracy of 98.5%. The h_spac_CP signatures combined with
SVMRB achieved a 0.014 as false positive detection rate value
per hour.

The KNN classifier achieved sensitivity and accuracy values
below 85% for h_spac_BT. It is expected to obtain lower
sensitivity and accuracy values for h_spac_BT signatures given
that the DP for these is 3.9 compared to 6.4 computed for
h_spac_CP. Yet, the SVMRB classifier obtained accuracy and
sensitivity values over 85% outperforming KNN. Even when
lower performance scores are expected for h_spac_BT based
on the DP values, these should not be as low as those obtained
for KNN, since 3.9 is not a negligible DP value. Hence,
a higher performance could be expected from KNN. The
inspection of the h_spac_BT signatures showed that the scatter
distribution of these resulted in more overlap between the
classes, explaining KNN’s poor performance.

The training set using the assembled signatures achieved
similar results to those achieved by the space signature.The
best classifier for the assembled signatures training is SVMRB
for HH_Tensor CPD signatures with a specificity value of
98.5%, a sensitivity value of 99.0% and accuracy of 98.7%.
The average DP computed for these signatures is 5.9, it is
lower than the 7.5 obtained for h_ass_BT signatures. Yet, if
the DP values are analyzed individually for each signature,
it can be noticed that h_freq BT displays a large DP of
21.9 while the DP values of the remaining h_time_BT and
h_spac_BT are low, 2.2 and 2.6 respectively. The DP values
for HH_Tensor_CPD are 5.9, 4.4 and 6.4 for h_freq_CP,
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TABLE 11
AVAILABLE DATA FOR NCES AND SEIZURE FREE (N-NCES) CLASS AND THE RESULTING TRAINING SETS FOR EACH EEG RECORD GIVEN IN EPOCHS OF
3S DURATION

| Epochs |

Fist Seizure and prior EEG | |

Available Data . - Test Set
Modeling Data Training Set

| Record | NCES n-NCES | NCES n-NCES | NCES 1n-NCES | NCES n-NCES
1 58 345 4 177 4 4 54 168
2 39 127 26 5 26 5 13 122
3 140 424 12 1 12 1 128 423
4 73 112 8 30 8 8 65 82
5 10 18 3 7 3 3 7 11
6 84 269 13 18 13 13 71 251
7 6 237 3 143 3 3 3 94
8 13 4827 3 18 3 3 7 4809
9 163 4558 3 24 3 3 160 4534
10 1074 3346 19 125 19 19 1055 3221
11 16 1841 12 1381 12 12 4 460
12 875 1036 87 152 87 87 788 884
13 90 860 16 33 16 16 74 827
14 44 472 13 59 13 13 31 413

| Total | 2685 18472 | 222 2173 | 222 190 | 2466 16299 |

h_time_CP and h_spac_CP respectively. Thus, this implies
that the assembled training results will depend directly on
the individual signatures quality. The false detection rate for
the assembled HH_Tensor CPD training is similar to the one
obtained by the h_spac_CP signatures training.

The performed experiments showed that the tensor built
with HHT separates better the NCES data, thereby outperform-
ing the tensor obtained with the WT. Note that we also tested
datasets created using the energy of the wavelets coefficients
and other mother wavelets. None of these data sets obtained
better results in the training than those obtained using the
wavelet coefficients computed with the Mexican Hat mother
wavelet or HHT.

