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Abstract— Using wearable devices in clinical routines could 

reduce healthcare costs and improve the quality of assessment in 
patients with chronic respiratory diseases. The purpose of this study 
is to evaluate the capability of a Shimmer3 wearable device device to 
extract reliable cardiorespiratory parameters from surface 
diaphragm electromyography (EMGdi). Twenty healthy volunteers 
underwent an incremental load respiratory test whilst EMGdi was 
recorded with a Shimmer3 wearable device (EMGdiW). 
Simultaneously, a second EMGdi (EMGdiL), the inspiratory mouth 
pressure (Pmouth) and the lead-I electrocardiogram (ECG) were 
recorded via a standard wired laboratory acquisition system. 
Different cardiorespiratory parameters have been extracted from 
both EMGdiW and EMGdiL signals.: heart rate, respiratory rate, 
respiratory muscle activity and mean frequency of EMGdi signals. 
Alongside these, similar parameters were also extracted from 
reference signals (Pmouth and ECG). High correlations were found 
between the data extracted from the EMGdiW and the reference 
signal data: heart rate (R = 0.947), respiratory rate (R = 0.940), 
respiratory muscle activity (R = 0.877), and mean frequency (R = 
0.895). Moreover, similar increments in EMGdiW and EMGdiL 
activity were observed when Pmouth was raised, enabling the study 
of respiratory muscle activation. In summary, the Shimmer3 device 
is a promising and cost-effective solution for ambulatory monitoring 
of respiratory muscle function in chronic respiratory diseases. 
 

Index Terms— Non-invasive respiratory monitoring, 
cardiorespiratory monitoring, surface diaphragm 
electromyography, wearable wireless device, chronic respiratory 
diseases, fixed sample entropy. 
 

I. INTRODUCTION 
ccording to the Organization for Economic Co-operation 
and Development, many countries are facing the 
increasing burden of an ageing population and the growing 

prevalence of chronic diseases [1]. In this context, new 
technologies must be developed to change how healthcare 
services are delivered in order to improve primary care systems 
and reduce hospital costs. A promising solution to advance the 
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quality of healthcare delivery is the integration of wearable 
wireless devices into clinical routines [2]. These technologies 
are designed to be small, lightweight, low cost, energy saving 
and easy to use, allowing physiological patient data to be 
monitored outside healthcare facilities without being intrusive 
[3], [4]. Physiological information collected with wearable 
wireless devices has proved beneficial in a wide range of 
medical applications [5] [6]. 

Chronic respiratory diseases, such as asthma, pulmonary 
hypertension, obstructive sleep apnoea and chronic obstructive 
pulmonary disease (COPD), compromise the airways as well 
as several lung structures, and are currently considered a global 
health issue entailing substantial healthcare costs worldwide 
[7]. Sixty-four million people currently suffer from COPD, and 
the disease is most prevalent among the elderly. It is expected 
to become the third leading cause of death worldwide by 2030 
[8]. Bioelectrical signals, such as electrocardiography (ECG) 
and electromyography (EMG) can be recorded with wearable 
wireless devices, and together with the use of signal processing 
techniques, could be used to obtain important cardiorespiratory 
information in a cost-effective manner. 

The ECG, the most traditional recorded signal originating 
from heart, can be recorded wirelessly by means of a 
disposable adhesive patch sensor worn on the chest [9]. 
Different information can be extracted from ECG recordings; 
it is not only possible to calculate heart rate (HR), but also to 
derive the patient’s respiratory rate (RR) [10]. Other non-
electrical biomedical signals have been proposed for the 
extraction of multiparametric physiological information. For 
instance, pulse photoplethysmography  can provide valuable 
information about the cardiovascular system when recorded by 
a pulse oximeter interfaced with a mobile smartphone [11], and 
can allow parameters such oxygen saturation , HR, RR [12] 
and even respiratory effort to be estimated [13]. 

The EMG, which represents the electrical activity generated 
by muscle fibres during a contraction, allows healthcare 
professionals to assess respiratory muscle function, providing 
useful information for the diagnosis and treatment of patients 
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suffering from respiratory muscle weakness [14], such as 
patients with COPD. Electromyography of the diaphragm 
(EMGdi), the main muscle involved in the respiratory process, 
reflects the output of the neural respiratory centre [15]. Surface 
EMG of respiratory muscles, acquired by means of surface 
electrodes positioned at different points on the body, is a non-
invasive alternative to invasive EMGdi measurements [16], 
[17]. Additionally, respiratory EMG signals themselves contain 
cardiorespiratory information from which RR and HR can be 
derived in neonates and adults [18], [19], [20]. These two 
cardiorespiratory parameters provide relevant information for 
evaluating patients suffering from COPD [21], [22]. 

