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Abstract

Computational cardiology is the scientific field devoted to the development of methodologies that 

enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this 

regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling 

and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This 

article highlights existing methods, practices, and computational models and proposes new 

strategies to support a multidisciplinary effort in this space. We focus on the means by which to 

leverage and coalesce these multiple disciplines to advance translational science and 

computational cardiology. Analyzing the scientific trends and understanding the current needs we 

present our perspective for the future of cardiovascular treatment.
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I. INTRODUCTION

The growth and destabilization of high-risk atherosclerotic lesions is the root cause of the 

leading diseases that affect society today – myocardial infarction (heart attack) and 

cerebrovascular accidents (stroke). Until recently the genesis and evolution of these lesions 

could only be followed histologically and post-mortem. Today modern imaging increasingly 

provides in-life visualization of pathologies of the vessel wall and the circulatory system and 

is the primary means of early identification of patients at high risk of cardiovascular events. 

In addition, innovations in technology and data analysis, coupled with advanced 
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computerized methods can change clinical practice and help establish a rapid, accurate, and 

reliable diagnosis of cardiovascular syndromes.

Computational cardiology is devoted to advancing mechanistic insight, inspired diagnosis 

and innovative therapies for cardiovascular disease by melding imaging sciences, 

computational modeling, informatics, and cardiovascular biology. Advances and sectors 

within computational cardiology have segregated along three major domain lines: imaging, 

health informatics and computational modeling. However, as the field is by its very nature 

interdisciplinary, incorporating elements of diverse disciplines, we are slowly seeing a 

blurring of line and coalescence of a single unified community.

The three domains are then coming together as a coherent whole. Imaging plays a prominent 

role in research and clinical practice, on the bench and at the bedside, and similar to most 

scientific fields, advances in the one area propels the other. The implementation of imaging 

differs in various domain spaces and, though the domains are converging, there remains 

domain-specific development. Advances in medical imaging facilitate acquisition of the 

structure of vessels and the whole heart with high resolution, enabling generation of realistic 

three-dimensional (3D) computational models. Moreover, they increase the amount of 

clinical data, boosting the field of cardiovascular informatics. The use of 3D computational 

models of cardiac anatomy and function combined with clinical data, advance patient-

specific modelling and enhance our understanding of cardiovascular disease in particular. 

Research and development of novel computational methods, is increasing concurrent with 

translational investigation.

This article relates the exciting advances and future potential of these exciting areas and 

bridges the gaps between them (Fig. 1) to advance our understanding and provide novel 

treatments for critical cardiovascular diseases. Space precludes complete incorporation of all 

processes and so we primarily focus on atherosclerotic vascular disease (ASVD).

II. CARDIOVASCULAR IMAGING SYSTEMS

A. Imaging at bench

Imaging of the biological processes associated with plaque progression and destabilization is 

a primary step in understanding ASVD. Molecular imaging with Positron Emission 

Tomography (PET) [1] allows the detection and quantification of metabolic processes within 

the aortic wall. PET involves nuclear functional imaging, which detects pairs of gamma rays 

produced by a positron-emitting tracer. The tracer is inserted into the targeted tissue using a 

biologically active molecule. More specifically, the metabolite 18F-fluorodeoxyglucose 

tracer (18F-FDG PET) is a glucose analogue, which accumulates in macrophages residing 

with high density in fatty ASVD lesions [2]. 18F-FDG PET is used to quantify carotid 

plaque inflammation [3] and there is a convincing evidence that it can depict the early stage 

of foam cell formation in vulnerable plaques [4].

Inflammation can also be measured using molecular imaging in the near-infrared region 

(700–1,000 nm) based on exogenous chromophores [5]. Fluorescence imaging provides an 

extremely useful platform for in vivo molecular imaging. Specific molecules, i.e. 
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fluorophores absorb and emit the light in a non-ionizing process. Near Infrared Fluorescence 

(NIRF) imaging can also highlight high-risk lesions in human carotids [6]. Recently, it was 

shown that non-destructive two-photon excited fluorescence imaging can identify early 

presence of calcification in aortic valves [7]. NIRS imaging [8] is another imaging modality 

capable to determine the chemical compositions of substances near-infrared light, which can 

distinguish lipid-rich and high risk-vulnerable atherosclerotic plaques [9]. The spectral 

analysis of the reflected near-infra-red light allows evaluation of the chemical composition 

of the plaque and identification of the lipid component.

