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Abstract

Prediction of the chronological age based on neuroimaging data is important for brain 

development analysis and brain disease diagnosis. Although many researches have been conducted 

for age prediction of older children and adults, little work has been dedicated to infants. To this 

end, this paper focuses on predicting infant age from birth to 2 years old using brain MR images, 

as well as identifying some related biomarkers. However, brain development during infancy is too 

rapid and heterogeneous to be accurately modeled by the conventional regression models. To 

address this issue, a two-stage prediction method is proposed. Specifically, our method first 

roughly predicts the age range of an infant and then finely predicts the accurate chronological age 

based on a learned, age-group-specific regression model. Combining this two-stage prediction 

method with another complementary one-stage prediction method, a Hierarchical Rough-to-Fine 

(HRtoF) model is built. HRtoF effectively splits the rapid and heterogeneous changes during a 

long time period into several short time ranges and further mines the discrimination capability of 

cortical features, thus reaching high accuracy in infant age prediction. Taking 8 types of cortical 

morphometric features from structural MRI as predictors, the effectiveness of our proposed HRtoF 

model is validated using an infant dataset including 50 healthy subjects with 251 longitudinal MRI 

scans from 14 to 797 days. Comparing with 5 state-of-the-art regression methods, HRtoF model 
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reduces the mean absolute error of the prediction from >48 days to 32.1 days. The correlation 

coefficient of the predicted age and the chronological age reaches 0.963. Moreover, based on 

HRtoF, the relative contributions of the 8 types of cortical features for age prediction are also 

studied.
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I. INTRODUCTION

THE HUMAN brain changes dynamically during the prenatal and early postnatal 

development [1–4]. Based on non-invasive brain MR imaging, studying brain developmental 

trajectories becomes possible and promising. Besides measuring the longitudinal change of 

brain features [5, 6], age prediction based on brain MRI features and machine learning 

methods is one of the most effective ways for brain development analysis [7]. Identifying the 

mapping from brain MRI features to chronological age may also provide important 

biomarkers to supervise the brain development or cognitive performance [8]. On the other 

hand, the gap between the predicted age and the chronological age provides an index of 

deviation from the normal developmental trajectory, which may indicate 

neurodevelopmental disorders [9]. Furthermore, age prediction also helps discerning 

possible environmental influences on the human brain [10, 11].

Various age ranges of subjects have been used for studying age prediction. For example, the 

subjects of 3–20 years of age were chosen for assessment of biological maturity based on 

age prediction [12]; the study of the advanced BrainAGE in patients with type 2 diabetes 

mellitus was conducted based on the subjects of 20–86 years of age [13]; the subjects of 21–

65 years of age were chosen for studying the brain ageing in schizophrenia [9]; the age 

range of 65–85 years was used for the discussion of the dependence between brain age and 

Alzheimer’s disease [14]. Nonetheless, little research has been done on the age prediction of 

infants before 2 years of age. To the best of our knowledge, the only study about the infant 

age prediction involved subjects from 5 to 590 days and reached the mean absolute error of 

the prediction as 72 days [15]. However, this study relied on image features obtained by 

difference-of-Gaussian scale space transformation. Its results are less useful for analyzing 

the dynamic changes of the cortical features on the infant brain, which is crucial for many 

psychiatric and neurodevelopmental disorders [16]. Actually, many infant-tailored methods 

have been proposed to address the challenges in infant brain MRI processing, i.e., poor 

tissue contrast, large within-tissue intensity variations, and dynamic appearance changes [6]. 

Consequently, the quantitative analysis of the development of the infant brain cortical 

measures, such as cortical volume, gyrification, cortical thickness, and surface area [16–20], 

has been conducted and many insightful results of infant brain development have been 

discovered. But these group-level comparison results are often not enough for precise 

identification of abnormal brain development in individuals [21]. Leveraging the infant-

specific computational pipelines [4], infant age prediction based on neurobiologically 

meaningful cortical measures becomes possible.
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Previously, many machine learning based regression algorithms have been used for age 

prediction, such as support vector regression [22], convolutional neural network [23], 

Gaussian process regression [24], relevance vector regression [25], and multiple linear 

regression with elastic-net penalty [8]. However, directly applying them on infant age 

prediction is not feasible, because the brain anatomical changes during infancy are too rapid 

and spatiotemporally heterogeneous to be accurately captured by a single regression model. 

Although a covariate-adjusted restricted cubic spline regression model [26] is able to handle 

the complicated changes of brain development, it is more suitable for the regression with a 

single predictor variable. Nonstationary regression, such as nonstationary support vector 

machine [27] and nonstationary Gaussian process regression [28, 29], focuses on time-

dependent processes and may have the potential to deal with the heterogeneous and dynamic 

infant brain development. However, most of nonstationary regression algorithms were 

specifically developed for nonstationary time series analysis. Some particular variables, such 

as the current time or the driving force of the process, should be incorporated into many 

nonstationary regression models. These variables are not suitable for the age prediction that 

does not consider any longitudinal information. Herein, to specifically address the challenge 

in infant age prediction, we propose a two-stage prediction method to split the 

heterogeneous brain development process into several adjacent age groups and carry out fine 

age prediction based on several age-group-specific regression models, and thus construct a 

Hierarchical Rough-to-Fine (HRtoF) model by further introducing an ordinary one-stage 

prediction method as the complement for alleviating the influence of the possible age range 

prediction deviation. The effectiveness of HRtoF is verified by comparing with 5 state-of-

the-art regression methods based on an infant dataset. In addition, we also discuss the 

relative contribution of 8 types of cortical features in infant age prediction based on our 

HRtoF model.