Despite the potential advantages that wearable wireless 
devices offer in tracking health data, they have rarely been 
proposed for the recording of respiratory muscle activity. The 
present study was conducted to validate the use of a commercial 
wearable wireless device, the Shimmer3 (Shimmer Research 
Ltd., Dublin, Ireland) [24], to non-invasively record EMGdi to 
obtain relevant physiological data for the evaluation of 
cardiorespiratory function, such as respiratory muscle activity, 
HR and RR. The Shimmer3 is a low-cost wearable sensing 
platform that enables the acquisition EMG signals in 
unconstrained environments. However, the validity of the data 
acquired with the Shimmer3 for cardiorespiratory signal 
analysis has not been addressed. The hypothesis of this study 
was that cardiorespiratory measurements obtained with the 
Shimmer3 in healthy subjects during an inspiratory loading test 
in a controlled environment would be comparable to 
measurements made by a standard laboratory equipment. With 
this aim, we compare EMGdi activity recorded with a 
Shimmer3 and that taken from a standard wired laboratory 
acquisition system in healthy subjects while performing an 
incremental inspiratory load protocol. Multiple types of 
physiological information were extracted from the Shimmer3 
EMGdi signal and compared with the reference values: HR, 
RR, as well as EMG activity indexes and frequency parameters 
to assess respiratory muscle effort. 

II. MATERIALS AND METHODS 

A. Subjects 
The following experiment was conducted with 20 non-

sedentary healthy young adults (13 males and 7 females, mean 
± standard deviation: age 22.70±1.53 years, height 1.74±0.08 
m, weight 68.00±10.23 kg, body mass index 22.36±1.85 
kg/m2). The Institutional Review Board at the Institute for 
Bioengineering of Catalonia, Barcelona, Spain, approved all 
procedures (reference number IRB_IBEC_RJANE_2016_01) 
and participants gave their written informed consent prior to 
their inclusion in the study. 

B. Respiratory test 
Each subject underwent an incremental respiratory load test, 

which consisted of breathing at four different levels of 
inspiratory load. The subjects started by maintaining quiet 
breathing without the application of any additional inspiratory 
load. A 19 cm H2O inspiratory load was applied and then raised 
to 29 and 41 cm H2O (Load 1, Load 2 and Load 3, respectively), 
using a threshold inspiratory muscle trainer device (Threshold 

IMT, Philips Respironics, Amsterdam, The Netherlands). The 
device imposes mouth pressure that requires additional 
inspiratory muscle effort. The respiration test during each 
inspiratory load lasted 60 s followed by a three-minute rest 
period. Over the course of the test, the subjects were asked to 
sit comfortably in a chair, maintain straight posture and rest 
both arms on a table, and a nose clip was provided to prevent 
nasal respiration. Subjects visualized their mouth pressure and 
airflow displayed on a screen during the test as a visual 
feedback to maintain a regular respiratory pattern within each 
inspiratory load. 

C. Data acquisition 
Two surface EMGdi signals were simultaneously recorded in 

this study. Each signal was recorded by means of two circular 
disposable Ag/AgCl electrodes (11-mm diameter, pregelled, 
foam electrode 50/PK – EL501, Biopac Systems, Santa 
Barbara, CA, USA) in bipolar configuration, one 25 mm below 
the other. Each pair was attached to the lower right chest, on the 
line between the anterior axillary line and the midclavicular 
line, over the seventh and eighth intercostal spaces above the 
costal margin. This area corresponds to the zone of apposition 
of the costal diaphragm muscle [25]. To reach the utmost 
similarity between measurements, the electrodes in bipolar 
configuration were placed adjacent to one another as shown in 
Fig. 1. Prior to acquiring the data, all the electrode recording 
sites were carefully prepared using an abrasive cream (Nuprep, 
Weaver and Company, Aurora, CO, USA) and cleaned with 
isopropyl alcohol to improve skin/electrode impedance.  

One of the EMGdi signals (EMGdiW) was acquired using a 
Shimmer3 (Shimmer Research Ltd., Dublin, Ireland) [24] 
attached with a strap to the chest of the subject. This device has 
a variable gain amplifier with a gain of up to 12, a bandwidth 
of 8500 Hz and a 24-bit resolution analogue-to-digital 
converter. The sample rate for the acquisitions was set at 1024 
Hz, for which the Shimmer3 applies a low-pass filter with a cut-
off frequency of 268.29 Hz. The data was stored in an integrated 
microSD card. 

