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Abstract—We propose new multichannel time-frequency com-
plexity measures to evaluate differences on magnetoencephalo-
grapy (MEG) recordings between healthy young and old subjects
at rest at different spatial scales. After reviewing the Rényi and
singular value decomposition entropies based on time-frequency
representations, we introduce multichannel generalizations, using
multilinear singular value decomposition for one of them. We
test these quantities on synthetic data, illustrating how the
introduced complexity measures focus on number of components,
nonstationarity and similarity across channels. Friedman tests are
used to confirm the differences between young and old groups,
and heterogeneity within groups. Experimental results show a
consistent increase in complexity measures for the old group.
When analyzing the topographical distribution of complexity
values, we found clusters in the frontal sensors. The complexity
measures here introduced seem to be a better indicator of the neu-
rophysiologic changes of aging than power envelope connectivity.
Here we applied new multichannel time-frequency complexity
measures to resting-state MEG recordings from healthy young
and old subjects. We showed that these features are able to reveal
regional clusters. The multichannel time-frequency complexities
can be used to monitor the aging of subjects. They also allow a
mutual information approach, and could be applied to a wider
range of problems.

Index Terms—MEG data, aging, Rényi entropy, signal com-
plexity, SVD entropy, time-frequency, multichannel.

I. INTRODUCTION

ARIOUS approaches may be used to study the evolution
of brain function over the lifespan in healthy subjects.
One approach consists in searching coordinated activity be-
tween different brain areas. This is the basic principle of
functional connectivity [1], that may be studied either indi-
rectly using functional magnetic resonance imaging (fMRI) to
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measure local variations of brain perfusion that are thought
to reflect neuronal activity, or through direct measures of
neurophysiological signals recorded by electroencephalogra-
phy (EEG) or magnetoencephalography (MEG) [2], [3], [4].
MEG is a technique that records the magnetic fields produced
by electrical currents in the brain and enables investigating
noninvasively neuronal activity with a time resolution at the
order of the millisecond and a spatial discrimination of 2-3
mm, at least under favorable circumstances [5], [6].

Several studies performed using fMRI have shown changes
of resting-state functional connectivity with age in various
large-scale networks. These changes most often consist in
decreased connectivity between nodes of brain networks, but
increased connectivity also occur (for a review, see [7]). Age-
related changes might also be looked for in MEG recordings.
Fernandez et al. found significant increases in Lempel-Ziv
complexity measures with age [8]. Shumbayawonda et al.
confirmed increases in permutation entropy with age [9], and
in permutation Lempel-Ziv complexity with age [10]. By
contrast, Coquelet et al. did not find any significant age-
related changes in both static and dynamic power envelope-
based connectivity from resting-state MEG data, suggesting
that the electrophysiological connectome is maintained in
healthy aging [4]. As MEG power envelope connectivity is
the best known electrophysiological correlate of fMRI resting-
state networks [11], [12], [13], this absence of age-related
changes might be related to neurovascular coupling alteration
[4].

The assessment of functional connectivity from power en-
velope provides only one aspect of the rich dynamics of MEG
signals. Another approach to search for lifespan variations
from EEG/MEG signals is to assess time-frequency (TF)
complexity [14], [15], which measures the information content
of a time-frequency representation of the signal, exploring the
time-varying spectral content without band-passing the signal
into the classical frequency bands. Because of that, the results
are not confined to a specific band (which might lead to
different results for different bands) but reflects the richness
of all the frequency content.

In a previous work [15], the ability of the time-frequency
Rényi and Singular Value Decomposition (SVD) entropies
to evidence differences in complexities on EEG recordings
from epileptic patients before and after medication were
reported. Here we introduce multichannel versions of these
two complexity measures, and apply them on MEG recordings
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from healthy young and old subjects, using the same MEG
data sets from [4], which will allow us to discuss our results
in comparison with theirs. We hypothesize that differences
might be found not only at “fine scales” (i.e. analyzing every
sensor individually) but also at “coarse scales” (aggregation of
sensors). This is especially relevant in our case since we deal
with healthy adult subjects who do not presented any sign of
cognitive decline, and for whom no changes in resting-state
networks were found [4]. However, there exists cooperative
phenomena at larger scales [16], [17], [18] that we want to
explore via our new multichannel approaches. We also want to
explore the distribution of complexity within each group. How
spatial homogeneity of complexity compares in both groups?
Are the entropy values evenly distributed or they form some
clusters? To dig into it, we perform statistical tests within each
group to look for sensors with outstanding entropy values.
The paper is organized as follows. In Sec. II we recall defini-
tions of the existing time-frequency complexity measures and
introduce multichannel versions, illustrating their capabilities
on artificial signals. In Sec. III we describe our experiments
on real MEG data and present the main results. We offer a
discussion in Sec. IV, and Sec. V concludes the paper.