II. MATERIALS AND METHODS

A. Subjects and MR image acquisition

The Institutional Review Board (IRB) of the University of North Carolina (UNC) School of 

Medicine approved this study. Healthy infants were recruited by the UNC hospitals based on 

the written informed consents from both parents. Each subject was scanned unsedated in 

natural sleep with oxygen saturation and heart rate monitored by a pulse oximeter. Detailed 

information on subjects and imaging acquisition can be found in [30, 31].

50 infants were longitudinally scanned by a Siemens 3T head only MRI scanner with 32 

channel heal coil at seven scheduled time points (i.e., around 1, 3, 6, 9, 12, 18 and 24 months 

of age). T1-weighted images (144 sagittal slices) were acquired with the imaging 

parameters: TR/TE = 1900/4.38 ms, flip angle = 7, acquisition matrix = 256 × 192, and 

resolution with 1 × 1 × 1 mm3. T2-weighted images (64 axial slices) were acquired with the 

imaging parameters: TR/TE = 7380/119 ms, flip angle = 150, acquisition matrix = 256×128, 

and resolution with 1.25×1.25×1.95 mm3. Totally, 251 longitudinal scans were included in 

our study after removing the images with insufficient quality. The demographic information 

of these scans is illustrated in Table I.
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B. Image preprocessing

As the predictors for age prediction, several morphological features of the cerebral cortex 

were computed based on an infant-specific computational pipeline as detailed in [32]. 

Briefly, it included the following major preprocessing steps: i) skull stripping by a learning-

based method [33]; ii) cerebellum and brain stem removal by registration [34] with a 

volumetric atlas [35]; iii) intensity inhomogeneity correction by N3 [36]; iv) longitudinally 

consistent tissue segmentation using a learning-based multi-source integration framework 

[37, 38]; v) non-cortical structures filling and left/right hemisphere separation [19]. After 

that, for each hemisphere of each scan, the topologically-correct and geometrically-accurate 

inner (white/gray matter interface) and outer (gray matter/cerebrospinal fluid interface) 

cortical surfaces were reconstructed using a topology-preserving deformable surface method 

based on tissue segmentation results [19]. Given the reconstructed cortical surfaces, 8 types 

of morphological features on each vertex were calculated, including sulcal depth measured 

in Euclidean distance (SDE), sulcal depth measured in streamline distance (SDS), local 

gyrification index (LGI), average convexity, sharpness, cortical thickness, surface area, and 

cortical volume.

Directly using the morphological features of all vertices is computationally expensive, since 

the vertex number on each hemisphere is too large. To reduce the feature dimension, many 

studies use the regions of interest (ROIs) based features by leveraging the anatomical 

structures of the brain and has been proved to be an effective strategy. In this work, to 

generate the brain ROIs, we aligned each individual cortical surface onto the UNC 4D Infant 

Cortical Surface Atlas (https://www.nitrc.org/projects/infantsurfatlas/) [32, 39] using 

Spherical Demons [40]. Then, 35 cortical ROIs from the Desikan parcellation [41] were 

propagated onto each individual cortical surface of each hemisphere. With the ROIs on each 

surface of each hemisphere, 6 types of features (SDS, SDE, LGI, thickness, sharpness, and 

convexity) were obtained by averaging the corresponding values of all vertices inside each 

ROI; and 2 types of features (area and volume) were obtained by summing the 

corresponding values of all vertices inside each ROI. Therefore, for each scan, totally 560 

features (8 feature types × 70 ROIs) were acquired for two hemispheres.

C. Machine learning based age prediction model

Since different cortical morphological features contribute differentially to the age prediction 

during different developmental phases [12], it is an effective strategy to partition the first 24 

months after birth with heterogeneous brain development to several sequential age groups 

and then model the relation between age and features in each specific age group. Based on 

this idea, i) the entire time range (24 months after birth) is partitioned into K age groups 

randomly at first, which will then be optimized by minimizing the error of the prediction; ii) 

K age-group-specific regression models are learned; iii) a two-stage prediction method is 

proposed, which first predicts the age group of an infant in the rough prediction stage, and 

then further finely predicts the accurate chronological age based on the predicted age group 

and the age-group-specific regression model in the fine prediction stage; iv) a 

complementary one-stage prediction is activated if the belief level of the two-stage age 

prediction is lower than a given threshold, which predicts the infant age in the ordinary way. 

Of note, the conventional age prediction methods are called one-stage prediction methods to 
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be distinguished with the two-stage prediction method proposed in this paper. These 4 parts 

constitute a new age prediction model: Hierarchical Rough-to-Fine (HRtoF) model. The 

architecture of HRtoF is shown in Fig. 1.