The second EMGdi signal (EMGdiL) was acquired using a 
standard laboratory data acquisition system (MP150, Biopac 
System Inc., Santa Barbara, CA, USA) with a 16-bit analogue-
to-digital converter plugged into a modular differential 
amplifier (EMG100C, Biopac Systems, Inc.) with an analogue 
low-pass filter with a cut-off frequency of 300 Hz and a gain of 

 
Fig. 1. Electrode set-up for signal acquisition 
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1000. Simultaneously with the EMGdi acquisitions, the ECG 
and inspiratory mouth pressure (Pmouth) signals were 
recorded. The ECG was measured using a standard lead-I 
derivation with two electrodes of the same type placed on the 
right and left wrists and connected to an ECG modular amplifier 
(ECG100, Biopac Systems, Inc.) set with a gain of 1000. The 
Pmouth was measured using a differential pressure transducer 
(TSD160A, Biopac Systems, Inc.) connected to a modular 
amplifier (DA100C, Biopac System, Inc.). EMGdiL, ECG and 
Pmouth signals were recorded at 2000 Hz, displayed in real 
time on a monitor screen and saved on a computer 
(AcqKnowledge software v.3.2 Biopac Systems Inc.). 

D. Signal processing 
The following processing steps were applied to determine 

this physiological information (a video with a flowchart of these 
processing steps is available as Supplementary Files on 
ScholarIOne Manuscripts):  
1) Signal pre-processing  

For accurate comparison with EMGdiW, the sampling 
frequency of the EMGdiL, ECG and Pmouth signals were 
resampled from 2000 Hz to 1024 Hz. Moreover, as the 
acquisitions were triggered manually, an inherent asynchrony 
occurred between the signals recorded with the two different 
acquisition systems. To resolve this issue, a technique based on 
the cross-correlation function was used for the temporal 
alignment of the signals: (1) EMGdiW and EMGdiL signals were 
filtered with a zero-phase fourth-order Butterworth filter with 
cut-off frequencies of 0.5 to 40 Hz, (2) the normalized cross-
correlation sequence between both filtered signals at all 
possible lags was calculated, (3) the estimated delay is obtained 
as the lag for which the normalized cross-correlation has the 
largest absolute value, (4) all original Biopac and Shimmer3 
signals were synchronized using the delay information. 
Afterwards, for each subject and inspiratory load, and 
according to Pmouth recordings, five consecutive respiratory 
cycles were selected where the breathing pattern was stable 
with no remarkably short or prolonged breaths [17], as shown 
in Fig. 2. 

2) Heart rate extraction 
EMG respiratory activity recorded on the chest is highly 

influenced by ECG. Taking advantage of the presence of 
cardiac activity, a simple QRS complex detector based on the 
classical Pan-Tompkins algorithm [25] was implemented for 
EMGdi signals. Prior to this step, EMGdiL, EMGdiW and ECG 
signals were digitally band-pass filtered with a zero-phase 
fourth-order Butterworth filter with cut-off frequencies of 0.5 
to 40 Hz. Afterward, the mean HR was estimated on the 
selected five consecutive respiratory cycles for each load from 
the EMGdiW (HRW), EMGdiL (HRL) and compared to the 
reference heart rate (HRref) extracted from ECG by means of the 
same procedure applied to the EMGdi signals. 
3) Respiratory rate extraction  

EMGdiW and EMGdiL were digitally band-pass filtered with 
a zero-phase fourth-order Butterworth filter with cut-off 
frequencies of 5 and 400 Hz. EMGdi activity was estimated 
using a fixed sample entropy (fSampEn) algorithm [23], [26]. 
fSampEn quantifies in short datasets, the amplitude variation of 
the complex components of the EMGdi while being less 
sensitive to deterministic components, such as ECG. A detailed 
explanation of the fSampEn algorithm can be found in [23]. 
Three parameters must be fixed in order to make use of the 
fSampEn: the length of compared runs (m), the tolerance value 
(r) and the size of the moving window. In this study, we used m 
= 1 and r = 0.3 times the standard deviation of the entire EMGdi 
over a moving window of 1 s and with 90% overlap [23], [27]. 
This algorithm was applied to EMGdiL and EMGdiW, leading 
to fSampEnL and fSampEnW, respectively.  