The HH_Tensor signatures obtained with CPD outperform
those computed with BTD in most of the training sets. This is
somewhat unexpected, as NCES is known to evolve along the
EEG. A low-rank BTD is a suitable model for analyzing such
evolving patterns [19]. The NCES can evolve along the EEG
record in frequency, morphology (time), or location (space).
The Salzburg Consensus Criteria for NCSE proposed in [22]
by adopting the American Clinical Neurophysiology Society
(ACNS) criterion provided more detailed, unambiguous guide-
lines about the characteristics of this “evolution” in each of
these dimensions which could clarify this unexpected result.
According to the ACNS, evolution in frequency is defined
as at least 2 consecutive changes in the same direction by
at least 0.5Hz, e.g. from 2 to 2.5 to 3Hz, or from 3 to 2 to
1.5H z; Evolution in morphology implies at least 2 consecutive
changes to a novel morphology; Evolution in location is
defined as sequentially spreading into or sequentially out of
at least two different standard 70-20 electrode locations. In
order to qualify as “present”, a single frequency or location
must persist at least 3s [22]. This implies that the changes
usually occur slowly, and a certain pattern tends to persist
3s or longer. The CPD model assumes that the source data
preserve the same frequency and location within the observed

epoch [19]. Due to the analyzed epochs duration (3s), it is
therefore unlikely to observe a lot of evolution in frequency,
time or space occurring within the same epoch. Hence, the
NCES data analyzed in these small epochs fulfill the trilinear
criteria justifying CPD and explaining why BTD overfits the
model.

Although HHT and WT are used for this proposal, different
tensorizations would also be possible, e.g. empirical wavelet
transform and tunable-Q wavelet transform [39], [40], which
were successfully used to detect epileptic seizures. Such
methods could be tried on NCES data in order demonstrate if
these algorithms are capable of capturing this seizure activity
as well.

Both classifiers, KNN and SVMRB, showed similar perfor-
mance for classification for different training sets. However,
different combinations of signatures and classifiers performed
better for the different scenarios (e.g. h_spac_BT combined
with SVMRB outperform the combination of h_spac_BT and
KNN, h_freq_BT combined with KNN outperform h_freq_BT
combined with SVMRB). Therefore, is not possible to estab-
lish a clear superiority of one over the other given the obtained
results.

The LDA classifier showed to be able to classify NCES
data with the Frequency and Space signatures. This classifier
obtained values of specificity, sensitivity, and accuracy over
95% for the h_spac_CP. However, for high dimensional fea-
tures such as Time and Assembled signatures LDA showed
to be unable to identify the seizure from seizure-free data.
For the Time and Assembled signatures, LDA displayed high
sensitivity but low values of specificity and accuracy.

As the achieved false positive rates values suggest, Fig.5, the
number of non-seizure events classified as seizures is low. The
majority of these misclassifications are due to the appearance
of long duration paroxysms (Fig.6) or a large number of
successive spikes in the EEG. These events, are long enough to
resemble a seizure but are too brief to be classified as a seizure
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according to the physician’s criteria. False positives detections
also occur at epochs with pre-ictal or post-ictal EEG activity.

False negative detections are found in records longer than 10
hours. These are related to changes in the EEG patterns of the
most distant seizures in time compared to the first detected
seizure (Fig.7). These changes may be associated with the
patient’s disease evolution. Including new EEG patterns from
subsequent seizures to the initial training set could help to
solve this. This will make the method proposed here robust
to the changes in the seizure pattern. There is no need to
stop the classification to retrain the classifier, this can be
done in parallel. This is a strength comparing our proposal
to threshold-based methods. The threshold based methods are
unable to respond to seizure changes and background EEG
pattern changes. This lack of adaptability makes the threshold
based methods less accurate for long-term EEG recordings.

Some misclassifications are caused by high-frequency ar-
tifacts probably related to poor electrode contact. These are
only found at the epochs where the artifact affected more than
one electrode at the same time instant. All signatures proved
to be robust to artifacts affecting isolated electrodes.

Based on the performed analysis, the best combination
for NCES detection is provided by the Space signatures as
features and the SVMRB as classifier. The Space signature
must be obtained with HHT and CPD as tensorization and
tensor decomposition method respectively.