Training of HRtoF—The training process of HRtoF mainly comprises three steps: 1) age 

range partition learning, 2) feature selection, and 3) prediction model learning.

1) Age range partition learning: The partition of the age range, (0, 800) in days, will be 

set randomly at the beginning and then be learned by minimizing the mean absolute error 

(MAE) of the age prediction. Herein, MAE is the mean of the absolute value of the 

difference between the predicted ages and chronological ages. In this step, an optimal 

partition-nodes set {y1,⋯,yk−1,yk,yk+1,⋯,yK−1}will be learned, where y1 < ⋯ < yk−1 < yk < 

yk+1 < ⋯ < yK−1. This partition nodes set leads to the partition of (0, 800) as {(0, y1), [ y1, 

y2), ⋯ , [ yk−1, yk), [ yk, yk+1), ⋯ , [ yk−1, 800), which corresponds to K age groups. The 

scans with their ages lie in [ yk−1, yk) form the kth age group, with y0 = 0, yK = 800, and k = 

1,2, ⋯ , K. The detailed process of the partition learning is shown in supplementary material.

2) Feature selection: Since there is obvious redundant information due to complex 

correlation among the 560 features (8 types of features on 70 ROIs) adopted for age 

prediction, feature selection is necessary to improve the prediction accuracy. Of note, in 

HRtoF model, the rough prediction part focuses on classifying a scan into the correct age 

group, the fine prediction part dedicates on the prediction in the determined age group, and 

the one-stage prediction directly predicts the infant age with respect to the whole age range 

in a conventional way. The features applied in the rough prediction, fine prediction and one-

stage prediction are required to be selected separately, since they are totally different 

prediction tasks. For the rough prediction part, sparse logistic regression, which is a regular 

multi-class logistic regression with ℓ2, 1 -norm penalty [42], was chosen for feature 

selection. Sparse logistic regression dedicates to perform feature selection as an embedded 

part of the statistical multi-classification procedure and avoid overfitting at the same time, 

which makes it a good feature selection algorithm for rough prediction. As for fine 

prediction and one-stage prediction, the linear regression with the elastic-net penalty [43] 

was chosen for feature selection, because it is designed for regression and particularly useful 

when the number of observations is smaller than the number of predictors.

3) Prediction model learning: After feature selection, different selected dedicated feature 

sets are adopted for learning the rough prediction, fine prediction and one-stage prediction 

model, respectively. For the rough prediction, Bayesian linear discriminant analysis [44] is 

chosen, because the essence of this part is to determine the age group that a scan should 

belong to, which is a classification problem indeed. A given scan is represented by its 

corresponding morphological feature values and denoted as x. Bayesian linear discriminant 

analysis first models the prior probability p(k) of the age group k, and the multivariate 

normal density function p(x | k ) of the predictors in each age group k. Then it estimates the 

posterior probability p k x  that the scan x is in age group k based on Bayes rule. Finally, it 

determines the predicted age group AgeR that is with the maximal posterior probability for 
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the given scan x, i.e., AgeR = argmax
k = 1, ⋅ ⋅ ⋅ , K

p k x  The ‘Belief’ of AgeR is p AgeR x . Actually, 

when the distributions of the predictors are assumed to be Gaussian distribution, the model 

of Bayesian linear discriminant analysis is very similar in form to logistic regression. This 

consistency guarantees that the feature set selected by sparse logistic regression maintains its 

superiority in the classification based on Bayesian linear discriminant analysis. Note that, 

sparse logistic regression is only used for feature selection rather than classification, because 

the parameters estimated by Bayesian linear discriminant analysis is more stable than 

logistic regression when the sample size is small and the distributions of the predictors are 

approximately Gaussian distribution [44]

For the fine prediction and one-stage prediction, because we only have 251 scans for the 

whole model and only 20–40 scans in each age group, as illustrated in Table I, the support 

vector regression [45] was adopted due to its superior performance on small samples.

Forecasting process in HRtoF—The forecasting process in HRtoF uses the following 3 

parts to predict the age of the scan.

1. Rough prediction stage ( AgeR, Belief ) = R(x) : the rough prediction aims to 

accurately determine the age group that the scan belongs to. AgeR is the age 

group which Bayesian linear discriminant analysis classifies the given scan x 
into. ‘Belief’ is the estimated posterior probability and equals p AgeR x .

2. Fine prediction stage AgeR = Fk(x) from the rough prediction stage is larger than 

a predetermined belief threshold θ, which means the model provides high 

confidence for the rough prediction, HRtoF goes to the fine prediction stage. In 

the fine prediction stage, each age group has its specific regression model Fk (k = 

1, ⋯ , K) that characterizes how the cortical features change along with age in 

the corresponding age group. According to the AgeR determined by the rough 

prediction, HRtoF uses the regression model FAgeR
 to get the final predicted age.

3. One-stage prediction Age = P(x) : if ‘Belief’ is equal to or smaller than θ, using 

AgeR for the further fine prediction may be risky. Therefore, HRtoF switches to a 

conventional one-stage prediction model P(x), when the scan could not be 

assigned to any subgroup with enough belief.