The Pmouth, fSampEnL and fSampEnW (Fig. 2 a, e and f, 
respectively) are low frequency signals directly related to 
breathing activity and from which RR can be extracted. To this 
end, firstly these signals were resampled to a new sample rate 
of 5 Hz. Before resampling, all signals were low-pass filtered 
using a zero-phase 8th order Chebyshev Type I filter with a cut-
off frequency of 2 Hz. Then the power spectral density was 
calculated via the Welch periodogram using a 10 seconds 
Hamming window, a 50% window overlap and an FFT size of 
4096 points. Subsequently, the mean RR on the five respiratory 
cycles was determined by detecting the peak frequency of the 
resultant spectrum. For each load, the RR was estimated from 

 
Fig. 2. Incremental inspiratory load test. For each load, representative traces during the time-course of five breathings for (a) Pmouth, (b) ECG, (c) EMGdiL, 
(d) EMGdiW, (e) fSampEnL and (f) fSampEnW. From left to right: increments in the inspiratory load corresponding to quiet breathing, and inspiration loads 
of 19, 29 and 41 cm H2O. 
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fSampEnL (RRL) and fSampEnW (RRW), and compared to a RR 
reference value (RRref), obtained from the Pmouth. 
4) Assessment of respiratory muscle activity 

EMGdi is considered a biomarker which reflects the balance 
between the load on the respiratory system and the capacity of 
the respiratory muscles to handle that load [15]. To assess 
respiratory muscle activity, an EMG activity index extracted 
from the fSampEn was used to compare the evolution of the 
EMGdi signals with the level of mouth pressure applied [23]. 
Thus, the mean value of each respiratory cycle at each load was 
calculated in the two EMGdi, fSampEnL and fSampEnW (MEL 
and  MEW, respectively). Additionally, as Pmouth make give a 
reasonable approximation of the overall mechanical output of 
the respiratory system [14], both MEL and  MEW were 
compared with the mean value of Pmouth (MP). At each load, 
the 5-cycle average of MEL, MEW and MP values (mMEL, 
mMEW and mMP) was calculated for each subject. 
5) Assessment of respiratory muscle fatigue 

The analysis of the frequency content of EMGdi signals 
could allow muscle fatigue to be assessed [29], [30]. To 
appraise the power spectral density of the EMGdi signals in 
respiratory muscles, it was first necessary to consider only the 
inspiratory periods of the signal, and then to discard the 
segments containing QRS activity. Therefore, the preliminary 
stage consisted of segmenting the EMG signals to obtain 
segments with inspiratory activity only [28]. To extract the 
initial and final instant of inspiration, the algorithm compares 
the low-pass filtered pressure signal (using a zero-phase fourth-
order Butterworth filter with a cut-off frequency of 5 Hz) with 
a moving average of the pressure signal whose window length 
is adjusted in accordance with respiratory frequency. The initial 
and final time of cardiac activity were considered 150 ms before 
and 300 ms after the R point of the QRS complex, respectively. 
Once the EMG signals have been segmented, it is possible to 
accurately evaluate the power spectral density estimated in 
every single segment with the modified periodogram method 
using a Hamming window (NFFT = 4096). Then, a weighted 
mean periodogram was calculated with all the segments. To 
quantify the changes in the frequency content of EMGdiL and 
EMGdiW during inspiration, the mean frequency of the 
weighted periodogram was computed (MFL and MFW, 
respectively). 

E. Statistical analysis 
Friedman's non-parametric test was conducted to determine 

significant differences between HR and RR parameters 
obtained from the two acquisition systems for each inspiratory 
load and between ME measures across inspiratory loads.  Dunn 
post hoc test with Bonferroni adjustment was performed for 
pair-wise comparisons. Wilcoxon signed-rank test was 
performed to compare the MF measures between the two 
acquisition systems for each inspiratory load. The strength of 
the relationship between HR, RR, and MF parameters obtained 
from the two acquisition systems for each inspiratory load was 
examined using the Pearson’s correlation coefficient (R). 
Additionally, the agreement between measurements was tested 
using the Bland-Altman plot analysis. Each Bland-Altman plot 
was constructed by plotting the differences between the data 
obtained from EMGdiL and EMGdiW from paired signals on the 

y-axis against their means on the x-axis. For each parameter, we 
calculated the mean of the differences, the standard deviation 
of the difference and the limits of agreement, which correspond 
to mean difference ± two standard deviations. 

III. RESULTS 
All subjects completed the respiratory protocol successfully, 

reaching the pressure values imposed at each load level (quiet 
breathing: 0.38±0.24 cm H2O, Load 1: 20.34±2.22 cm H2O, 
Load 2: 29.69±2.29 cm H2O and Load 3: 41.36±4.88 cm H2O, 
respectively). Mean HR values at each load level range from 
61.86 to 72.23 beats/min (quiet breathing: 61.86±9.64 
beats/min, load 1: 67.33±9.43 beats/min, load 2: 71.38±9.59 
beats/min and load 3: 72.23±9.73 beats/min, respectively). 
Mean RR values at each load level range from 13.81 to 14.47 
breaths/min (quiet breathing: 14.36±4.06 breaths/min, load 1: 
13.81±4.75 breaths/min, load 2: 14.47±5.61 breaths/min and 
load 3: 14.07±4.97 breaths/min, respectively).  