TABLE III
ROUGH COMPARISON OF THE PROPOSED METHOD PERFORMANCE WITH
OTHER EXISTING METHODS IN TERMS OF ACCURACY, SENSITIVITY AND

SPECIFICITY
| Method | Accuracy | Sensitivity | Specificity |

Proposed Method 99.0% 98.8% 99.0%
Liang et. al. [14] 97.5% N/R N/R
Xanthopoulos et. al. [12] 95.0% N/R N/R
Kollialil et. al. [13] 99.6% N/R N/R
Fatma et. al. [41] 88.2% N/R N/R
Jacquin et. al. [11] N/R 83.0% 96.0%
Minasyan et. al. [15] N/R 71.0% 99.0%
Khan et. al. [16] N/R 86.8% 96.9%
Sharma et. al. [18] N/R 100.0% 93.3%
Fatma et. al. [41] N/R 100.0% 88.0%

Table III presents a rough comparison of our results with
the results achieved by other methods for NCES detection,
in terms of sensitivity and specificity. As can be noticed,
the methods from Sharma et. al. [16] and Fatma et. al. [41]
obtained superior results in terms of sensitivity than those
achieved by the method proposed here. The database used
in these publications consists of 13 EEG records, 6 of which
have only one seizure. The parameters extracted from epochs
of the same seizure tend to display a high similarity. Hence,
any classification task made with parameters from epochs of
the same seizure will reach high sensitivity values.

In terms of accuracy, Table III shows that our method is only
outperformed by Kollialil et. al. [11]. The method proposed by
Kollialil uses an SVM to classify between normal, interictal
and seizure EEG. In this publication, three different labeled
datasets are used. The classification was not performed in a
continuous recording. It should be noted that with such test
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data, the classifier does not face issues as artifacts, EEG pattern
changes or paroxysms as done in our study.

Regarding the execution time, which is a major concern
for detection algorithms, our method displays a runtime from
6.04s to 3.3min for the training step. All tests are performed
on a computer with an Intel Core-i3 processor at 1.70GH z
with 8GB of RAM. The training results are obtained for the
EEG records with the shortest (9s) and the largest (4.35min)
first seizure respectively. It should be noted, that the training
will only be performed once at the beginning of the monitor-
ing. The training step includes the tensorization and analysis
of all first seizure epochs and the classifier training. Hence,
the execution time will depend on the first seizure duration. It
could be decided to use only part of the seizure for training if
this is very long. Yet, it should be kept in mind that doing so
fewer training patterns will be included. In this sense, there
is a compromise between the number of positive epochs to
include in the training set and the quality of the classifier.

The classification runtime ranged from 0.37 to 3s which
means that our method can run in real-time. These results
are obtained by classifying all epochs from the test set. The
duration of the classification step will depend on the pattern
complexity. As the pattern becomes more complex, more time
is required to perform the EMD. The average detection delay
of the algorihtm is 5.4s.

IV. CONCLUSION

The presented paper introduced a NCES detection method
that exploits techniques such as multiway data analysis and
HHT. It is the first algorithm to apply HHT to model seizure
data with tensors. This is the first algorithm that uses this com-
bination for NCES detection. The HHT provides an accurate
definition of particular events in the time x frequency space
capturing the NCES data in a tensor close to R = 1. This
turns all signatures obtained from HH_Tensor decomposition
in relevant features to perform the NCES detection.

The best results at the classification were achieved for
HH_Tensor Space and Assembled features computed with
CPD combined with the SVMRB classifier, closely followed
by HH_Tensor Frequency features computed with BTD com-
bined with KNN.

According to the obtained results, the proposed method
proved to be one of the best NCES methods so far. The method
was validated on continuous clinical data in a realistic training
setting proving that the method can run in real-time.

The number of false positives for the training with
HH_Tensor Space and Assembled signatures obtained with
CPD was low. Yet, the appearance of EEG activity resembling
the seizure affected the performance of these signatures. The
false negatives found were related to EEG pattern changes at
the seizures distant in time from the first recorded seizure.
Due to the seizure EEG pattern evolution caused by the
underlying disease progression, adaptive training strategies
must be implemented to improve this.
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