II. MULTICHANNEL TIME-FREQUENCY ENTROPIES

The multicomponent signals consist of a superposition of
a small number of components modulated both in amplitude
and frequency (AM-FM), and are a versatile way to model
phenomena such as audio signals [19], biomedical signals [20],
or economic temporal series [21].

A signal made of L components can be written as:

Zaz

with a;(t), #)(t) > 0Vt, where ¢'(t) is the time derivative of
¢(t). For the multicomponent model, the temporal variations
of a;(t) and ¢;(t) are small, which means: |a;(t)], |¢] (¢)| < €,
for a small € > 0. The signals modeled as in (1) have a par-
ticular structure in the time-frequency plane: every component
occupies a “ribbon” around its instantaneous frequency ¢'(t)
[22]. The more components we have, the more ribbons and the
larger occupancy of the plane we will get. Let us analyze the
signal (1) with the (modified) Short Time Fourier Transform
(STFT)
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where ¢(t) is an even real compact-supported window with
supp{G(f)} C [~ B, +B] 2. If the instantaneous frequencies
¢} (t) are well separated (i.e. by at least 2B for all ¢) and
laj(t)], |¢] (t)| are small, then each component “lives” in non
overlapping ribbons, which leads to the spectrogram
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in which cross-component terms are negligible [23], [24]. Due
to its symmetry for real signals, and for the sake of simplicity,
we consider only positive frequencies for the spectrogram, and
we will do so for the rest of this work.

A. Discrete-time implementations

When working on digital computers, what we have is a
sampled version of the signal: z[n] = x(nAt), with n € N and
At = 1/ fs the sampling period corresponding to the sampling
frequency fs. In this case, the STFT becomes

Ffln, k] =) afulglu— nle” 210 @)
with & € N and Af being the frequency resolution of the
analysis. For finite time series, the time index n ranges from
1 to N. The frequency index k ranges from 1 to K (consid-
ering only positive frequencies as we already explained), with
KAf =1/2 (the maximum possible normalized frequency).

B. Time-frequency entropies

The time-frequency entropies are complexity measures that
are not applied directly on the signals but on a time-frequency
representation (TFR), aiming at quantifying the amount of
information in the time-frequency plane. A widespread man-
ner to measure this information and complexity comes from
the analogy between signal energy densities and probability
densities [25], [14]. In this analogy, the instantaneous energy
|z(t)|? and the spectral energy | X (f)|? act as unidimensional
densities of the energy of the signal in time and frequency
respectively, while the TFR of the signal would behave as a
bidimensional energy density in time-frequency. Regardless of
the considerations to be taken with respect to this analogy (see
[14]), the Rényi entropy of the spectrogram (or other TFRs)
S9[n, k] = |F4[n, I€]|2 is defined as
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with a # 1, where a, b are just aux1hary variables.

The Rényi entropy behaves in a similar way to the Shannon
entropy (the latter being the particular case o — 1 of the
former). For concentrated TFRs of signals made of a relatively
small number of components (small L in (1) and (3)) the
entropy would attain low values, while for scattered TFRs
of more complicated signals it would take larger values. The
“counting” property of the Rényi entropy for TFRs is properly
detailed in [14], and it is one of the main reasons for which
it is used as a measure of complexity and/or the amount of
information in the TF plane. Moreover, a study of the Rényi
entropy of the spectrogram of a multicomponent signal can
be found in [26]. However, it should be remarked that this
entropy seems to be rather transparent to the non-stationarity
of the signal [15].

A different way to measure the complexity of the time-
frequency plane is offered by the SVD entropy, introduced in
[27] and used in the context of TFRs in [28]. The SVD of a
TFR (the spectrogram in our case) expands it as

S9n, k] = Zcr]uj njv; [k (6)
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where w;[n] and v;[k] are vectors whose dyadic products form
“basic” one-rank matrices which retrieve the original matrix
when weighted summed. Then, a Shannon entropy formula is
applied on the singular values o;’s, after normalization:

Cr () o

This complexity measure is more focused on the
(non)stationarity of the signal. In a discrete case, the TFR
becomes a matrix and the more linearly dependent are the
columns, the lower is the SVD entropy value. So, for instanta-
neous frequencies ¢’ (t) that have little variations (the columns
of the TFR are similar to each other) we expect lower values,
and vice versa.

