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Abstract—Translating recent advances in abdominal aor-
tic aneurysm (AAA) growth and remodeling (G&R) knowl-
edge into a predictive, patient-specific clinical treatment
tool requires a major paradigm shift in computational mod-
eling. The objectives of this study are to develop a predic-
tion framework that first calibrates the physical AAA G&R
model using patient-specific serial computed tomography
(CT) scan images, predicts the expansion of an AAA in the
future, and quantifies the associated uncertainty in the pre-
diction. We adopt a Bayesian calibration method to calibrate
parameters in the G&R computational model and predict the
magnitude of AAA expansion. The proposed Bayesian ap-
proach can take different sources of uncertainty; therefore,
it is well suited to achieve our aims in predicting the AAA
expansion process as well as in computing the propagated
uncertainty. We demonstrate how to achieve the proposed
aims by solving the formulated Bayesian calibration prob-
lems for cases with the synthetic G&R model output data
and real medical patient-specific CT data. We compare and
discuss the performance of predictions and computation
time under different sampling cases of the model output
data and patient data, both of which are simulated by the
G&R computation. Furthermore, we apply our Bayesian cal-
ibration to real patient-specific serial CT data and validate
our prediction. The accuracy and efficiency of the proposed
method is promising, which appeals to computational and
medical communities.
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I. INTRODUCTION

AN ABDOMINAL aortic aneurysm (AAA) is an enlarged
localized volume in the lower part of the aorta, which

supplies blood to a large part of the body (see Fig. 1). Enlarge-
ment of the aorta by more than 50% of its normal diameter is
defined as an aortic aneurysm. The vast majority (over 90%) of
aortic aneurysms occur in the abdominal region, specifically the
infrarenal aorta [1]. In general, an aorta with a diameter larger
than 3 cm is considered an aneurysm.

A ruptured aneurysm can cause life threatening internal bleed-
ing. If ruptured, patient mortality rates are greater than 80% [2].
Depending on the size and rate of growth, treatment of an AAA
may vary from watchful waiting to emergency surgery. Once an
AAA is found, doctors will closely monitor the AAA so that
surgery can be planned if it becomes necessary. Since either
open or endovascular repair (EVAR) of small AAAs (<5.5 cm)
can result in peri-operative deaths (4.4% with open repair and
1.0% with EVAR) [3], performing unnecessary surgeries in-
creases patient risk. A thorough understanding of the expansion
and rupture of AAAs is thus needed in order to minimize un-
necessary patient risk. While significant advances have been
made in the management of AAA patients [4], this disease
still carries a high mortality rate. During the last decade, bio-
chemo-mechanical studies have been integrating computational
modeling with increased understanding of the expansion and
weakening of aneurysms, [5]–[8]. Recently, this computational
platform, called a growth and remodeling (G&R) model, has
been developed and incorporated with patient-specific anatom-
ical information, which aids in treatment planning on a per-
patient basis [9], [10]. Those models developed the G&R
model to take into account both elastic degeneration and stress-
mediated collagen turnover during AAA development using fi-
nite element analysis (FEA). The G&R models were validated
through using human aortic mechanical tests that character-
ize material properties and serial image data of one patient
(both non-aneurysmal and aneurysmal aortas) [9], [11]. A cou-
pled simulation of G&R with hemodynamics was conducted for
studying its effects on AAA expansion [12], [13]. Geometric,
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Fig. 1. AAA location and serial CT images. (a) The location of an AAA
is indicated by an arrow, while the cyan color coated region on the left
indicates the inferior vena cava vein. (b) Four serial AAA CT images 1,
2, 3, and 4. Information on registration of CT scan images can be found
in [19].

kinetic and material parameters for AAA expansion can help
to predict intrasac-pressure dependent vascular adaptation after
endovascular repair [14], [15]. A patient-specific distribution of
aortic wall properties has been investigated from open surgery
and ultrasound imaging [16], [17]. Recently, a phenomenolog-
ical model (without bio-chemo-mechanical considerations) has
been proposed to predict AAA shapes and their quantified un-
certainties [18].

Translating recent computational advances into a predictive
tool for individualized clinical treatment, however, requires a
major paradigm shift due to the incompleteness of the G&R
model, limited information, and uncertainty associated with
clinical measurements with regard to each individual patient.
In this study, with a small set of real follow-up image data from
patients, we develop a computational-statistical method to pre-
dict AAA expansion utilizing a simple initial elastin damage and
a set of selected internal key parameters of a G&R model. Most
importantly, the associated uncertainty in the prediction propa-
gated from various sources of uncertainty, needs to be correctly
quantified. For example, the G&R model’s internal parameters
need to be carefully adjusted according to patient-specific data,
e.g., serial computed tomography (CT) images, in order to make
better prediction and so be useful for clinical decisions. The aims
of this paper are to develop a framework that 1) first calibrates
the physical AAA G&R model using patient-specific serial CT
scan images, 2) predicts the expansion of an AAA in the future,
and 3) quantifies the associated uncertainty in the prediction.
To achieve our aims, we perform Bayesian calibration [20] of
our computational AAA G&R model. In particular, Bayesian
calibration will be used to incorporate the computational G&R
model, patient-specific data (e.g., CT scan images), and vari-
ous uncertainties as well as to compute the uncertainty level
of the prediction on the AAA expansion. In other words, the
measurement from the patient was utilized to “calibrate” pa-
rameters in the G&R computational model and to update the
prediction of AAA expansion. There are growing interests in
patient-specific modeling [21]–[23] and in applying Bayesian
calibration. The use of patient-specific models using Gaussian
process regression can outperform population-based models for

vital-sign forecasting using time series of patient vital signs
[23].