A. Heart rate estimation  
For the estimation of HR, one subject had to be excluded 

because of the poor quality of the reference ECG signal, 
probably due to the inadequate attachment of one of the 
electrodes to the subject’s wrist. Heart beats were successfully 
identified from both EMGdiL and EMGdiW systems with an 
overall detection rate or sensitivity of 97.56% and 97.32% and 
positive predictive values of 95.67% and 95.81%, respectively 
(Table I). 

Table II shows the HR values obtained from the Pmouth 
reference signal, EMGdiL and EMGdiW. We obtained a very 
strong general correlation (R = 0.989) between the HRW and the 
HRL and no significant differences were found between HRL 
and HRW for any load (p>0.05). The correlation between HRW 
and HRref (Fig. 3a) of overall loads was very strong (R = 0.947) 
and very similar to the correlation between HRL and HRref (R = 
0.959). Most of the values were located between the limits of 
agreements and close to the bias line (Fig. 3b). As shown, an 
increase in the inspiratory load, and therefore EMG activity, can 
disturb heartbeat detection, slightly decreasing the R values. 

B. Respiratory rate estimation 
Table III shows the RR values obtained from the Pmouth 

reference signal, EMGdiL and EMGdiW. A very strong 
correlation was found between RRL and RRW (R = 0.989) at all 
the inspiratory load levels, as well as when RRL and RRW were 

TABLE I 
POSITIVE PREDICTIVE VALUE AND SENSITIVITY OF THE HEART RATE 

ESTIMATION FROM THE EMGDI SIGNALS CONSIDERING THE HR 
ESTIMATION FROM THE ECG AS A GOLD STANDARD  

PPV (%) S (%)  
HRW HRL HRW HRL 

Quiet Breathing 99.32 97.86 97.76 97.86 
Load 1 94.93 97.04 98.68 98.68 
Load 2 95.42 94.38 97.93 97.93 
Load 3 93.03 93.95 95.87 94.79 
Total 95.67 95.81 97.56 97.32 

PPV (%): positive predictive value (TP/(TP+FP)*100), S (%): 
sensitivity (TP/(TP+FN) *100), TP: true positives, FP: false positives, 
FN: false negatives. HRW: heart rate (beats/min) from EMGdiW, HRW: 
heart rate (beats/min) from EMGdiL, HRref: heart rate (beats/min) from 
ECG. 
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compared against the RR values extracted from the Pmouth, (R 
= 0.951 and R = 0.940, respectively). The mean differences 

between RRW - RRL, RRW - RRref and RRL- RRref were always 
lower than 0.5 breaths/min. 

Fig. 3c shows the correlation plot between the RRW and the 
RRref values in an analysis of the four load levels together. Most 
of the values were very close to the mean difference line (Fig. 
3d). According to the reference value, the estimation proved 
inaccurate on only two occasions. When comparing RRL and 
RRW against RRref at each load independently, the R value was 
very close to 1 when a load was applied, showing a high degree 
of accuracy in the respiratory cycle detection algorithm. In 
contrast, a lesser but still strong correlation was obtained at 
quiet breathing (R = 0.782 and R = 0.716, for the RRL and RRW 
respectively), due to the two outliers previously mentioned. 

C. Respiratory muscle activity evaluation 
For each load, the 5-cycle average mMEL, mMEW and mMP 

was calculated for each subject, the overall mean and standard 
deviation of which are provided in Table IV. Fig. 4 shows the 
box plot analysis of the mMEL and mMEW values obtained from 
the subjects. No significant differences were found between 
mMEL and mMEW for any load. Statistically significant 
differences (p<0.05) were found when comparing the mMEL 
and mMEW values at quiet breathing, to the respective values 
found when a load was applied (Load 1, Load 2 and Load 3). 
Finally, positive high correlations were found between the MEW 
and MP (R = 0.877), in concordance with those found between 
MEL and MP (R = 0.819) as shown in Table V.  

D. EMG frequency evaluation 
Table VI shows the MF values of the EMG signals, the mean 

difference between them, and the R correlation coefficient at 
each load. Strong correlations were found between the mean 
frequency values obtained from EMGdiL and EMGdiW signals, 
at each load and when analysing all the loads together.  