D. Evaluation of age prediction

To evaluate the effectiveness of the age prediction and analyze the relative contribution of 

features, 100 times of 10-fold cross validation was implemented. All the hyperparameters in 

HRtoF were learned by minimizing the mean absolute error of the prediction. Furthermore, 

since the 251 scans included in our experiments were acquired from 50 infants 

longitudinally, each infant has 5 scans on average. To control the non-independence of the 

scans in the cross validation, the scans of the same subjects were put in the same fold. Thus, 

the 50 infants were split into ten folds and the scans of the subjects in 9 folds were collected 

as the training set and the remaining scans were used as the testing set. The age prediction 

model was assessed by 3 criteria, i.e., the mean absolute error (MAE), the mean relative 
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absolute error (MRAE), and the correlation value r between the predicted ages and the 

chronological ages. Of note, MRAE is the mean of the absolute error divided by the 

corresponding chronological age and expressed in terms of per 100. For the correlation value 

r, the 95% confidence interval of the r was computed by the 2.5 and 97.5 percentiles of 

correlation values obtained from 1,000 samples bootstrap method. Each 10-fold cross 

validation brought an MAE, an MRAE and a confidence interval of the correlation. The 10-

fold cross validation procedure was repeated 100 times, yielding 100 random 10-fold 

partitions of the experimental data. The mean and standard deviation of the 100 MAEs, 

MRAEs and confidence intervals of the correlation were used to validate the age prediction 

model. The same bootstrap samples were adopted for the 100 times of 10-fold cross 

validation when computing the confidence interval of the correlation. This guarantees that 

the bootstrap selection is unbiased for each of the 10-fold cross validation.

We also compared the proposed hierarchical rough-to-fine (HRtoF) model with 5 state-of-

the-art age prediction methods, i.e., partial least squared regression (PLSR), support vector 

regression (SVR), Gaussian process regression (GPR), elastic net penalized linear regression 

(ENLR), and nonstationary Gaussian process regression (NonS-GPR), quantitatively based 

on MAE, MRAE and correlation value.

E. The relative contribution of the features

The relative contributions of the features to age prediction were analyzed based on 3 aspects, 

i.e., 1) relative importance, 2) relative performance, and 3) relative irreplaceable 

contribution.

1) Relative importance of the features—Relative importance depicts the 

contribution of each feature to age prediction when using 8 types of feature together as the 

predictors. It is measured by the coefficients of decision boundaries in Bayesian linear 

discriminant analysis (BLDA) at the rough prediction stage of HRtoF. In BLDA, the analytic 

expression of decision boundary between kth and k + 1th (k = 1, ⋯ , k − 1) age groups is 

shown as

log p k x
p k + 1 x = w0 + wTx

where and w are the coefficients and intercept of the boundary and learned from scans in kth 

and k + 1th age groups [46]. Like logistic regression, BLDA models the log odds as a linear 

function of the predictors. The exponential coefficient in the decision boundary represents 

the change in odds, when the corresponding predictor increases a unit with other predictor 

increases a unit with other predictors being fixed. Thus, bk, k + 1 = exp w − 1  was used to 

measure the relative importance of the features in discriminating the subjects in kth and k
+ 1th age group. The longitudinal changes of the relative importance of the features from 1 

month to 24 months was captured by the sequential values of bk, k + 1 k = 1, ⋅ ⋅ ⋅ , K − 1 , 

which was obtained from the k − 1 sequential decision boundaries among the K age groups. 

Each type of feature (SDE, LGI, SDS, convexity, sharpness, thickness, area and volume) 
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includes 70 features (from 70 ROIs). The relative importance of each type of feature was 

obtained by summing the relative importance of the corresponding 70 ROI features.

2) Relative performance of the features—Except for evaluating the contribution of 

each feature type in the model that uses all 8 feature types together as predictors, each 

feature type was also evaluated by adopting it as the sole predictor in the age prediction 

model. Suppose MAEf is obtained by the age prediction based on an individual feature type 

f. Its relative performance is defined as

−MAE f + 1
8 f ′

MAE f ′ / 1
8 f ′

MAE f ′ ,

where f′ is one of the 8 feature types. Positive or negative relative performance respectively 

indicates whether the capability of this individual type of feature on age prediction is bigger 

or smaller than the average level.

3) Relative performance of the features—When removing a specific type of feature 

out of the feature set, the change on the accuracy of age prediction shows the contribution of 

the feature type that could not be replaced by the remaining feature types. The relative 

irreplaceable contribution of the individual feature type f is defined as.

MAE f − 1
8 f ′

MAE f ′ / 1
8 f ′

MAE f ′

where MAE f  is the MAE by using the feature set without f, and f′ is one of the 8 feature 

types. Positive and negative relative irreplaceable contribution respectively indicates whether 

the irreplaceable contribution of this individual feature type on age prediction is bigger or 

smaller than the average level.