To the best of our knowledge, we are the first to apply the
Bayesian calibration method to the AAA G&R computational
model. We aim to make the G&R computational model viable
to aid clinicians in decision making. Hawkins-Daarud et al.
[24] used a Bayesian framework to address questions on valida-
tion, model selection, and uncertainty quantification for tumor
growth. Biehler et al. [25] presents an uncertainty quantifica-
tion framework based on multi-fidelity sampling and Bayesian
formulations and analyzes the impact of the uncertainty in the
input parameter on mechanical quantities typically related to
abdominal aortic aneurysm rupture potential. In contrast to dis-
crete model candidates for model selection in [24], we consider
a statistical model for the true physical process by introducing
two Gaussian random fields [26] for the G&R computational
model and the inadequacy of the model. We adopt a Bayesian
calibration technique proposed in [20] to calibrate parameters in
the G&R computational model and predict the AAA expansion.

The contributions of our paper are as follows. First, we for-
mulate the Bayesian calibration of our AAA G&R computa-
tional model taking into account model inadequacy, prior dis-
tributions of model parameters [27], measurement errors, and
most importantly, patient-specific serial CT scan images. Next,
we demonstrate how to achieve the proposed aims by solving
the formulated Bayesian calibration problem using a simula-
tion study and real data analysis. In particular, we compare and
discuss the performance and computation time under different
sampling cases for the computational model output data and
(synthesized) patient data, both of which are synthesized by
the G&R computation. We apply our Bayesian calibration to
the real patient-specific CT data and validate our prediction,
showing the effectiveness of our approach to the computational
science and medical communities in aiding decision making.

The organization of the paper is as follows. Section II intro-
duces the AAA G&R model, the quantity of interest in making
prediction, and the full statistical model with hyperparameters
for Bayesian calibration. In Section III, we discuss assumptions
for priors and then provide the posterior and predictive distribu-
tions under the Bayesian framework. Section IV describes the
design of the in silico simulation study with synthetic observa-
tion data and a case study with real patient data. In Section V,
we present the results of the Bayesian calibration for both simu-
lation and real data cases. Finally, we provide some discussions
and concluding remarks in Section VI. In what follows, we intro-
duce all the G&R and statistical models needed in our Bayesian
calibration.

II. METHODS

A. AAA G&R Computational Model

The Bayesian calibration framework includes a computa-
tional G&R model of AAA as a data input, where the detailed
computational G&R model was described in Zeinali-Davarani
et al. [29]. Our computational G&R model has three parts:
constitutive relations of intrinsic material behavior, a stress-
mediated production function, and a damage function. To de-
scribe material behavior, we assume that the aorta is comprised
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Fig. 2. The constrained mixture approach is illustrated for three main
constituents of aortic wall, elastin, collagen and smooth muscle cells for
modeling AAA growth. The G&R model is implemented in a 2D finite
element method (FEM) and computationally generates an AAA from an
initial healthy aorta to its growth by prescribing an elastin damage profile
and by utilizing the stress-mediated G&R at every FEM elements [28].

of three stress-bearing constituents, viz. elastin, collagen fiber
families, and vasoactive smooth muscle cells. The G&R model
then uses a constrained mixture approach that homogenizes the
three structural constituents and simulates AAA expansion by
a finite element method. The constrained mixture approach is
described in Fig. 2.

Each constituent, in addition to its contribution to the con-
struction and strength of the artery’s wall, has its own individual
properties. The population-based material parameter distribu-
tions of abdominal aortas obtained from ex vivo tests of human
tissues [30] was given by Seyedsalehi et al. [27]. The stress-
mediated production functions connect the stress-state of the
artery to changes of the mass rates with a stress-mediated feed-
back approach. Moreover, in the G&R model, the AAA is ini-
tialized by imposing damage function to the elastin of normal
aorta. The initialization is supported by the previous study [31],
which shows that one of the main features of AAA is the elastin
reduction. The study [11] elaborates that the degradation of
elastin can directly form patient-specific shapes of aneurysms.
On the other hand, the other factors, such as alteration of in-
trinsic material parameters [16], disturbed collagen production
[32] and hemodynamics [33], are taken as the minor reason of
initialization of AAA, and are considered as modeling errors in
our approach.

The damage function takes into account elastin and vasoactive
smooth muscle, therein elastin plays a key role in the mechanical
behavior of aorta. Elastin contributes resilience and elasticity
to the aortic tissue; but when the person’s age is advanced,
elastin cannot be replaced. For an AAA, the localized dilation
of the aorta is initiated by the degradation of the elastin. This
degradation will reduce the amount of elastin, leading to the
weakening of the wall. The damage will result in the increase of
the diameter and wall stress of the aneurysm. The increase of the
stress in constituents results in an increase in the accumulation
of collagen and smooth muscles as a way to compensate for the

elastin’s loss and decrease stress in the wall. All the relations and
details of the model have been previously reported by Zeinali-
Davarani et al. [34] and Kwon et al. [14]. In the current study,
we decided to use the 2D axisymmetric G&R model for our
Bayesian calibration. As discussed, the elastin damage in the
aortic wall initiates the growth of the aneurysm. Here we define
the initial elastin’s damage function as

d(s) = θ1 exp
(
−

[ |s − α|2
2 θ2

2

])
, (1)

where s is the coordinate defined on the centerline. g(s) =
1 − d(s) is the ratio of remaining elastin to the initial amount at
s. The damage function in (1) contains two parameters of interest
{θ1 , θ2} to be calibrated from the real data and another quantity
α that is identified via CT images without Bayesian calibration.
They have their own specific effects on the shape of the damage
function and thus on the stress-stretch and geometrical state of
the AAA at a given time.

In particular, θ1 is a scaling factor with θ1 ∈ [0, 1). An in-
crease in θ1 toward 1 will increase the degradation of elastin
and thus increase the dilatation of the artery. θ1 = 0 means no
degradation; hence, the artery will retain its initial state. α corre-
sponds to the location on the centerline at which the maximum
damage occurs, so it is relatively easy to be estimated from the
CT images compared to θ1 and θ2 . In particular, the location
of the maximum diameter would be approximately close to the
location of the maximum damage; hence, we estimated α by
finding the location of the maximum diameter using the CT
images. The modeling errors due to α-approximation will be
considered as our model inadequacy, which will be a part of the
statistical model in our Bayesian calibration. Thus, we fix α on
an appropriate value obtained from CT images directly a-priori
and focus on calibration of θ1 and θ2 in a Bayesian way.