 
Fig. 3. Comparison of heart rate (HR) and respiratory rate (RR) obtained 
with a wearable wireless device and lab equipment. (a and c) Scatterplots 
showing the correlation between pairs of HR and RR values, respectively. 
The line of identity and the least square regression line are represented by 
a solid black line and a dashed red line, respectively. (b and d) Bland-
Altman plots indicating the differences between the acquisition systems 
for HR and RR values, respectively. The central horizontal black line 
depicts the mean of the differences between paired data, and the top and 
bottom horizontal red lines are the mean of the difference of the data with 
± 2 times the standard deviation of their differences. In all plots, each 
combination of symbol and colour correspond to the data from one 
subject (80 points in total). There are four elements of each symbol/colour 
corresponding to the four respiratory conditions (quiet breathing and 
inspiration with loads of 19, 29 and 41 cm H2O). HRW: heart rate 
(beats/min) from EMGdiW, HRL: heart rate from EMGdiL, HRref: heart 
rate from ECG, RRW: respiratory rate from EMGdiW, RRL: respiratory 
rate from EMGdiL, RRref: respiratory rate from Pmouth. 

TABLE II.  
HEART RATE, MEAN DIFFERENCE AND CORRELATION  BETWEEN THE RESULTS OBTAINED FROM THE REFERENCE SIGNAL (ECG) AND THE RESULTS 

OBTAINED FROM THE EMGDI SIGNAL ACQUIRED BY THE LAB SYSTEM AND THE WEARABLE DEVICE 
 Quiet breathing Load 1 Load 2 Load 3 Total 
HRRef  61.86±9.64 67.33±9.43 71.38±9.59 72.23±9.73 68.20±8.98 
HRL 61.70±9.52 67.64±8.67 71.64±9.06 73.88±9.12 68.72±8.09 
HRW 61.85±9.62 67.50±9.33 71.89±9.40 74.17±10.04 68.85±8.34 
HRL – HRRef 0.170±0.654 -0.326±1.884 -0.274±1.439 -1.741±5.243 -0.543±2.928 
HRW – HRRef 0.012±0.339 -0.182±1.326 -0.537±1.263 -2.039±6.540 -0.687±3.428 
HRL – HRW -0.157±0.551 0.144±1.844 -0.263±0.840 -0.298±2.512 -0.143±0.803 
RLvsRef 0.998 0.982 0.990 0.847 0.959 
RWvsRef 0.999 0.990 0.991 0.782 0.947 
RLvsW 0.998 0.982 0.997 0.970 0.989 

HRW: heart rate (beats/min) from EMGdiW, HRW: heart rate (beats/min) from EMGdiL, HRref: heart rate (beats/min) from ECG, R: Pearson’s correlation 
coefficient. All R values were significant with p < 0.01. 

TABLE III 
RESPIRATORY RATE, MEAN DIFFERENCE AND CORRELATION BETWEEN THE RESULTS OBTAINED FROM THE REFERENCE SIGNAL (PRESSURE) AND THE 

RESULTS OBTAINED FROM THE EMGDI SIGNAL ACQUIRED BY THE LAB SYSTEM AND THE WEARABLE DEVICE. 
 Quiet breathing Load 1 Load 2 Load 3 Total 
RRRef 14.36±4.06 13.81±4.75 14.47±5.61 14.07±4.97 14.17±4.34 
RRL 14.87±4.74 13.74±4.72 14.45±5.60 13.99±4.89 14.26±4.25 
RRW 14.55±4.68 13.76±4.69 14.41±5.56 13.97±4.91 14.17±4.15 
RRL – RRRef -0.450±2.970* 0.177±0.420 0.042±0.264 0.089±0.533 -0.036±1.520 
RRW – RRRef -0.136±3.331 0.160±0.462 0.075±0.306 0.112±0.545 0.053±1.681 
RRL – RRW 0.314±1.436 -0.018±0.109 0.033±0.147 0.023±0.055 0.088±0.723 
RLvsRef 0.782 0.996 0.999 0.995 0.951 
RWvsRef 0.716 0.996 0.998 0.994 0.940 
RLvsW 0.954 1.000 1.000 1.000 0.989 

RRW: respiratory rate (breaths/min) from EMGdiW, RRL: respiratory rate (breaths/min) from EMGdiL, RRref: respiratory rate (breaths/min) from Pmouth, 
R: Pearson’s correlation coefficient. * Indicates statistically significant differences with p< 0.01. All R values were significant with p < 0.01. 
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IV. DISCUSSION AND CONCLUSION 
Rapid advances in technology have led to the inclusion of 

wearable wireless devices in medicine, contributing portability 
to the monitoring of physiological signals. The present study 
was conducted to validate the use of a Shimmer3 wearable 
wireless device [24] for the non-invasive recording of muscle 
respiratory activity outside a hospital environment and for 
estimating multiple cardiorespiratory parameters from a single 
bioelectrical signal. The parameters obtained from the EMGdi 
signal acquired by the Shimmer3 strongly correlated with the 
parameters obtained from the reference signals recorded by the 
standard wired laboratory acquisition system. 