Optical imaging is advantageous in that it provides fine resolution visualization (down to nm 

and intercellular scales) of biochemical and physiological processes without destructive 

processing [10].

B. Imaging at bedside

Cardiovascular imaging at bedside involves real-time methods to guide physicians in ASVD 

diagnosis and intervention. Cardiac catheterization, a.k.a. coronary angiography [11], is an 

invasive imaging technique which involves the use of X-ray combined with a contrast fluid, 

injected from the tip of the catheter, and is widely used to visualize the coronary arterial tree. 

Although coronary angiography can estimate the degree of arterial stenosis it gives no 

information regarding the morphology and structure of the blood vessel wall, or synthetic or 

metabolic state of the plaque. Therefore, other imaging modalities were developed which are 

capable of sufficiently imaging the coronary arterial wall.

Intravascular ultrasound (IVUS) is a catheter-based imaging modality that can be applied in 

parallel with coronary angiography. A small ultrasonic probe is mounted at the distal end of 

a catheter attached through the catheter proximal end to reconstruction computer [11], [12]. 

The reflected signals of the transducer are received and processed to produce cross sectional 

images of the arterial wall. Although IVUS is a reliable method for detecting plaque 

composition, it cannot depict accurately stented segments and large calcified plaques [13], 

due to the limited penetration of sound in hard tissue. Additionally, as a result of its low 

axial resolution (150μm) IVUS cannot detect fibrous cap thickness or any micro-

calcifications which are highly associated with increased plaque vulnerability [14]. To 

overcome these limitations, optical coherence tomography (OCT) was adapted for 

intracoronary imaging [15]. Using light instead of mechanical waves OCT measures the time 

delay and magnitude of the backscattered light and generates cross sectional images of the 

wall in a similar way to IVUS. OCT is, however, capable of detecting atherosclerosis in 

detail as its axial resolution (15 μm) allows visualization of plaque micro-structures 

including the presence of neovascularization and micro-calcifications [15], [16], which 

correlate with plaque vulnerability. Visualization of the entire arterial wall is limited in OCT 

due to its poor signal penetration (2 mm). Lipid-rich tissue detection is also not reliable as 

light cannot penetrate soft tissue.

In contrast to intravascular imaging, which are mainly used for the visualization of coronary 

arteries, other imaging modalities were developed to depict larger arteries and parts of the 

cardiovascular system. These imaging modalities are noninvasive and have the potential for 

structural and functional discrimination – now widely used to study the anatomy of the heart 
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and of major vessels and to analyze plaque synthesis. Magnetic resonance imaging (MRI) 

uses strong magnetic fields at various resonance frequencies circular to the targeted vessel. 

The radio signal can represent position and tissue synthesis information. Different signal 

intensities are reflected from different tissue types using various image sequences [17]; T1-

weighted (T1W), T2-weighted (T2W), Time of Flight (TOF), and proton density weighted 

(PDW). MRI, although expensive and logistically cumbersome, is considered an effective 

imaging method to define the anatomy of the cardiovascular system and evaluate 

atherosclerosis in the carotid and coronary circulations. In addition, four-dimensional flow 

or phase-contrast MRI (4D-MRI) enables comprehensive, yet coarse, hemodynamic flow 

assessments by measuring the velocity in all directions of the gradient magnetic field. 4D-

MRI is used mostly to analyze, ventricle function, aortic valve disease, and aortic 

coarctation [18].

Similar to MRI, computed tomography (CT) is non-invasive emitting X-rays circular to the 

targeted tissue, producing cross-sectional (tomographic) images [11]. CT has the ability to 

identify the degree of stenosis and to image bones and different tissue types of tissue [19].

C. Combined imaging

Contemporary imaging techniques have fundamental limitations e.g. inaccurate evaluation 

of well-known plaque types, and failure in detecting high-risk lesions and providing 

simultaneously biochemical and anatomical state. Ongoing research in novel imaging 

methods and intravascular atheter development seeks to avoid these issues and to provide 

reliable identification of high-risk lsions and local metabolic state. However, no single 

imaging method can alone provide all that is rquired. Thus, multimodal approaches are 

continuously being developed to provide comprehensive vsualization of plaque biology and 

composition within arterial anatomy.