B. Quantity of Interest (QoI) for AAA G&R

The quantity of interest (QoI) of AAA G&R is what we want
to predict in AAA growth in the future. The selection of the
QoI will let us subsequently determine the statistical models
and investigate the associated uncertainties. In this study, we
truncate patient’s scan images into the sections that range from
the aortic bifurcation point to the lower renal branch. For each
section, a centerline is generated by the maximally inscribed
sphere method in the AAA 3D images [35]. The radii of the
inscribed spheres r, which are selected as the QoI, are given at
the axial position (or height) along the centerline s and at the
time t. Figs. 3a and 3b show inscribed spheres and the result-
ing centerline, respectively, for a given 3D point cloud sampled
from CT scan image data from a patient. This QoI selection
is consistent with medical practice in which the diameter of
the AAA is used as an important decision variable [2], [36].
To align serial geometries of the same patient, we assume that
QoIs with the same height correspond to the same point on the
aorta, albeit scanned at the different time. Fig. 4 shows the QoIs
of Patient 1 prepared for the Bayesian calibration procedure,
from scan images of Patient 1 taken at 4 time points in series.
Bayesian calibration combines the QoIs and the simulation data



2540 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 6, NOVEMBER 2019

Fig. 3. Inscribed spheres and centerlines. (a) An inscribed sphere with
point clouds from the CT scan images. (b) A centerline generated by
inscribed spheres.

Fig. 4. Radius vs height coordinate on the centerline measured from
CT scans of Patient 1 over the surveillance period. The lines from bottom
to top represent images 1, 2, 3, and 4, respectively.

to calibrate the selected parameters in the computational model.
In this paper we consider the following questions: Can we pre-
dict the radius vs. height profiles for CT scan images 3 and 4 in
the future given CT scan images 1 and 2 in Fig. 4? What is the
uncertainty associated with such prediction? The answers to the
those questions using the proposed Bayesian calibration method
for this particular patient-specific data set shown in Fig. 4, are
given in Section V-B as a part of the real data study case.

C. Calibration Model

Let ζ(x) be the QoI of the true AAA G&R process, the input
variable of which is denoted by x and defined as x = [t s],
where t is the time and s is the height coordinate on the center-
line as illustrated in Fig. 3b. Suppose that we have n observa-
tions. To model possible observation error, e.g., resolution and
segmentation errors in CT scan images, we consider the noisy

Fig. 5. The flow-chart of Bayesian calibration. Statistical models (4) and
(5) are combined by computational data y and real data z to produce the
joint likelihood. The posterior distribution of θ in (8) can then be used to
predictive mean (11) and predictive variance (12) of the QoI.

observations as follows.

zi = ζ(xi) + εi, ∀i ∈ {1, . . . , n}, (2)

where the measurement error, i.e., the difference between the
observation and the true process, is denoted by εi . We further
assume that each εi is independent and identically distributed
(i.i.d.) asN (0, λ). We denote the QoI of the G&R computational
model output atx as r(x,θ), whereθ is called a set of calibration
parameters, or calibration inputs. In the G&R computational
model for the AAA expansion, damage parameters serve as
calibration parameters that are patient specific for the AAA
growth, i.e., the calibration parameters are θ = [θ1 θ2 ] defined
in Section II-A.

Given the available QoI of the G&R computational model,
we model the true process as

ζ(xi) = r(xi ,θ) + δ(xi), (3)

where δ(·) is a model inadequacy function, i.e., model error,
which is independent of the computational outputs. It is natural
to assume the true AAA expansion process ζ(x) cannot be fully
described by the computational model, therefore we introduce
δ(x) to represent the discrepancy in (3).

By combining (2) and (3), we have

zi = r(xi ,θ) + δ(xi) + εi, (4)

which gives a calibration model that relates G&R computa-
tional outputs with the true process and the observations. The
Bayesian calibration method [20] we adopt in this paper in-
troduces Gaussian process priors for the computational model
and the model error in order to calibrate θ and predict the QoI.
Fig. 5 shows the flow-chart for Bayesian calibration. The regu-
lar Bayesian analysis just includes one data source as its input.
Our Bayesian calibration model integrates two data sources (i.e.,
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computational data and real CT image data as shown in Fig. 5)
to implement predictions. The statistical models in Fig. 5 are
further assumed to follow Gaussian processes, which will be
discussed in the next section.

D. Statistical Models

Let G P(m(·),k(·, ·)) be the Gaussian process (GP) with
the mean function m(·) and the covariance function k(·, ·). A
GP is flexible and popularly used as a prior model for func-
tional prediction [37], [38]. We introduce GPs as prior beliefs
for the G&R computational model and the model inadequacy,
respectively by

r(x,θ) ∼ G P(m1(x,θ),k1((x,θ), (x′,θ′))),

δ(x) ∼ G P(m2(x),k2(x,x′)).
(5)

Gaussian processes combine the flexibility of being able to
model arbitrary smooth functions, with the simplicity of a
Bayesian specification that only requires inference over a small
number of hyperparameters [37]–[40]. The QoI for AAA G&R
is a simple bell curve shape as in Fig. 4. Following the theoretical
rationale [40], we used a mixture of 3 Gaussian processes (com-
putational model, model inadequacy, and observational error)
to model the QoI. We believe that our application (i.e., simple
curve shape) is well suited for the assumptions and our corre-
sponding model, QoI, and measurement errors can be realizable
from the Gaussian processes in (5). One can make a distribu-
tional assumption other than Gaussian to be more flexible, but
performance can be hindered by computational complexity.