The acquisition system proposed in the present study, in 
conjunction with the signal processing algorithms designed, 
could accurately detect almost all HR from an EMGdi signal. 

Only on one occasion at the highest load was the HR out of the 
limits of agreement when compared with the reference HR 
value (Fig. 3 a and b). In effect, when high load is applied more 
muscle activity is reflected in the EMGdi in a higher amplitude 
and frequency, which makes it easier to miss a true beat or 
detect a false beat. This inaccuracy is reflected in the R 
coefficients, S and PPV values found in Table I and Table II, 
respectively, which are always lower at high loads. 
Furthermore, this behaviour was not only present in the 
measurements extracted from the signals acquired by the 
wearable system, but also in the signals extracted by the 
standard laboratory acquisition system, suggesting that these 
differences are due to the signal conditions and not to the 
sensing system. Indeed, the correlation between HRL and HRW 
was very high (R = 0.989), independently of the load applied.  

TABLE IV  
MEAN VALUES OF THE PRESSURE SIGNAL, FSAMPENL AND FSAMPENW 

 Quiet breathing Load 1 Load 2 Load 3 Total 
mMP  0.25±0.14 14.49±1.80 21.21±1.86 28.70±4.43 16.16±1.85 
mMEL  0.44±0.31 0.80±0.33 0.91±0.36 1.01±0.32 0.79±0.28 
mMEW  0.42±0.21 0.75±0.29 0.84±0.31 0.92±0.30 0.73±0.22 

mMP: average of the mean pressure in each cycle (cm H2O), mMEL: average of the mean entropy in each cycle of the fSampEnL (a.u.), mMEW: average 
of mean entropy in each cycle of the fSampEnW (a.u.). 

 

Fig. 4. Box plot comparing average of the mean amplitude in each cycle 
(mME) derived from fSampEnL and fSampEnW extracted from EMGdi 
signals recorded using the wearable device (EMGdiW) and the lab system 
(EMGdiL) during an incremental inspiratory load test. For each boxplot, 
the horizontal line represents the median, the length of the box represents 
the interquartile range (IQR: 25th to 75th percentiles), the vertical dashed 
lines are the whiskers and represent the largest and smallest values within 
1.5 IQRs. * Indicates statistically significant differences with p< 0.01. 

TABLE V  
PEARSON’S CORRELATION COEFFICIENT VALUES (R) OF EACH SUBJECT 

BETWEEN THE MEAN VALUES OF PMOUTH (MP) AND THE EMG 
ACTIVITY INDEXES OBTAINED WITH A LAB EQUIPMENT (MEL) AND THE 

SHIMMER3 DEVICE (MEW). 
Subject MEL vs. MEW MP vs. MEL MP vs. MEW 

1 0.981 0.851 0.903 
2 0.967 0.928 0.970 
3 0.994 0.940 0.942 
4 0.985 0.840 0.883 
5 0.934 0.549 0.687 
6 0.943 0.886 0.864 
7 0.998 0.933 0.930 
8 0.998 0.775 0.749 
9 0.999 0.961 0.961 

10 0.751 0.741 0.267 
11 0.990 0.750 0.782 
12 0.994 0.867 0.863 
13 0.967 0.601 0.424 
14 0.999 0.829 0.840 
15 0.990 0.879 0.857 
16 0.989 0.907 0.928 
17 0.972 0.764 0.736 
18 0.984 0.980 0.985 
19 0.984 0.924 0.906 
20 0.995 0.942 0.933 

Total 0.990 0.819 0.877 
MP: mean amplitude of the Pmouth (cm H2O), MEL: mean entropy 

in each cycle of the fSampEnL (a.u.), MEW: mean entropy in each cycle 
of the fSampEnW (a.u.), R: Pearson’s correlation coefficient. All R values 
were significant with p < 0.01. 

TABLE VI  
FREQUENCY PARAMETERS OF EMG THE INSPIRATION AND COMPARISON BETWEEN THE RESULTS OBTAINED FROM EMGDIL AND EMGDIW. 