Combined NIRS-IVUS imaging [20] is an intravascular imaging technology approved for 

clinical use in the USA which aims to provide a detailed assessment of plaque composition. 

The combination of IVUS and NIRS in a single catheter provides an IVUS image within a 

lipid-rich area. This unique image includes information about a potentially-vulnerable 

plaque in patients with stable coronary artery disease [21] and is used to associate plaque 

characteristics with future clinical events [9]. Limitations attributed to low resolution remain 

- imaging high risk plaque characteristics as thin fibrous cap atheroma and estimating the 

neo-intimal stent strut coverage is still not feasible using NIRS-IVUS. Thus, similar to 

IVUSNIRS, a NIRS-OCT catheter was developed [22] which integrates OCT and NIRS 

imaging utilizing a wavelength-swept light source for both imaging modalities. NIRS-OCT 

is expected to enable the correlation between lipid rich plaques and microstructural features 

to serve the research in plaque progression. NIRF imaging is a molecular imaging used as an 

intravascular clinically-translatable method revealing biological details of coronary arteries 

[23]. NIRF-OCT is an imaging method similar to NIRS-OCT which combines OCT and 

NIRF signals to give an OCT image with a color coded ring around it [24]. OCT-NIRF has 

advantage of detecting and quantifying plaque inflammation [25].

IVUS and OCT, though seemingly interchangeable, are two imaging modalities which can 

be combined [26] to improve structural arterial representation. OCT has higher resolution 
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but limited tissue penetration and cannot depict sufficiently soft plaque [15], while IVUS 

can image the outer vessel border (media-adventitia) limited to sufficiently detect calcium 

[27]. The use of IVUS-OCT catheter in human patients with a real-time image acquisition is 

still under development [28]. Attempts also were made to integrate fluorescence imaging 

into the IVUS-OCT catheter and were tested ex vivo [29].

Cardiac PET imaging is also a non-invasive imaging modality which is often combined with 

CT or MRI. In PET-CT or PET-MRI the images are acquired simultaneously and then co-

registered and combined into a single output. In this image there is information regarding the 

spatial distribution of biochemical and metabolic activity, and anatomy of the cardiovascular 

system. PET-CT has proven to be promising for evaluating atherosclerosis and inflammation 

in coronary arteries [30]. There is as well increasing enthusiasm for PET MRI imaging due 

to reduced radiation and ability to correct the heart motion with logistic and cost-related 

concerns [31].

III. COMPUTATIONAL MODELING

A. Computer-aided methods

Several methods have been developed in the last three decades to process imaging data, 

allowing fast and reliable detection of the structure and synthesis of the arterial wall. The 

majority of computational imaging methods are designed for coronary clinical applications 

at the bedside and involve processing images derived from IVUS, OCT, MRI, CT and 

angiographic systems. Widely used IVUS-based imaging allows automatic detection of 

lumen and media-adventitia borders [32]–[34], as well as definition of the synthetic state of 

atherosclerotic plaque [35]–[38]. Similarly, OCT-based computational methods can 

accurately detect the lumen [39]–[41], estimate the media-adventitia border [42] and depict 

major plaque formations [43]–[47]. The ability of OCT to image endovascular implants in 

high detail led to computerized methods for automatic detection and accurate measurement 

of those devices [48], [49]. The lack of information regarding the curvature of the artery in 

both IVUS and OCT, though, entailed combining their outputs with angiographic images 

[50]–[52]. The result is accurate and realistic 3D reconstructed coronary arteries which can 

be reproduced only using 3D non-invasive imaging methods, i.e. CT and MRI. The amount 

of data acquired by such non-invasive imaging methods led to the development of 

computational methods which automatically are able to create, in 3D, the arterial tree and 

major plaque formations such as calcified and lipid plaque.

Dedicated software (CAAS QCA 3D®) and methods [53] have been developed for the rapid 

reconstruction of the 3D coronary tree from angiographic images. Though they can provide 

additional information regarding pressure characteristics, they lack any plaque information. 