We use a linear combination of basis functions to form a
general mean structure. Hence for (5), we have m1(x,θ) =
h1(x,θ)βT

1 and m2(x) = h2(x)βT
2 , where ()T is the trans-

pose operator. The mean function of the model error m2 is
linear in time t and location s. The coefficients β = [β1 β2 ] are
hyperparameters in a Bayesian context.

The covariance functions use the squared exponential func-
tions as follows.

k1((x,θ), (x′,θ′);ψ1)= σ2
1 exp {−‖x− x′‖2

Ωx
− ‖θ− θ′‖2

Ω θ
},

k2(x,x′;ψ2)= σ2
2 exp {−‖x− x′‖2

Ω�
x
},

where ‖x− x′‖2
Ω := (x− x′)Ω(x− x′)T is the weighted

norm of (x− x′) by Ω. Weights of Ωx , Ωθ , and Ω�
x are all

diagonal matrices. ψ = [ψ1 ψ2 ] denotes the hyperparameters
with

ψ1 = [vec(Ωx)T vec(Ωθ )T σ2
1 ]T , ψ2 = [vec(Ω�

x)T σ2
2 ]T ,

(6)

where vec(Ω) vectorizes the diagonal entries of Ω. ψ1 con-
tains hyperparameters of r(·, ·) in (5). ψ2 contains hyperpa-
rameters of δ(·) in (5). Note that k1 is a multiplicative ker-
nel. The correlation is large when ‖x− x′‖2

Ωx
+ ‖θ − θ′‖2

Ω is
small.

III. BAYESIAN ANALYSIS FOR CALIBRATION

This section outlines our Bayesian approach. More technical
details can be found in the supplement of this paper.

A. Joint Likelihood

We define θ∗ = [θ∗1 θ∗2 ] as calibration inputs and x∗ as
variable inputs of the computational model. Let N be the
total number of pairs of variable and calibration inputs. We
further define the computational model output vector (Fig. 5)
as y = [y1 · · · yN ]T ∈ RN ×1 and the corresponding input
matrix as

Xc = [(x∗
1 ,θ

∗
1)

T , . . . , (x∗
N ,θ∗N )T ]T ∈ RN ×4 .

The Gaussian process prior on the computational model then
gives y ∼ N (H1(Xc)βT

1 ,V 1(Xc)).
Let n be the number of real observations and z =

[z1 · · · zn ]T ∈ Rn×1 be the set of real observations (Fig. 5) cor-
responding to the variable input matrix Xo = [xT

1 , . . . ,xT
n ]T ∈

Rn×2 . To calibrateθ from the observations, we augment variable
inputs Xo withθ such that Xo(θ) = [(x1 ,θ)T , . . . , (xn ,θ)T ]T .
From the calibration model, we then have

z ∼ N (
H1(Xo(θ))βT

1 +H2(Xo)βT
2 , λIn + V 1(Xo(θ))

+ V 2(Xo)
)
,

where In is the n × n identity matrix.
We combine the computational model outputs and observa-

tions, d = [yT zT ]T ∈ R(N +n)×1 , which we call a data vector.

d =
(
y
z

)
∼ N (md(θ),V d(θ)). (7)

B. Calibration

To estimate (θ,β, λ,ψ) under the Bayesian framework, we
consider the following prior distributions and assumptions.

A.1β1 andβ2 have non-informative priors, i.e., p(β1 ,β2) ∝
1.

A.2 θ is independent of the other parameters.
A.3 θ follows a normal distribution.
A.4 ψ1 and ψ2 in (6) follow lognormal distributions.
A.5 log(λ) has a non-informative prior, i.e., p(log(λ)) ∝ 1.

Note that based on A.1 and A.2, we obtain the joint prior dis-
tribution in the following form p(θ,β, λ,ψ) ∝ p(θ)p(λ)p(ψ).
For A.3, we use the sample mean and variance of the calibra-
tion parameter inputs that were used to generate computational
model outputs for the normal prior density. A.4 guarantees that
ψ1 and ψ2 in (6) are positive values in the calculation since
they are all hyperparameters in covariance functions. Together
with the prior specification given above, the full joint poste-
rior distribution of θ,β, λ,ψ given d, i.e., p(θ,β, λ,ψ | d) can
be found. In this form, β is integrated out easily, while λ and
ψ are estimated by maximizing conditional posterior distribu-
tions p(ψ1 |y) and p(λ,ψ2 |d,ψ1), as proposed by Kennedy and
O’Hagan (2001) [20]. Having estimated λ and ψ and plugging
them into p(θ | λ,ψ,d), we obtain the posterior distribution of
the calibration parameter θ to be

p(θ | λ̂, ψ̂,d) ∝ p(θ)|V d(θ)|− 1
2 |W (θ)| 1

2

× exp
[
− 1

2
{(d−H(θ)β̂(θ))T V d(θ)−1(d−H(θ)β̂(θ))}

]
.

(8)
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and use (8) to make an inference of θ (Fig. 5).

C. Prediction

We introduce variable inputs Xp = [xT
n+1 , . . . ,x

T
n+m ]T ∈

Rm×2 to be used for prediction. The corresponding predic-
tion of the QoI at given variable inputs Xp is denoted as
P = [P1 · · ·Pm ]T ∈ Rm×1 . For quality of the prediction, we
can consider variable inputs in Xc that cover Xp .