III. RESULTS

A. The prediction performance of HRtoF

The HRtoF model was mostly programmed based on Matlab. The regularized sparse logistic 

regression for feature selection in the rough prediction stage was implemented by SLEP 

toolbox [42]. The criteria MAE, MRAE and the 95% confidence interval of the correlation 

value r were used to compare HRtoF with other 5 regression models, i.e., partial least 

squared regression (PLSR), support vector regression (SVR), Gaussian process regression 

(GPR), elastic net penalized linear regression (ENLR), and nonstationary Gaussian process 

regression (NonS-GPR) with dot-product as the nonstationary kernel. The results obtained 

from 100 times of 10-fold cross validation were presented in Table II. rL and rR are the left 

and right endpoints of the 95% confidence interval of r. Scatter plots of the predicted age 

and chronological age are shown in Fig. 2, in which the subfigures were obtained by HRtoF, 

PLSR, SVR, GPR, ENLR, and NonS-GPR, respectively.
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PLSR, SVR, GPR, ENLR, and NonS-GPR performed similarly on age prediction. The MAE 

obtained by them was around 48.5 days to 59.9 days; the MRAE was around 23.8% to 

47.8%; and the average correlation r was around 0.938 to 0.951. HRtoF model improved the 

prediction performance considerably. Specifically, the MAE and MRAE were respectively 

reduced to 32.1 days and 16.2%, while the average of the 95% confidence interval of r 
increased to 0.963.

Since the images in our experiments were collected at around 1, 3, 6, 9, 12, 18, and 24 

months of age, the MAE and MRAE of prediction were broken down at these 7 time points 

to show the detailed prediction performance, as shown in Tables III and IV. From Table II, 

GPR and ENLR respectively are the best and worst out of the 5 conventional one-stage 

methods. Tables III and IV show more details about the prediction at each time point. These 

four one-stage prediction methods perform differently at different time points, especially at 

the youngest and oldest time points. GPR outperforms the other 4 models at 1, 3 and 6 

months, while performs not as well as the others at the rest of the time points. Especially at 

24 months, the MAE of the prediction obtained by GPR increases to 84.7 days, while the 

MAE of ENLR is 61.5 days. ENLR performs worse than the other 4 methods at most of the 

time points except 24 months. Therefore, a fact could not be neglected is that even a one-

stage prediction method is chosen for age prediction due to its better overall performance 

across the whole time range, the prediction effectiveness is not guaranteed at some specific 

ages. Compared with these 5 methods, HRtoF consistently shows better prediction 

performance at all time points. Focusing on the variance of the 7 MRAEs from 1 month to 

24 months, the standard deviation (S.D.) of MRAE obtained from HRtoF is 13.16%, while 

the values of PLSR, SVR, ENLR and Nons-GPR are from 35.49% to 54.52%. Although the 

standard deviation of the 7 MRAEs obtained from GPR is as small as the one obtained from 

HRtoF, the standard deviation of MRAE along with the 6 time points (from 3 months to 24 

months) obtained from GPR is 6.84%, while the one obtained from HRtoF is only 1.65%. 

This result shows that HRtoF also outperforms the other four models on the stability of the 

prediction at the 7 time points.

B. The relative contributions of features

As mentioned in section II-E, the relative contribution of the features for age prediction was 

analyzed by relative importance, relative performance, and relative irreplaceable 

contribution. Based on the age range partition learning, the partition of the age range was 

obtained as: {[0,136), [136,244), [244,332), [332,462), [462,645), [645,800]}.

The number of the age groups is K = 6. (1~3M, 6M), (6M, 9M), (9M, 12M), (12M, 18M), 

(18M, 24M) represent the 5 sequential decision boundaries of the 6 age groups. ‘M’ is short 

for ‘month’. The sequential change of the exponential coefficients in the 5 decision 

boundaries shows the longitudinal variation of the features’ relative importance. The 

longitudinal trajectories of the relative importance of 8 types of cortical features are obtained 

by bk, k + 1 k = 1, ⋅ ⋅ ⋅ , 5  and shape preserving piecewise cubic interpolation as shown in 

Fig. 3. From the trajectories in Fig. 3, the relative importance of LGI is always the biggest 

one from 1 month to 24 months, while cortical thickness is nearly the most insignificant 

contributor to the rough prediction. Although SDS has low contribution in the middle range 
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of the time, it is the second important feature type at the beginning and the end of the time. 

Furthermore, when the relative importance of convexity and SDS decrease in the decision 

boundaries of (6M, 9M) and (12M, 18M), the relative importance of sharpness and SDE 

increase. When the relative importance of convexity and SDS increase in the decision 

boundaries of (9M, 12M) and (18M, 24M), the relative importance of sharpness and SDE 

decrease. This phenomenon shows that the two feature sets “convexity and SDS” and 

“sharpness and SDE” may be mutually complementary with each other in the age prediction 

at different time points.

The longitudinal relative importance of the feature types shown in Fig. 3 was obtained in the 

model that includes all 8 types of features as predictors. To further study the relative 

contribution of each feature type, the 8 feature types were included into the age prediction 

model HRtoF separately. For each feature type, MAE, MRAE and the 95% confidence 

interval of the correlation value r obtained from 100 times of 10-fold cross validation are 

presented in Table V. When applied to the age prediction model HRtoF individually, volume 

shows as the best predictor (MAE=51.2 days), while LGI is the worst one (MAE=94.2 

days). The prediction capabilities of SDE, SDS, convexity, thickness and area are similar. 