C. A multichannel setting

In the multichannel case, instead of a single signal we have
a set of M signals:

x[n] = {xm[n]} = {x1[n],22[n],. .., 2pm[n]}, (8)

and they should be processed jointly. This means that we must
redefine Egs. (5) and (7) in a multivariate way.

For every channel, we compute the STFT and the spectro-
grams to form a “stack” of TFRs:

Z T [u]glu — n)e

For the Rényi entropy, a straightforward extension can be
22 2 9x[a, b, )

defined as
L YT
(10)

where, as in Eq. (5), a, b, ¢ are auxiliary variables. This entropy
has a theoretical minimum possible value of 0, when all the
energy is concentrated in a single time-frequency bin of a
single channel; and a maximum value of log, M N K, where
M, N and K are, respectively, the total number of channels,
time samples and frequency bins, when all the time-frequency
bins for all the channels have the same value.

Extending the SVD entropy requires first to decompose the
tensor SI[m, n, k] of size M x N x K using the multilinear
SVD (MLSVD):

SZ[m,n, k]
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where T is the core tensor, U4 are the factor matrices and
e, stands for the tensor-matrix product in mode d [29], [30].
Unlike standard SVD, the tensor 7" is not diagonal. The
multilinear singular values are defined as the Frobenius norms
of the slices of order D — 1 (D = 3 being the dimension
in our case) for the different modes, i.e. the norm of the
subtensor created by fixing one index. This creates D = 3
sets of singular values. We define the MLSVD entropy as:
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Fig. 1. Three multichannel signals with different levels of complexity. 1000

sample points. Spectrograms were performed with Hann window of 250
samples. & = 2 for Rényi entropy. Top: one pure tone in each channel
gives a relatively low value for our two measures. Middle: one linear chirp
in each channel increases the MLSVD entropy almost without affecting the
Rényi entropy. Bottom: the second and third channels have the same two-chirp
composite signal increasing the Rényi entropy (more components overall) and
retrieving an intermediate value for the MLSVD entropy.

where o), with p = 1,2, 3, stands for the sets of singular
values. Similarly to the Rényi entropy, the maximum possible
value is logy, M + logy N +logy K =logos MNK.

D. Characteristics of the multichannel TF entropies

The properties of the time-frequency Rényi and SVD en-
tropies were described in [15]. Generally speaking, the Rényi
entropy behaves as a “counter” of components [14], regardless
of their bandwidths. On the other hand, the SVD entropy
focuses on the (non)stationarity of the signal.

The multichannel extension of the Rényi entropy (Eq. (10))
would consider all the components throughout the channels,
counting them all. The MLSVD entropy (Eq. (12)) offers a
more complex behavior: besides focusing on the nonstation-
arity of the components (i.e., variations on their instantaneous
frequencies), it also considers similarity across the channels
(in terms of time-frequency content). The more different the
spectrograms are across channels, the higher value would the
MLSVD entropy attain.
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A series of examples of three-channel signals can be found
in Fig. 1. One thousand points were used to generate the
signals, and a Hann window of 250 samples was used for the
spectrograms. The Rényi entropy was computed with o = 2.
At the very top, a simple three-channel signal with a pure
tone for each of them, serves as a reference. The three pure
tones have different frequencies. The values for the Rényi
and MLSVD entropies are 16.61 and 3.21 respectively. In the
middle row, the pure tones were replaced by linear chirps, all
of them with the same chirp rate. The Rényi entropy remains
almost unchanged (16.62) since there are still three compo-
nents as in the previous case. The MLSVD entropy, however,
notes the nonstationarity due to the frequency modulation,
showing a substantially higher value (5.35). In the bottom row,
the channels 2 and 3 have the same signal: a superposition
of two linear chirps. The Rényi entropy increases (17.36)
since we have five components overall instead of the three
components of the previous cases. The MLSVD entropy takes
an intermediate value (4.32) because of the similarity between
channels 2 and 3. The nonstationarity of the components is
balanced with the similarity between two channels.