Under the Bayesian framework, a prediction can be made
using the predictive distribution of the (unobserved) true process
ζ(x) given full data d. First we obtain the distribution of ζ(·)
conditional on θ, λ̂ and ψ̂, which is also normal. Therefore, its
mean function is given by

E(ζ(x)|θ, λ̂, ψ̂,d)

= h(x,θ)T β̂(θ) + v(x,θ)T V d(θ)−1(d−H(θ)β̂(θ)).
(9)

Additionally, its covariance function can be found

cov(ζ(x), ζ(x′) | θ, λ̂, ψ̂,d). (10)

We can then obtain the predictive distribution of ζ(x) given
d, λ̂ and ψ̂ by integrating θ out from p(ζ(x) | θ, λ̂, ψ̂,d) with
respect to the posterior distribution of θ given in (8). From (9)
and (10), we obtain the predictive expectation and variance of
ζ(·) evaluated at inputs Xp as follows (Fig. 5):

E[ζ(Xp) | λ̂, ψ̂,d] = Eθ{E[ζ(Xp) | θ, λ̂, ψ̂,d]}, (11)

and

var[ζ(Xp) | λ̂, ψ̂,d]

= Eθ{var[ζ(Xp) | θ, λ̂, ψ̂,d]}+ varθ{E[ζ(Xp) |θ, λ̂, ψ̂,d]},
(12)

where ζ(Xp) = [ζ(xn+1) · · · tζ(xn+m )]T . We then obtain the
prediction and its variance using the Markov Chain Monte Carlo
(MCMC) technique (see more details in the supplemental doc-
ument).

IV. DATA

We consider two studies. In the in silico study case, we use the
G&R computational model of the AAA expansion to generate
synthetic observations in addition to producing computational
model outputs. In this case, we know the realized true process
along with the parameters that generate it for validation. In the
second case, we use real data sets, i.e., observations from three
sets of patient specific CT scan images. The G&R computational
model is used only to obtain computational model outputs in this
real-world data study. When implementing Bayesian analysis,
we standardize all the inputs x, θ and outputs y, z to stabilize
computation.

A. In Silico Simulated Study

For our in silico study, we generate r(x,θ) from the G&R
computational model. To validate our approach, we realize and
set patient specific values on the calibration parameters (say θ0)

TABLE I
DIFFERENCES IN Xc AND σ2

2 FOR SIMULATION CASES

for the synthesized true process so that we evaluate the estimated
calibration parameters. Recall that for the damage function, we
need to set θ1 , θ2 , α to produce the G&R computational model
outputs. For the simulated observation case, we set θ1 = 0.65,
θ2 = 6 and α = 3.1. Thus, we have θ0 = [0.65 6] for the true
process. For the variable inputs x = [t s], we consider 8 equally
spaced s from 0 to 9 cm and a time step of 5 days, which are fixed
throughout the study. The time duration is 7 years, but several
different choices of sampling times are considered. Note that
when we implement Bayesian calibration, the values of the QoI
(the radius with respect to the centerline) are standardized as
well so that its mean is 0 and its variance is 1.

Once we obtain a realization of r(x,θ0), we add model and
observation errors to get the final observations. The model er-
ror, δ(x), is realized from the model assumption (5) with β2 =
[0.001 0.001], ω21 = 1, ω22 = 1, and σ2

2 ∈ {0.005, 0.001}.
Then the standard deviation of model error δ(x) on each height
at each time is about {0.071, 0.032}. The observation error ε is
generated fromN (0, λ) with λ = 0.001, i.e., ε ∼ N (0, 0.0322).
The standard deviation of standardized computational outputs
r is 1. To generate simulated observations, we add a model
error process of 7.1% or 3.2% (with respect to r) and an ob-
servation error process of 3.2%. We chose these values for the
model and observation errors in order to produce a data set that
best illustrates the effects of different noise levels and sampling
schemes.

We also need computational model outputs at various combi-
nations of variable inputs and calibration inputs. For calibration
inputs, we consider θ = [θ1 θ2 ] ∈ {0.5, 0.65, 0.8} × {2, 6, 10}
so that there are total 9 combinations of θ1 and θ2 . For vari-
able inputs, s will be considered at 8 equally spaced values
from 0 to 15 cm. For time t, we consider three different sce-
narios to see the effects of different time resolutions. With
two choices of σ2

2 , there are a total of 6 different scenarios.
Table I gives the label of each scenario. Further details of each
scenario are given in Table II. With three cases of sampling
time grids and the two levels of σ2

2 , we want to investigate the
behavior of interaction between the computational model and
Bayesian calibration. In Case 1, computational model inputs
have a sparse time grid while those in Case 3 have a denser
one. In Case 2, the computational model inputs do not cover the
full time range we want to predict while those in Case 1 and
Case 3 do.

We note that variable inputs and calibration inputs for the
proposed Bayesian calibration are standardized in the actual
implementation so that we can assume the realized calibration
inputs are centered at zero. We then use 0.3 as prior means of θ1
and θ2 (away from the zero) to investigate the robustness of prior
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TABLE II
PARAMETERS FOR CASE STUDIES

TABLE III
PREDICTED MAXIMUM DIAMETER AND PREDICTION ERROR AT DIFFERENT YEARS IN SIMULATED OBSERVATION CASES. IN EACH CELL OF THE TABLE, THE

FORMER IS THE MAXIMUM DIAMETER (cm) AND THE LATTER IS THE PREDICTION ERROR

TABLE IV
MEANS AND STANDARD DEVIATIONS OF RELATIVE ERRORS ACROSS LOCATIONS AT DIFFERENT YEARS IN SIMULATED OBSERVATION CASES. IN EACH CELL

OF THE TABLE, THE FORMER IS THE MEAN VALUE AND THE LATTER IS THE STANDARD DEVIATION

distributions. In addition, we consider 0.1 for prior variances of
θ1 and θ2 . The same setting for the prior of θ1 and θ2 is used
later in the real observation case. Note that the normal prior can
be used for θ1 that is constrained to the interval [0,1]. As θ1
was standardized (mean is 0, standard deviation is 1), the range
of θ1 becomes [−1.3, 1.3] based on the parameter values we
use. We set the prior of mean at 0.3, and the variance of prior
at 0.1 (standard deviation is 0.32). According to the empirical
rule, 99.7% of the samples from the prior will lie in the interval
[−0.66, 1.26] which contains in the interval [−1.3, 1.3].