 Quiet breathing Load 1 Load 2 Load 3 Total 
MFL 52.19 ± 13.06 55.03 ±14.93 56.27 ±15.46 53.77 ±14.81 54.31 ±11.80 
MFw 55.70 ± 16.93 56.69 ±15.36 56.89 ±14.75 55.23 ±16.98 56.13 ±13.07 
MFL – MFw  -3.505±7.639 -1.662±7.220 -0.624±6.209 -1.459±7.155 -1.420±5.740 
RMFLvsMFW 0.902 0.887 0.917 0.908 0.895 

MFW: mean frequency (Hz) of the EMGdiW, MFL: mean frequency (Hz) of the EMGdiL, R: Pearson’s correlation coefficient. All R values were significant 
with p < 0.01. 
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For RR estimation we adopted the use of the fSampEn 
technique [31]. The cycles were successfully detected in most 
subjects, as a very strong general correlation was found 
between the RRL and RRw and the RRref (R = 0.951 and R = 
0.940, respectively). As expected, correlation between the 
reference method and the agreement between and RRW 
improved noticeably when a high load was applied. At high 
loads the EMGdi amplitude is high compared to the signal 
baseline, but at quiet breathing it is low, and therefore, difficult 
to detect [23]. We found a few outliers in the Bland–Altman 
plot, which correspond to the two low-quality fSampEn 
estimations in two of the subjects. A closer analysis of the 
fSampEn revealed that there was considerable expiratory 
activity in one case. This behaviour led to the false respiratory 
cycle detection in this subject during quiet breathing, doubling 
the RRL and RRW and thus, biasing the overall R correlation 
value. This inherent condition occurred in both Shimmer3 and 
standard laboratory acquisition system, demonstrating that both 
were capturing this expiratory activity. In the other case, an 
unexpected low respiratory frequency was estimated during 
quiet breathing from the EMGdiW due to a very weak 
inspiratory EMG activity. 

Analysing the EMGdi signal allows us not only to derive 
cardiorespiratory information, such as HR and RR, but also to 
explore the respiratory muscular function and measure the 
neural respiratory drive which reflects the load on the 
respiratory muscles [15]. In the present study, we conducted an 
incremental load test using a threshold trainer device to impose 
different levels of inspiratory loads to increase diaphragm 
muscular effort [32]. As the values in Table IV and pictured in 
Fig. 4 show, the amplitude of the fSampEnL and fSampEnW 
increased when the imposed load increased. The trend was 
observed in EMGdiL and EMGdiW, and reflected in the 
fSampEnL and fSampEnW, as shown in Fig. 2. This behaviour, 
which represents the muscle effort to maintain the airflow 
inspired during each respiratory cycle [15], strongly correlates 
with the mouth pressure applied, as reported in Table V. 
Although all correlations were positive, there was a variability 
in R coefficients between subjects. Indeed, to overcome 
absolute load levels, different subjects have to exert different 
muscle forces meaning different neural outputs and efforts. 
Moreover, the increase between the loads is not very 
substantial, and therefore, for several subjects, the difference 
between the effort needed to overcome the different loads was 
barely noticeable. This issue is reflected in the statistical results, 
as significant differences were only found between the 
amplitude of the signals at quiet breathing and with applied 
loads. 

Our frequency results suggest that the study of the changes 
in the power spectral density of the EMGdi signal could help to 
detect when muscle fatigue occurs and could be used in COPD 
patients or in the context of respiratory muscle rehabilitation 
[29], [30]. In this study, the mean frequencies of the spectrum 
obtained with the Shimmer3 and the standard laboratory 
acquisition system strongly correlate, which indicates that 
fatigue tests could also be performed with the Shimmer3.  

The present study has been carried out in twenty healthy 
subjects in resting conditions and selecting five consecutive 
respiratory cycles in each of the four inspiratory loads. Further 
studies using more subjects, longer recordings and different 

settings, with subjects performing different daily routine 
physical activities, should be conducted to assess if the results 
obtained in the present studied can be generalized to a larger 
population and several scenarios. 

In conclusion, the use of a Shimmer3 connected to a pair of 
electrodes to record EMGdi activity may be an attractive 
alternative to wirelessly and non-invasively extract multiple 
cardiorespiratory parameters from one signal. The comparison 
between the data obtained from the EMGdi signals recorded by 
the two acquisition systems revealed similarities in the data 
collected, supporting that wearable wireless devices are capable 
of monitoring various cardiorespiratory parameters. These 
systems seem to be a promising low-cost approach for the 
evaluation of respiratory muscle function in free-living 
situations, to either measure disease severity, evolution or 
responses to treatment for chronic respiratory diseases. 
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