IIT. RESTING-STATE MEG DATA
A. Database

The dataset used here is the same as in Coquelet et al.,
in which the population characteristics and the acquisition
procedures are detailed [4]. Briefly, twenty-five young (12
females and 13 males; age: 23.6 £ 2.9 years; age range: 19-
31 years) and twenty-five elderly (15 females and 10 males;
68.8+2.4 years; age range: 65-74 years) healthy adult subjects
were included in this study. Importantly, the elders were highly
selected so as to present no cognitive decline compare to
young adults [4]. The MEG recordings were performed in
the Université Libre de Bruxelles, Hopital Erasme. The CUB-
Hopital Erasme Ethics Committee approved the study prior to
participants’ inclusion (references P2011/054 and P2011/151).

The neuromagnetic brain activity was recorded at rest during
5 minutes, with eyes open and gaze fixed on a cross, with a
306-channel whole-scalp MEG system installed in a magnet-
ically shielded room (Neuromag Vectorview & Maxshield™,
Elekta Oy, Helsinki, Finland). There are both theoretical and
practical reasons to work with eyes open. Since we want to
estimate the complexity of the data, we choose the highest
complexity possible state, which is eyes open because during
eyes closed the strong presence of the alpha rhythm decreases
the complexity [31]. From the practical reasons, it is easier to
monitor that the subject does not fall asleep, and the ocular
artefacts are less complicated and easier to observe with eyes
open. The sampling frequency was 1000 Hz, and an online
band-pass filtering between 0.1 and 330 Hz was performed.

B. Preprocessing, data-length and parameters, and sensor
data reduction

The preprocessing stage consisted of three steps: signal
space separation method [32] to reduce external magnetic
interferences and correct for head movements, an off-line
band-pass filtering (0.1-45 Hz), and removal of physiological

artifacts using independent component analysis [33] (FastICA;
hyperbolic tangent nonlinearity function; dimension reduction
to 30). The band-passing responds to a common practice on
MEG data processing. We worked with 50-second segments
of continuous data, which represents a compromise between
data-length and computational time. For all our experiments
on human data, we used a Hann window of 4 seconds for the
spectrograms and a = 2 for the Rényi entropy.

The 306 sensors of the Neuromag system are arranged into
102 triplets:

{yl,m [n]a yZ,m[n]a y3,m[n}}7 m=1,...,102, (13)

where y1.,,[n] and y2 ,[n] stands for a pair of orthogonal
planar gradiometers, and ys ,,,[n] stands for a magnetometer.
Both kinds of sensors measure different aspects of the mag-
netic field: magnetometers sample the component normal to
the MEG helmet, while gradiometers estimate the tangential
gradients of this component. In this work we will only use the
planar gradiometers, combining them such that

Tm[n] = \/y%m[n]—ky%m[n], m=1,...,102. (14)

Effectively, this defines virtual sensors z,, measuring gra-
diometers amplitude (i.e., the norm of tangential gradients).
This affords better interpretability for localization than mag-
netometers and avoids complications related to gradient ori-
entation.

C. Spatial aggregation approach

In a “multiscale” spirit, we will aggregate sensors at dif-
ferent scales [19]. In that way, we can inquire into real-world
phenomena that may only exist as meaningful entities over
certain ranges of scale [34]. We will explore different “spatial
scales” within the data, for different sizes of neighborhood,
gathering amplitude gradiometer sensors around a central
sensor location:

xp[n] = {zm[n]|m e A%}, (15)

where A%, is the set composed of the 7-th sensor and the
s — 1 closest to it. Then we proceed treating x3, [n] as in Eq.
(8). In what follows, scale 1 will refer to the computation of
entropies sensor by sensor, using for this the single-channel
entropies. Scale 5 will refer to a neighborhood of s = 5
sensors: the central one and the four closest surrounding it.
The value is assigned to the central position. This means, treat
the five channels as in Eq. (8), with M = 5. For scale 9: the
central sensor and the eight closest to it, assigning the value

to the central position (Eq. (8), with M = 9).

D. Statistical analysis

We performed two different analyses on our entropy values.
First, an analysis between groups (i.e. old group vs. young
group) on each sensor in order to quantify if there are
significant differences. Friedman test were performed on each
sensor (25 entropy values per group) with p < 0.05, and a
Bonferroni correction was applied (n = 102).
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Fig. 2. Multichannel MLSVD entropy for the two groups analyzed at three
spatial scales. 50 seconds of continuous data. Spectrograms were performed
with Hann window of 4 seconds. Top: Old group vs. Young group. Every
red dot represents a significant increase on the entropy of the old group for
that sensor. Friedman test, p < 0.05, Bonferroni correction. Bottom: Multiple
comparison within each group and scale for the multichannel MLSVD entropy
at three scales. In order to quantify sensor clustering, for every sensor we
counted the number of sensors significantly lower from it (Friedman test,
p < 0.05). The gray level represents this number. Black crosses indicate the
sensors that were not center of groups due to periphericity.