B. Real Observation Case

For the real observation case, we consider 4 serial CT scan im-
ages of Patient 1 as shown in Fig. 1. This particular patient’s CT
scan examination spans a period of 3 years. For each image, we
measured the corresponding radius (QoI) at each height on the
centerline as illustrated in Fig. 4 using the maximally-inscribed
sphere method developed in [35]. From the preliminary study
of the damage shape with respect to the CT scan images, we
selected α = 3.1 for (1) a-priori.

In addition, we selected the reasonable range of the cali-
bration parameter θ a-priori to produce comparable computa-
tional model outputs for the particular observations (Fig. 4).

More specifically, as prior information to determine the range
of the calibration parameter θ, we fit the diameter of the
computational model outputs to the diameter calculated from
CT scan images using fminsearch in MATLAB (Mathwork,
Natick, USA) and found the optimum value to be [θ1 θ2 ] =
[0.2 0.9]. From this information, we consider θ = [θ1 θ2 ] ∈
{0.05, 0.2, 0.35} × {0.7, 0.90, 0.99}. For these 9 combinations
of θ, we run the G&R model to produce the computational
model outputs. More details for this real observation case
are given in Table II. Aforementioned are for the set-ups
of patient 1. We follow the same scheme to generate ob-
servations from 4 serial CT scan images of patients 2 and
3. For patient 2, we found α = 1.9 and we assumed that
θ = [θ1 θ2 ] ∈ {0.055, 0.065, 0.075} × {0.65, 0.75, 0.85}. For
patient 3, we found α = 1.3 and we assumed that θ = [θ1 θ2 ] ∈
{0.265, 0.305, 0.345} × {1.75, 2.05, 2.35}.

V. RESULTS

In this section, we present results of the Bayesian calibra-
tion method on simulated observations and real observations as
described in Section IV.

For simulated observations, means and standard deviations of
relative errors across locations at different times are provided in
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Fig. 6. 3D 95% credible band of predictions. The blue stars denote the true values lying inside the credible band. The red marks denote the true
values lying outside the credible band.
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Fig. 7. Predictions and credible bands for Case 2c.

Table IV. We gauge relative errors R = [R1 · · ·Rm ]T over the
height of the AAA that are calculated as

Ri =
| Pi − Ti |

Ti
, ∀i ∈ {1, . . . , m}, (13)

where T = [T1 · · ·Tm ]T is the realized true process for the
simulated observation case that is described in Section IV-A.
Correspondingly, 95% credible bands with true processes are
presented in Fig. 6.

For the real observations, the prediction and credible band
graphs are given together in Fig. 8, Fig. 10 and Fig. 11. Since
only observations are available for these cases, relative errors
for prediction are calculated by replacing {Ti} in (13) with the
observations (i.e., noisy true values).

A. Results From Simulated Observation Cases

In AAA clinical management, typically physicians use max-
imum diameters in cm and classify AAA patients by the maxi-
mum diameter. Therefore, we provided the predicted maximum
diameter and its prediction error (i.e., prediction minus obser-
vation) in Table III. Among all the cases, the result of Case 3b
outperforms all the others as it gives the smallest prediction er-
ror. Besides, we calculated log predictive likelihood for different
cases. Compared with Case 1 and Case 3, Case 2 did not have
G&R model information at years 6.5 or later to predict at years
6.5 and 7. Therefore, the log predictive likelihood of Case 2
is much smaller than the other two cases. The result is con-
sistent with our findings that Case 2 has the lowest prediction
performance.

Relative errors in (13) (Table IV) are used for scientists
and engineers to perform analytical comparison of prediction
performance. From Table IV and Fig. 6 of the simulation
study, we observe the following findings. Prediction quality
improves when more computational model outputs are used for
calibration. When we consider different sampling time resolu-
tions, prediction quality monotonically improves from Case 1
(coarse resolution) to Case 3 (fine resolution). Smaller model
errors (Cases 1b, 2b, and 3b) provide better prediction results.

Fig. 8. Predictions and credible bands for Real observation of
Patient 1.
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Fig. 9. GP Predictions and credible bands for Real observation of
Patient 1.

Compared to Cases 1a, 2a, and 3a, prediction quality from
Cases 1b, 2b, and 3b is better. As one can expect, prediction
quality decreases at the year for which the computational model
outputs or observations are not available for calibration. For
example, at years 4.5, 5, and 5.5, the errors between the true
processes and predictions are more pronounced in Case 1a
since both computational model outputs and observations are
not available at those years. In particular, predictions at years
6.5 and 7 for Case 2 are the worst in terms of relative errors. Such
results are reflected in wide credible bands as well. A possible
reason is that calibration for Case 2 did not have information
at years 6.5 or later to predict at years 6.5 and 7. Recall that
computational model outputs are up to year 6 and observations
are up to year 4. On the other hand, calibration for Case 1 has
computational model outputs at year 6 to predict at years 4.5,

Fig. 10. Predictions and credible bands for Real observation of
Patient 2.

5 and 5.5. This result suggests that we can use computational
model outputs at future times during calibration for better pre-
diction. In this regard, results from Case 3 are better than Cases
1 and 2. However, more computational model outputs in the
calibration process implies higher computational burden.

From the Bayesian calibration, we have posterior samples
of calibration parameters as well as hyperparameters. For the
simulated observation case, true values of parameters (values
that were used to generated the data are actually close to the prior
mean) are known so that we can compare the performance of
Bayesian calibration for various simulation scenarios. The priors
and posteriors (calibrated estimates) of θ1 and θ2 for each case
are provided in Table V. Corresponding figures of comparison
between priors and posteriors are shown in the supplemental
document.
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Fig. 11. Predictions and credible bands for Real observation of
Patient 3.

TABLE V
PRIOR AND POSTERIOR DISTRIBUTIONS OF θ1 AND θ2

1 std denotes the standard deviation. θp r i o r
1 and θp r i o r

2 denote priors of θ1 and
θ2 . θp o s t

1 and θp o s t
2 denote posteriors of θ1 and θ2 .