The MAEs obtained by them are from 59.5 days to 66.9 days. Sharpness is not a very good 

predictor for age, because the MAE obtained by it is as high as 75.5 days. Meanwhile, the 

biggest average correlation value obtained by a single feature is 0.92, which is reached by 

volume.

Comparing the relative importance obtained from the prediction using all the 8 feature types 

and the performance obtained from the prediction using a single feature type, a wide 

difference shows up. For example, LGI has the biggest relative importance when predicting 

age together with other 7 features and the smallest accuracy when predicting the age 

individually. To uncover the reason for this difference, an experiment was further 

implemented. Each feature type was removed from the feature set and the rest 7 feature 

types were used to predict the infant age based on HRtoF model. The prediction capabilities 

of the 8 feature sets, respectively without a certain feature type, were also assessed and 

presented in Table VI.

After removing a feature type from the original feature set, the change of the prediction 

performance represents whether the contribution of the feature type in age prediction could 

be replaced by the remaining feature types or not. The more the prediction accuracy 

decreases the feature type is more irreplaceable in the original feature set. As shown in Table 

II, the MAE of the age prediction when using the 8 types of features together is 32.1 days. 

The MAE obtained by the feature set without ‘area’ is almost unchanged. On the contrary, 

after removing LGI out of the feature set, the MAE of age prediction increased most. 

Sharpness is another feature that leads to a 4-day increase on the MAE when using the 

feature set without it for age prediction.

The comparison between the prediction results obtained by individual feature type against 

the feature sets without this individual feature type could uncover some important facts 

about how the feature type works on the age prediction. As defined in section 2.5, the 
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relative performance and relative irreplaceable contribution of the 8 types of features are 

computed and shown in Table VII.

The values of the relative performance and the relative irreplaceable contribution help us to 

classify the 8 types of features into four classes, which are described in Table VIII. LGI and 

sharpness belong to class IV, which means that they have strong irreplaceability on age 

prediction, although they could not predict the age very well by themselves. SDE, SDS, 

thickness and area belong to class I. These 4 feature types could individually predict the age 

well, but some features in the remained feature set could mostly replace their contributions 

in age prediction, because the MAE only changed a little when removing them. Convexity 

and volume belong to class II. They could individually predict age at higher than the average 

level of accuracy and also have more than the average amount of irreplaceable contribution 

for age prediction. Comparing the irreplaceable contribution with the relative importance 

analysis, their results are highly consistent. The high relative importance of LGI and 

sharpness shown in Fig. 3 meets the big irreplaceable contribution of them for the age 

prediction. Although LGI and sharpness could not predict the infant age very well 

individually, they still have a big potential to increase the accuracy of prediction when 

cooperating with other feature types. Thus, when building an age prediction model, only 

including the feature types with high individual prediction power may not definitely lead to 

an ideal model, because the contribution of the feature types may be heavily overlapped. On 

the other side, including some feature types of class IV into the prediction model may be 

crucial for the improvement of the performance.

C. The ROIs involved in the rough prediction stage

The rough prediction stage is a crucial part of HRtoF model. After the feature selection 

based on sparse logistical regression, only 58 features are chosen out of the original 560 

features (8 feature types on 70 ROIs). The numbers of the ROIs related to different feature 

types were broken into left and right hemispheres and were shown in Fig. 4. 14 ROIs related 

to LGI were chosen and used as predictors in the rough prediction stage, while only 3 ROIs 

related to thickness and volume were chosen for the rough prediction. These 58 features 

distribute asymmetrically on the left and right hemispheres. The ROIs on the right 

hemisphere involved more in the rough prediction stage than the ROIs in the left 

hemisphere. Although there have been some reports [47, 48] about longitudinal hemispheric 

structural symmetries of the human cerebral cortex form birth to 2 years of age, they studied 

different cortical features independently. The structural asymmetry showed in our study was 

from the viewpoint of age group discrimination, and the interaction between different 

cortical features were considered. Because the degree of feature change is closely related to 

the discriminability of age groups, the asymmetrical distribution of these 58 features likely 

indicates that the right hemisphere may has higher development rate than the left hemisphere 

in the first two years of life. To some extent, this result is consistent with the report of “the 

right brain hemisphere is dominant in human infants”[49].

For clarity, the selected 58 features are shown on ROIs according to the 8 types of features in 

Fig. 5. The ROIs that are most frequently involved in the rough prediction are bilateral 

medial orbitofrontal, bilateral parahippocampal, bilateral temporal pole, right superior 
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parietal and right posterior cingulate cortex. Each of them participated in the rough 

prediction with more than 3 feature types.

IV. DISCUSSION

1) HRtoF model having good performance on age prediction

Although many useful strategies have been employed to address the complex relationship 

between the predictors and the age in conventional one-stage regression methods, the 

accuracy does not improve much improvement in infant age prediction. The MAE of the 

prediction obtained by PLSR, SVR, GPR, nonstationary GPR, and ENLR is around 48.5 to 

59.9 days, and the correlation value is around 0.939–0.949. The reason is that the 

heterogeneity of early brain development is forcibly represented by a single model and the 

discrimination capability of the cortical features cannot be thoroughly mined. By splitting 

the long time range with heterogeneous early brain development and introducing a two-stage 

prediction method, HRtoF reaches a considerably higher accuracy.