In a complementary fashion, we also performed an analysis
within groups. With the goal to see if there is some form of
sensor clustering, we performed a multiple comparison within
each group and spatial scale. Using the multcompare tool
from MATLAB™, we performed a Friedman test (level of
significance of 0.05, corrected for multiple comparisons), and
counted for every sensor how many other sensors showed
significantly lower entropy values from it. Here, the multiple
comparison is made for a given group and a given scale, with
1 value per subject per sensor. In that way, we are looking for
sensors with outstanding entropy values, i.e. sensors signifi-
cantly higher from many of the rest of the sensors. If those
outstanding sensors happen to be close to each other, then they
would constitute a form of cluster.

E. Results

As a first result, we present the application of the MLSVD
entropy (which is focused on temporal nonstationarity and
similarity across channels) to both the old and young groups
(Fig. 2, top panel) at three spatial scales. The red dots
indicate significant increases on the entropy for the old group.
Significant differences between groups at scale 1 were located
on the midline (frontal and parietal) sensors, and in the more
lateral frontal sensors, with a lateralization on the right side,
always with higher values for the old group. For scale 5,
the significant differences were concentrated around the vertex
sensor. A similar behavior is observed for scale 9, although an

Fig. 3. Multichannel Rényi entropy for the two groups analyzed at three
spatial scales. 50 seconds of continuous data. Spectrograms were performed
with Hann window of 4 seconds. « = 2 for Rényi entropy. Top: Old group vs.
Young group. Every red dot represents a significant increase on the entropy of
the old group for that sensor. Friedman test, p < 0.05, Bonferroni correction.
Bottom: Multiple comparison within each group and scale for the multichannel
Rényi entropy at three scales. In order to quantify sensor clustering, for every
sensor we counted the number of sensors significantly lower from it (Friedman
test, p < 0.05). The gray level represents this number. Black crosses indicate
the sensors that were not center of groups due to periphericity.

occipital sensor also presented a significant difference. Not a
single sensor of the old group presented a decrease in entropy.

The bottom panel of Fig. 2 presents the results for the
within analysis. For scale 1, both the old and young groups
disclosed important variations across sensors, with the young
group exhibiting clusters in the frontal sensors and in the right
posterior sensors (both of them also present in the old group,
although in a weaker manner). While the old group presented
a higher value of entropy in the frontal sensors (Fig. 2, top
panel), the young group exhibited a stronger clustering on
these sensors, i.e. there is a higher number of outstanding
sensors, and these are even more different from the rest of
sensors. Scale 5 disclosed a mild cluster around the vertex
sensor and prefrontal sensors in the old group, while no cluster
structure was identified on the young group. For scale 9, the
vertex cluster in the old group is even weaker, and no structure
emerged for the young group.

Both between and within analysis were also performed for
the multichannel Rényi entropy (which is focused on the
number of components). These results can be appreciated on
Fig. 3. The results for the comparison between groups were
quite similar to those of MLSVD entropy, although at scale 1
no lateralization effect was observed.

The within analysis for the multichannel Rényi entropy (Fig.
3, bottom panel) disclosed a cluster over frontal sensors for
the young group at scale 1, while this structure was not very
clear for the old group. Scale 5 presented much more defined
clusters on the frontal sensors in both groups, with the young
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cluster composed of more sensors. The same features were
observed for scale 9.

IV. DISCUSSION

Our results first show that healthy aging increases TFR
entropy values over multiple spatial scales (top panels of Figs.
2 and 3). This is in accordance with the findings reported
in [35], where differences in multiscale sample entropy (see
[36], [37]) between young and old subjects were found, with
the old group presenting larger entropy values, although only
for fine temporal scales. However, our results do not depend
on the temporal scales, but they reflect the changes in all the
frequency bandwidth and are consistent across spatial scales.
Increased complexity of MEG signals with age were also
reported in [8] and [9]. Evidences of aging-related changes
in the Fourier spectrum of EEG with a decrease in power for
low frequencies and an increase for high frequencies were
also reported in [38], [39], [40]. This “flattening” of the
spectrum leads to an increase in the spectral (or Wiener)
entropy [41]. The fact that the differences between groups
are not confined to a particular region but can be found on
central, frontal and occipital (scale 9, Figs. 2 and 3) regions
might be due to the flattening of the spectrum being usually
evidenced in the majority of the sensors, and not in a specific
region. However, the significant differences (marked with red
dots) tend to be more centrally located for scales 5 and 9,
for which a frontal significant sensor appears only for Rényi
entropy. The aggregation of sensors “faded” some differences
between groups and also reduced the lateralization effects.
This suggests that the major differences between groups are
expected to be observed at the finest spatial scales.