Comparing the posteriors of θ1 and θ2 in all cases, we clearly
notice that the posteriors of Case 3 have the sharpest peaks
around the true values, which can be utilized as point estima-
tors. As shown in Table V, the posterior estimates of θ1 and θ2
in Case 3b are the closest to their true values among all cases.
This also illustrates that more information from computational
model outputs can give more accurate estimates of the cali-
brated parameters. Consequently, better estimation of calibrated
parameters is likely to give us better quality of predictions.

Robustness to prior selection: To investigate the impact of
different priors on Bayesian calibration, we compare the results
of Case 2b and Case 2c, where Case 2c is the same as Case 2b
except the prior variances of calibration parameters are 10 times
larger.

The posteriors of θ1 and θ2 for Case 2c cover the prior mean
values, but they have larger posterior variances than those from
Case 2b due to the larger prior variances. We see that the 95%
credible bands (Figs. 6d and 7b) are similar even though their
prior variances are quite different. This can be seen also in the
predictions and relative errors (e.g., supplemental document).
This implies that our Bayesian calibration method is robust
to such changes in priors. Therefore, we may use a diffuse
prior that can cover all the possible values of parameters θ by
learning the statistical information from the background and the
computational model. One can choose the priors for the real
observation case in a similar way.

B. Results From Real Observation Case

In this section, we discuss the calibration results from real
observations of patient 1 using CT images 1-4 as shown in
Fig. 4, i.e., CT images taken at 0, 1.2, 2.3, and 3.2 years, re-
spectively. To generate computational model outputs to be used
for calibration, we consider the inputs Xc for a computational
model as follows. Eight heights uniformly ranging from 0 to
8.2 are chosen. For calibration parameter, θ1 is chosen from
{0.05, 0.2, 0.35} and θ2 is chosen from {0.7, 0.90, 0.99}. The
computation takes 30 minutes. The G&R computation has been
coded and implemented using MATLAB R2012a on an Intel
Core i7 3770 3.4 GHz Processor with 12 GB of RAM. Table V
shows the estimates of all calibration parameters. The prior
means of θ1 and θ2 are 0.25 and 0.858, and their prior stan-
dard deviations are 0.96 and 0.062, respectively. The resulting
posterior means of θ1 and θ2 from Bayesian analysis are 0.322,
and 1.147, and their standard deviations are 0.09 and 0.508,
respectively.

We withhold observations for the last two years during the
calibration procedure in order to validate our approach by com-
paring predictions on the last two years (CT images 3 and 4,
taken at 2.3 and 3.2 years, respectively). In contrast to the sim-
ulation study, we compare the results with observations (noisy
true values) since the true process is not available in the real ob-
servations. The difference between the true process and the ob-
servation (the measurement error) is estimated to be N (0, 0.01)
from the real observation data used for Bayesian calibration as
shown in Table II. There are some larger discrepancies in the
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TABLE VI
PREDICTED MAXIMUM DIAMETER AND PREDICTION ERROR AT DIFFERENT YEARS IN REAL OBSERVATION CASES. IN EACH CELL OF THE TABLE, THE FORMER

IS THE MAXIMUM DIAMETER (cm) AND THE LATTER IS THE PREDICTION ERROR (cm)

TABLE VII
MEANS AND STANDARD DEVIATIONS OF RELATIVE ERRORS ACROSS LOCATIONS AT DIFFERENT YEARS IN REAL OBSERVATION CASES. IN EACH CELL OF THE

TABLE, THE FORMER IS THE MEAN VALUE AND THE LATTER IS THE STANDARD DEVIATION

lower part of predictions at 3.2 years, which can be shown in
terms of relative errors. Most of the relative errors are less than
5%. Besides, Fig. 8a shows how close the Bayesian calibration
model predicts the observation (i.e., noisy true) values. From
Fig. 8b, we also find that only one observation value lies outside
of the credible bands. These results support that our approach
has a capability to predict AAA expansion using real data.

C. Comparison With a Baseline Model

We performed Gaussian process (GP) regression as a base-
line model to demonstrate the effectiveness of our proposed
approach. This baseline model was trained and performed using
GPML package [41] in MATLAB 2018. The covariance was
set as an ARD squared exponential covariance (i.e., covSEard).
The results are presented in Tables VI and VII, and Figs. 8
and 9. Our Bayesian calibration outperforms GP prediction in
terms of prediction errors (Table VI) as well as relative errors
(Table VII), especially in a long time prediction horizon. This
is due to the fact that GP prediction does not take into account
the G&R model, therefore, it does not have predictive capability
in the future time horizon. In addition, our Bayesian calibration
updates calibration parameters of the G&R model in Table V
and other uncertainties (Fig. 5), while GP prediction neglects
them. In results, under GP prediction, credible bands are not
predicted precisely as shown in Fig. 9(b). More comparisons
against GP prediction are given in the supplemental document.

D. Insights From Three Real Data Cases

To get more insights from multiple patient cases, we also run
our model on patients 2 and 3 (Table VI and Table VII). Both
patients 1 and 2 have better prediction performance than patient
3 (Figs. 8, 10 and 11). In particular, for patient 3, the growth
(to the right of the maximal point) is much faster, which may
be due to the longer time horizon (8.5 and 9 years) as compared
to patients 1 and 2. Our Bayesian calibration method accom-
modates this phenomenon appropriately. The credible bands of
patient 3 are wider as well predicted (Fig. 11). In the elastin’s
degradation function, an increase in θ1 will inflate the damage,
thus accelerate the growth of aneurysm. θ2 controls the area

under degradation, so an increase in θ2 will increase the area
of aneurysm. As shown in Table V, patient 2 has the smallest
posterior mean values, i.e., predictions (θ1 , θ2) = (0.07, 0.716)
while patient 3 has the largest values (0.308 and 1.882), which
matches well with that AAA enlargement of patient 3 increases
with a larger magnitude and the AAA of patient 2 increases with
a smaller magnitude. This trend can be seen in Figs. 10 and 11.
Our Bayesian calibration takes into account this growth scheme
and uncertainties. For other results of patients 2 and 3, please
see the supplemental document.