CT and MRI applications were also developed for reconstructing the heart and the valves 

and to perform accurate measurements [54], [55]. These software are used for research and 

radiological perspective, many of which are open source and freely available, e.g. Osirix 

Lite® and 3D Slicer®. Commercially available software allow the processing of images 

acquired by different image-capturing non-invasive modalities and more advanced image 

applications than segmentation, e.g. VITREA2® and AW VolumeShare 5®.
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Computational imaging remains a leading element of the diagnosis, treatment, and study of 

ASVD outcomes. developed methods are used during intervention [56] or in the research 

arena [57]. However, mining and advanced analysis of large data in cardiovascular imaging 

might offer the potential not only to perform in silico research but also to provide novel 

diagnostics and prognostics based on cutting-edge computational methods. An attempt to 

schematically present the connection between different imaging models and their 

propagation from imaging and big data to complex cardiovascular models is shown in Fig. 2.

B. Computational models

Computer-aided methods can automatically detect the anatomy and plaque synthesis of the 

vessels wall and are widely used in the research and clinical arena. However, their role is 

limited in examining mechanistic understanding of the natural history of atherosclerosis, 

where biological and biomechanical forces dominate [58]. The biological cascade of events 

associated with transport of macromolecules such as Low Density Lipoprotein (LDL) and 

hemodynamic metrics such as Wall Shear Stress (WSS) play an important role in the 

pathogenesis and progression of atherosclerosis.

Physical models that seek to present these events can lead to better understanding of 

atherosclerosis. However, their relevance is limited by the accuracy in defining architecture 

and boundary conditions, and it becomes prohibitive to scan through all possible 

permutations and combinations. To this end, computational simulations were proposed to 

cost-efficiently model the mechanics and the biology of important components of the 

cardiovascular system. For instance, a mathematical model can be developed to simulate the 

electrophysiological behavior of the myocardium once heart anatomy and structure of the 

heart is defined in 3D [59]. Moreover, electromechanical heart models can attribute the 

overall organ function to structures from molecular level [60]. Pathological changes, which 

cause structural and functional cardiac remodeling, may affect the cardiac electromechanical 

performance and methods aiming to simulate both types of remodeling were developed [61]. 

There have been a number of methods focused on long-term patho-biological processes of 

the cardiovascular system, e.g. atherosclerosis [62]. Major mechanisms of atherosclerotic 

plaque growth have been presented using numerical growth models [63], [64]. Though here 

too precision is of paramount importance, and there remains a balance between ease of 

considering multiple conformations in a computer model and amount of data, processing, 

subsequent analysis, and model fitting for the production of patient-specific realistic 3D 

models [65].

Cardiovascular modeling has matured and is advancing towards personalized medicine [66]. 

Models are now de rigueur in a variety of disciplines including electrophysiology (EP), 

structural heart disease as well as vascular disease and involve solid mechanics, 

biochemistry, and computational fluid dynamics (CFD) verified by benchtop/preclinical 

experiments [67]. These mechanistic models of heart physiology extend to a variety of 

cardiovascular phenomena including electrical impulse propagation throughout the 

myocardial tissue [68], as well as hemodynamics in the ventricles [69], aorta, coronaries, 

cerebral and peripheral arteries [70] in addition to cardiac valves [71]. Models study wide 

range of pathologies such as aneurysms, stenoses [72], and malperfusion as well as valvular, 
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congenital [73], and ventricular diseases. Several clinical scenarios have been extensively 

studied including coronary artery bypass grafting (CABG), stent angioplasty, left ventricular 

assist devices, extracorporal membrane oxygenation (ECMO) life supports, cardiac 

resynchronization therapy, ablation therapy, and vascular surgeries [67].

The study of cardiac flow is divided into cardiac and vascular hemodynamics [74]. The 

former includes blood flow in heart chambers, while the latter discusses blood transport to/

from these chambers via cardiac vessels. As simplified models can be readily applied in 

large vessels the more sophisticated computational modeling focuses on the circulation of 

smaller arteries by incorporating mathematical lumped-parameter models [75] to simulate 

the heart cycle. As boundary conditions play a significant role in computational 

hemodynamics their proper setting is important for the validity of the computational models. 

Therefore, lumped-parameter models can serve computational studies of larger vessels 

hemodynamics to tune the boundary conditions of the peripheral arteries [76].