Furthermore, with the age range partition learning of HRtoF, the age group, in which the 

relationship between the change of the cortical features and age is relatively stable, can be 

discovered. In our experiment, we find that the subjects belong to 1 month and 3 months 

were combined into a single age group, while the MAE obtained by HRtoF at 1 month and 3 

months are smaller than the MAEs obtained by the other 4 methods. This shows that the 

relationship between the cortical features and chronological age is similar for the subjects 

belonging to 1 month and 3 months.

From the prediction scatter plot shown in Fig. 2, we can find that the prediction error 

obtained by HRtoF is getting bigger along the time, especially from 1 to 2 years of age. This 

prediction error pattern is mainly due to heterogeneous brain development rates during the 

first two years. The developmental trajectories of the 8 types of features were mapped by 

covariate-adjusted restricted cubic spline regression [26] and shown in Fig. 6. As can be 

seen, the development of these global features show that the infant brain goes through a 

dramatic development from birth to 1 years of age, and then a relatively stationary 

development during the second year. When the age becomes larger, the cortical feature 

differences across age groups become smaller, therefore their distinguishability becomes 

lower. Since the rough prediction stage of our proposed model uses the discrimination 

capability of the data, the relative stationary brain development in year 2 is the main reason 

of higher prediction error. Thus, different prediction accuracies at different phases could also 

reveal different rates of brain development.

Furthermore, although there are not enough data for the training of the 6 models in the fine 

prediction stage, they still learned some useful prediction knowledge from the limited data. 

To evaluate the prediction effectiveness of these 6 models trained by SVR, they were used 

for age prediction in their own age group and also neighboring age groups. The correlations 

between the predicted ages and the chronological ages were shown in Table S1 in 

supplementary material. Model 1~3M and Model 12M can predict the age with high 

accuracy in both its own and neighboring age groups, while Model 12M cannot work well in 

all age groups. Actually, from Fig. 6, we can find that 12M is a very special period, when 
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almost all the cortical features are changing the development rates. For the phases at 1~3 

months and 24 months, the variation of all the feature types is keeping at a determinative 

situation.

2) Parameter selection of HRtoF

There are 4 groups of parameter required to be determined in HRtoF. They are: i) the nodes 

of the partition; ii) the regulation parameter ρ in sparse logistic regression for the feature 

selection in the rough prediction stage; iii) the weight of penalty α and regulation 

parameters λ in linear regression with elastic-net penalty for the feature selection in fine 

prediction stage and one-stage prediction; iv) the belief threshold θ. All of them were 

selected by minimizing the averaged MAE from 10 times of inner 10-fold cross validation.

The belief threshold θ balances the usage of the two-stage prediction and the ordinary one-

stage prediction. It determines whether a scan should be further predicted by the fine 

prediction stage or by the ordinary one-stage prediction. Thus, the choice of θ is related to 

the reliability of the rough prediction. The detailed information of the age prediction 

obtained by our proposed model, HRtoF, is shown in Fig. 7. We can see that, most of the 

failed-predicted scans were resulted from the incorrect classification at the rough prediction 

stage. Actually, the classification accuracy of the rough prediction stage is 0.83±0.01 in our 

experiment.

From 0.5 to 1, the parameter θ was assessed by the averaged MAE obtained from 10 times 

of 10-fold cross validation. The relationships between θ and detailed information of the 

prediction are shown in Table IX. Specifically, the detailed information includes i) the 

percentage of the scans predicted by the fine prediction stage (Belief>θ); ii) the percentage 

of the scans correctly classified by rough prediction stage and further predicted by the fine 

prediction stage (correct & Belief> θ); and iii) the corresponding prediction MAE. When all 

the scans were predicted by the two-stage prediction, i.e., θ= 0, the MAE was around 36.9 

days. When θ= 0.89, 11% scans were predicted by the ordinary one-stage prediction model 

and the MAE was reduced to 32.1 days. It is obvious that the introduction of the ordinary 

one-stage prediction does alleviate the influence of the possible age range prediction 

deviation and improve the accuracy. However, larger θ may lead to strong dependence on the 

one-stage prediction and reduce the advantage of two-stage prediction. Therefore, the choice 

of θ is important. Finally, θ =0.89 was chosen as the belief threshold in our experiment. To 

guarantee the fairness of the comparison between HRtoF and the other 5 methods, Lasso 

regression was used for the feature selection of PLSR, SVR, GPR, and NonS-GPR, and all 

the relevant parameters in these 5 methods were chosen based on minimizing the average 

MAE obtained from the 10 times of 10-fold cross validation. Actually, an independent 

validation set may be better for the parameter selection. However, currently, we only have 

251 scans in the dataset and only 23~41 scans in each time point. This amount of data is not 

large enough for us to get an independent validation data set that has the same distribution 

with the training data. When more infant data are increasingly acquired, the independent 

external validation will be possible, which will be our future work.
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3) The potential applications of HRtoF

Splitting the long time range with heterogeneous brain development and using a collection 

of group-specific regression models have the potential to perform better than the 

conventional methods. Thus, HRtoF may be useful for age prediction of any other age 

ranges, since the brain changes of different stages of life follows different trajectories.