As in [4], we also performed here a power spectral analysis,
although at sensor level. From the virtual sensors z[n] from
Eq. (14), we computed the discrete Fourier transform X [k] =
> . x[nlexp(—i2rkAfn), and the spectral power in three
specific bands: Poand = Y _pcpana | X K] 2: for theta (4-8 Hz),
alpha (8-13 Hz) and beta (13-25 Hz) bands. The results can be
appreciated in Fig. 4. While the theta band presents only two
significant sensors, the alpha band does not show significant
differences at all. The beta band presents three significant
sensors. This result evidences the limitations of classical power
spectral analysis, while possing interpretations issues: three
different results related to three different frequency bands that
must be discussed. The interpretation of different band-specific
results emerging from a single structural network is still an
ongoing debate [42]. On the contrary, the analysis proposed in
this work does not rely on classical frequency bands, offering a
single result. It is also more sensitive for the task of identifying
significant age-related changes on neuromagnetic activity.

The analysis within groups offers a possibility to look for
some forms of sensor clustering. The aggregation of sensors
at larger scales (5 and 9) for Rényi entropy allows us to see
this phenomenon in the frontal sensors of both groups, which
was not that clearly defined for scale 1, as the darker colors for
scales 5 and 9 indicate (Fig. 3, bottom panel). At larger scales,
the distribution of the number of components of the magnetic
activity (as measured by the multichannel Rényi entropy, Fig.
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Fig. 4. Power spectral analysis for the two groups at three frequency bands.
Every red dot represents a significant difference for that sensor. Friedman test,
p < 0.05, Bonferroni correction.

3) forms less defined clusters in the frontal sensors of the old
group. At the same time, the nonstationarity of the magnetic
activity (as measured by the MLSVD entropy, Fig. 2, bottom
panel, scale 1) presents a more defined cluster in the frontal
sensors of the young group. The within analysis reveals that,
while the old group has more complex TFRs in most of the
sensors (as disclosed by the between analysis), the distribution
of the values across sensors is more complex (with greater
variation) for the young group.

The differences between groups that we found here, which
do not reflect changes in electrophysiological resting-state
networks, in contrast to the power envelope correlation results
reported in [4], suggests that complexity studies another aspect
than power envelope-based connectivity, that is more sensi-
tive to age-related changes and possibly to brain disorders.
However, while the envelope connectivity analysis reported in
[4] was performed at the level of brain sources, the results
presented here were obtained at the sensor level. Being the
former analysis more “local” than the latter one, it might be
that some scale effect makes age-related differences to express
better at sensor scale 1.

The within groups analysis of entropy measures intends
to quantify clustering: groups of adjacent sensor significantly
higher from the rest. Whether a cluster of sensors is related
to a local network should be further investigated since we
are discarding here the field spread effect [43]. This question
could be addressed in computing a mutual information based
on the complexity measures presented here. We would be
moving towards a time-frequency complexity-based connec-
tivity approach that, when compared with the approaches
based on phase or power-envelope, might bring novel aspects
to brain connectivity. We would have to make use of the
new multichannel entropies here introduced, along with their
single-channel counterparts [15].

Technical Limitations. Our study presents limitations since
it is limited to the sensor level. The analysis at the source level
will be addressed in future works.

V. CONCLUSIONS

We introduced new multichannel time-frequency complexity
measures. We illustrated their properties on artificial signals,
and applied them to a particular real-world problem: the study
of healthy aging via MEG recordings.

Differences between the two groups emerged. Healthy aging
is characterized by higher complexity, which confirms previous
results. The complexity measures here introduced seem to be
a better indicator of the neurophysiologic changes of aging
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than power-envelope connectivity, and classical band-specific
power spectral analysis. Moreover, since they do not make
use of the classical band-pass filtering, they retrieve a single
results reflecting all the richness of the frequency content.

The aggregation of sensors at larger scales evidenced some
form of clustering in the frontal part. This phenomenon
deserves attention for future studies, especially in relation to
functional connectivity, to which we will apply our methods
in the near future, with a mutual information approach based
on our time-frequency complexity measures.
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