In a more applied approach, computational modeling has been recognized by manufacturers 

and regulatory officials as an economical, yet reliable tool to advance the device design with 

optimized efficacy. As a case in point, drug-eluting stent development and evaluation has 

benefited tremendously from computational models in optimizing strut geometry, 

pharmacokinetics and pharmacodynamics of released drug, and procedural routines of 

implantation [77], [78]. Hemodynamic metrics of disrupted flow such as WSS, as well, has 

been extensively studied using computer models and correlated to atherogenesis and clinical 

events such as restenosis. [79]–[81] These local metrics of flow alteration are difficult to 

measure via in vivo imaging or benchtop experiments, yet accurately resulted from CFD 

[82]. Virtual intervention/surgery planning is a promising future step for computational 

models, wherein device type, sizing, and procedural guidelines might potentially be 

optimized in complex clinical cases [83], [84].

Computational models of heart still face several challenges that unless addressed would 

hinder introduction of personalized computational medicine into clinics[85]. Cardiovascular 

pathogenesis is accompanied by several other co-morbidities, such as diabetes and 

pulmonary edema, and initiated and accompanied by several risk factors including smoking, 

obesity, and other negative life habits. However, computational study of heart disease thus 

far has focused only on mechanisms and consequences of atherosclerosis and arrhythmia. 

More realistic prognoses and diagnoses would only be obtained if these confounding factors 

are also included.

Moreover, despite daily advances in medical imaging the resolution of in vivo data and their 

comprehensive calibration and validation are still the bottleneck of patient-specific models 

[86]. This will limit the application of personalized models to animal models wherein 

abundant in vivo and ex vivo data are available to tweak the computational models. In 

addition, more advanced numerical approaches, instantaneous access to patient-specific 

parameters, ease of immediate model adjustment, and high-speed computational hardware 

are required to achieve real-time simulations of clinical cases to facilitate the use of 

computational models in daily medical practices. Scientists, thus, are required to achieve an 
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optimal combination of imaging and computation to address critical issues of cardiovascular 

diseases in clinics [86].

Computational models possess the potential to open new vistas on diagnoses, prognoses, 

treatment, surgical planning, and disease prevention. The critical step towards introduction 

of computational medicine to daily medical practices is the automation of model creation to 

offer a scalable user-friendly platform to medical experts [87]. Thus, sufficient practical 

evidences are required to convince regulatory officials to allow clinical trials for this concept 

[85]. Needless to say continued advances in imaging modalities and image processing tools, 

as the most critical pre-requisite of computations, will push the borders of cardiac modeling 

above and beyond the preclinical/bench-top settings [88].

Research conducted in cardiovascular imaging is boosting studies towards understanding 

atherosclerosis. Advances in imaging atherosclerosis, computerized methods in cardiology, 

and methods developed that associate plaque development and shear stresses to 

atherosclerosis are significantly increasing over the last decade (Fig. 3). It is quite 

remarkable that the pace of research in imaging, computerized methods, shear stress, and 

plaque development are highly correlated and matched over the last 3 decades (Fig. 3 and 

TABLE II).

IV. CARDIOVASCULAR INFORMATICS & MACHINE LEARNING

Health informatics, the processing, storage, and retrieval of health data has changed the 

detection, diagnosis and treatment of diseases [89]. Like many explosive fields though 

success has bred challenges, especially in cardiovascular informatics [89]. The plethora of 

computer-aided and computational methods developed over the last two decade have 

increased significantly the amount of data produced and stored within hospital databases and 

research institutes [90] and yet not access to these images or signals.

Data sharing makes valuable information accessible to those who did not participate in the 

original trial, increasing the impact and reach of each study. Indeed, many journal publishers 

require data reuse and provide tools for data archival. Cardiovascular sciences strives to 

match the advanced insight extent in genomics and neuroscience [91] [92]. Yet, much work 

needs to be done for though publicly available cardiovascular imaging databases exist data 

demand exceeds supply.

Data sharing is expected to enhance cardiovascular research in the years to come. Until 

recently, the process of maintaining, sharing and accessing enormous amount of data was 

not feasible and therefore connecting datasets from different hospitals and research centers 

was not a high priority. Lately, the use of convolutional neural networks (CNNs) or deep 

learning in cardiovascular image analysis highlighted the need for large scale imaging 

datasets. CNNs are a class of machine learning where discriminative features are not pre-

specified by experts but rather automatically learned from the trained images. Once a CNN 

model is trained on a sufficiently large dataset, it is able to generalize to new images. Yet, 

the mass of data required has hindered use of deep learning and we still rely on more basic 
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means of machine learning (Fig. 4, TABLE II) – a pattern we expect to see reversed as data 

becomes increasingly available.