VI. DISCUSSION AND CONCLUSION

From prediction graphs of Case 3 in the supplement docu-
ment, we notice that the diameters of proximal and distal ends
of the true line at year 7 tend to be smaller than the previous
ones. When the AAA is gradually expanding, the end of both
regions can be axially compressed, which means the radii of the
two ends are often contracted. The computational model suc-
cessfully captures this phenomenon. Currently we are studying
serial images of abdominal aortic aneurysms, registered with the
vertebral column. We speculate that the renal vein and artery,
superior mesenteric artery, and iliac bifurcation can serve as an
anchor (both serial and circumferential directions at the superior
and inferior boundaries) to the infrarenal AAA during expan-
sion. Hence, it may be possible that the physical constraints of
the tethering of those vessels provide a strong confinement, or
an anchor at the region of the aorta. During the AAA expan-
sion, the volume of the AAA’s sac will gradually increase while
stretching mostly in the circumferential direction and slightly in
the axial direction simultaneously. Hence, because of the AAA
expansion and the confinement in axial direction, the neck and
distal part of aorta (from renal branches to the AAA’s sac) will
be compressed in the axial direction. Using the 3D growth and
remodeling simulation, Zeinali et al. (2012) [10] show the local
change in the stress distribution, in which the stress of the sac
is increased but the neck’s stress is decreased.

Recall that we estimated α a-priori before Bayesian calibra-
tion since we assume that the peak location of the future AAA
and its overall geometry do not change significantly from the
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previous scans. As illustrated in the real observation case, the
AAA peak location and the aneurysm shape did not signifi-
cantly change during the follow-up images, which support our
approach.

Estimates of β11 (the coefficient for time t) are always pos-
itive, which means the radii of AAAs increase in time due to
AAA expansion. Estimates of β12 (the coefficient for θ1) are
also positive in all cases, which means the QoI, i.e., the radii
of AAA increases as θ1 increases. This can be explained by the
damage function (1). The QoI increases while the elastin con-
tents decreases as the amplitude of the damage function (e.g.,
θ1) increases. Estimates of β13 (the coefficient for θ2) are neg-
ative in the Patient 1 case while all β13’s are positive in the
simulation cases. This could be due to the fact that θ2 values
are largely different between real and simulation observations.
On the other hand, the estimates of β21 , β22 and σ2

2 in all cases
are small. This implies that the computational model could ex-
plain most of the linear and covariance structures of the true
process.

The results from the simulation case study suggest that
Bayesian calibration may be used to combine the computational
model, prior and uncertainty models, and real observations to
predict the QoI at future times or at unobserved locations. The
computational model output data provide a deterministic trend
of the expansion process, which is modeled by a Gaussian pro-
cess. Additionally, computational model discrepancies obtained
from real observations are modeled by another Gaussian pro-
cess. When we have more information from the computational
model (in the form of finer grids for inputs Xc ), we achieve
lower prediction errors, and the posteriors of parameters θ1 and
θ2 are more likely to concentrate on their true values as illus-
trated in our simulation results. We also find that posteriors and
predictions from our approach are robust to the selection of pri-
ors for θ1 and θ2 . In the real observation case of one patient, the
results of Bayesian calibration indicated that the predictions are
reasonably good when compared with the unused last two ob-
servations. Most of the unused observations match reasonably
well with predictions and lie inside the 95% credible bands. The
model and the observation errors collectively capture the struc-
ture of the true process in a consistent manner from a Bayesian
perspective.

From our various case studies, we believe that our Bayesian
calibration process has high capability of predicting complex
G&R AAA processes. As compared with GP prediction with
a set of real serial observations, we show that our Bayesian
calibration outperforms GP prediction in prediction capability.
This demonstrates that the additional complexity of Bayesian
calibration is warranted by improved performance over a less
complex method. We also analyze the results of our Bayesian
calibration on three real data cases and show an insightful trend
on calibrated model parameters. However, there is a need for
validating our approach with a large number of real observa-
tion cases to evaluate its performance and efficacy in a clini-
cal sense. We believe that for given past CT images of a pa-
tient, Bayesian calibration can help to guide the scheduling
of future CT scans according to predictions with the credible
bands.

A. Limitations

Limitations exist in our G&R simulations. First, one time
initial damage of elastin in the focal lesion is considered to be
over-simplified and compound effects (e.g., local hemodynam-
ics, intraluminal thrombus, and axial or bending stretch) are not
taken into the AAA growth mechanism. Second, values of ma-
terial parameters were chosen by using only population-based
values (Seyedsalehi et al. [27]) in contrast to those of patient-
specific. Finally, there are various sources of errors in identifying
axial location and diameter measurements from image segmen-
tation, 3D reconstruction and registration processes (e.g., the
smoothing effects, alignment of centerlines at different time
points) that might affect the performance of the Bayesian cali-
bration. Despite of the various limitations, our current study with
multiple of real data sets showed promising results of Bayesian
calibration compared to a naive GP prediction since our ap-
proach takes into account both the computational G&R model
and its model inadequacy (5) along with various uncertainties.
With better understanding of various compound effects on dam-
age and remodeling mechanism, the Bayesian calibration will
be further improved to be a reliable clinical tool in future.

B. Future Work

As future work, we plan to consider complicated damage
functional shapes with more parameters as well as asymmetric
AAA expansion in a 3D space. We plan to investigate how to
deal with high-dimensional calibration parameters when various
compound effects and complex functions are used for damage
and the rate of mass production. Finally, we will investigate how
to incorporate other available patient-specific data for Bayesian
calibration of a particular patient case.
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