V. THE FUTURE OF CARDIOVASCULAR TREATMENT

Computational cardiology remains yet, an unrealized challenge as the connection between 

imaging, informatics and modeling is inconsistent. The future of cardiovascular treatment 

lies in connecting the different elements and in leveraging future advances in hardware and 

software. Although imaging, computerized methods and computational modeling are related 

(Fig. 3 and 4, and TABLE II) there is still a gap between the recent technological 

developments in computer science; correlation is low between cardiovascular informatics 

and deep learning/machine learning in cardiology.

The challenges are clear. Only integration of simultaneous advances in medicine, imaging, 

data storage and computer science will allow computational models to enable clinical 

application and directed therapeutics (Fig. 5). Medical education most evolve to integrate 

computational and imaging sciences to create a new class of scientists well versed in all 

relevant domains to explain what these new tools are telling us and how to achieve critical 

treatment decisions [93].

VI. CONCLUSIONS

Computational cardiology is the scientific field devoted to the development of 

methodologies focusing on understanding the mechanisms of cardiovascular disease and in 

driving diagnosis and treatment. Technological progress in medical imaging, computational 

modeling and cardiovascular informatics proved to be crucial for understanding and treating 

cardiac diseases. They provide new premises in the field of computational cardiology and 

reveal new disease mechanisms. Following the technological and scientific trends of the last 

decades we can further understand how this progress took effect. Studying history always 
shows us the way on how to move in future; studying the scientific achievements in different 

scientific fields we advance each other. Moreover, we are able to make suggestions on how 

we can bring the fields of imaging, informatics, and computational modeling closer to 

advance translational science and computational cardiology. Riding on the heels of modern 

technological and scientific achievements we can present new approaches to treat 

cardiovascular disease. The journey has begun.
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Fig. 1: 
Schematic presentation of the propagation from basic science to computational cardiology. 

Following the flow arrows three major fields overlap, supplement each other and form 

computational cardiology.
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Fig. 2: 
Interconnected group of imaging methods, clinical data and advanced treatment showing the 

existing dependence between them.
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Fig. 3: 
Distribution of published studies, within the last 37 years employing atherosclerosis and 

shear stress, computerized methods or algorithms, plaque development and imaging. Source: 

scopus.com.
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Fig. 4: 
Distribution of published studies, within the last 37 years employing cardiovascular 

informatics, machine learning and cardiovascular or cardiology or coronary, deep learning 

and cardiovascular or cardiology or coronary, deep learning and health. Source: scopus.com.
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Fig. 5: 
Scheme presenting the perspective of cardiovascular treatment according to this manuscript.

Athanasiou et al. Page 20

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2019 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Athanasiou et al. Page 21

TABLE I:

STATISTICAL RELATION USING REGRESSION ANALYSIS BETWEEN THE NUMBER OF 

PUBLISHED STUDIES BASED ON SEVERAL SEARCH TERMS* AS PRESENTED IN Fig. 3.

r stl st2 st3 st4

stl l 0.98 0.99 0.97

st2 0.98 l 0.99 0.96

st3 0.99 0.99 l 0.96

st4 0.97 0.97 0.96 1

*
Search term (st) - st1: Shear stress and atherosclerosis, st2: Computerized method, st3: Atherogenesis/Plaque development, st4: Imaging 

atherosclerosis
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TABLE II:

STATISTICAL RELATION USING REGRESSION ANALYSIS BETWEEN THE NUMBER OF 

PUBLISHED STUDIES BASED ON SEVERAL SEARCH TERMS* AS PRESENTED IN Fig. 4.

r st5 st6 st7 st8 st9

st5 1 0.84 0.66 0.59 0.77

st6 0.84 1 0.94 0.89 0.96

st7 0.66 0.94 1 0.91 0.95

st8 0.59 0.89 0.91 1 0.81

st9 0.77 0.96 0.95 0.81 1

*
Search term (st) - st5: Cardiovascular Informatics, st6: Machine Learning and cardiovascular/cardiology/coronary, st7: Deep Learning and 

cardiovascular/cardiology/coronary, st8: Deep Learning and Health, st9: Big data and Healthcare/Health
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