It is worth noting that the scans used for our study have a characteristic that the infants were 

all required to take the scans at specific time points. Although there are variations of the ages 

that the subjects were scanned, as shown in Table I, the ages of these scans could be 

discretely partitioned into 7 discrete time points. However, the two-stage age prediction 

model is still useful for the subjects with continuous age distribution. First, the partition 

learning part could still automatically learn the nodes of the partition no matter how the ages 

of the scans are distributed. Second, the one-stage prediction part and the belief threshold in 

HRtoF could be very effective for the continuous age distribution. On one hand, when a scan 

belongs to the boundary of the partition, the posterior probability of the scan belongs to 

every age group is always lower than the belief threshold θ. Thus, the one-stage prediction 

part will be activated for the age prediction of the subject. On the other hand, when a scan 

does not belong to the boundary of the partition, the posterior probability of the scan belongs 

to a certain age group is always higher than the belief threshold θ, which leads to the 

activation of the local regression model in the fine prediction stage. Thus, the one-stage 

prediction part and the belief threshold will guarantee the effectiveness of HRtoF for the age 

prediction of the subjects with continuous age distribution.

4) Limitation and future direction

Although we have compared our proposed HRtoF with a nonstationary GPR, we only used 

dot-product nonstationary kernel. Some other nonstationary kernels and nonstationary 

regression models may still have high potentials in age prediction, although they are not 

specifically designed for and never used in age prediction. We should investigate how to 

design specific kernels for age prediction and incorporate the nonstationary regression into 

our proposed HRtoF model. Furthermore, although some important brain regions have been 

chosen for age prediction and reach good performance in our model, it is still unclear 

neurobiologically why these regions are so tightly related to the age prediction. More 

discussions should be done in our future work. Finally, based on the HRtoF model proposed 

in this paper, infant age prediction based on complementary multi-modal images should also 

be studied in the future.

V. CONCLUSION

In summary, this paper proposes a novel two-stage age prediction method and builds a 

hierarchical rough-to-fine (HRtoF) model to capture the rapid and heterogeneous changes of 

the brain development and achieves a high accuracy on infant age prediction. Partitioning 

the rapid brain development into several age groups, mining the discrimination capability of 

cortical features and using a collection of age-group-specific regression models are efficient 

and promising strategies to conduct the regression on a long time range. Furthermore, the 
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high correlation coefficient (r = 0.962) between the predicted and chronological ages also 

shows that the cortical maturation has a strong relationship with the chronological age.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The architecture of the proposed age prediction model: HRtoF.
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Fig. 2. 
Scatter plots of the chronological age and predicted age obtained by HRtoF, PLSR, SVR, 

GPR, ENLR, and NonS-GPR are shown in the 6 subfigures, respectively. The solid line 

describes the best predictions.

Hu et al. Page 19

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The relative importance of the 8 types of features varies from 1~3 months to 24 months. The 

relative importance of each feature type in each decision boundary was computed by 

summing the values of its related ROI features and normalized by dividing the total relative 

importance of the 8 feature types in the decision boundary.
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Fig. 4. 
The number of the ROIs related to each feature type (SDE, LGI, SDS, convexity, sharpness, 

thickness, area and volume).
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Fig. 5. 
The 58 selected most contributive features used in rough prediction stage are shown as red 

regions according to 8 feature types, i.e., SDE, LGI, SDS, convexity, sharpness, thickness, 

area and volume.
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Fig. 6. 
The development trajectories of the 8 types of global features from birth to 2 year of age. 

SDE, LGI, SDS, Convexity, Sharpness, and Thickness shown in this figure were obtained by 

averaging the corresponding values on all brain vertices; Area and Volume were obtained by 

summing the corresponding values on all brain vertices. Of note, these values were all 

normalized as z-scores for comparison.
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Fig. 7. 
The detailed information in the scatter plot of the chronological ages and predicted ages 

obtained by HRtoF. The circles with red crosses represent the prediction ages obtained by 

the ordinary prediction (Belief≤ θ). The circles without red crosses on it represent the 

prediction ages obtained by the two-stage prediction (Belief> θ). Red circles represent the 

corresponding scans, which were correctly classified by the rough prediction stage, while 

blue circles represent the corresponding scans that were incorrectly classified by the rough 

prediction stage.
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Table I.

Subject demographics of the dataset.

1 month 3 month 6 month 9 month 12 month 18 month 24 month

Scans (Female/Male) 39 (17/22) 36 (17/19) 41 (20/21) 36 (17/19) 36 (16/20) 40 (17/23) 23 (14/9)

Age (days) 14–48 81–116 169–225 251–309 352–418 507–613 666–797

Age Mean±SD 27.3±9.0 94.6±8.6 190.0±12.8 278.1±13.9 375.5±14.5 556.8±19.8 738.2±27.3
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Table II.

The comparison of HRtoF, PLSR, SVR, GPR, ENLR, and NonS-GPR, in terms of MAE, MRAE, and the 95% 

confidence interval of correlation value. Mean and standard deviation of the values were obtained from the 100 

times of 10-fold cross validation.

MAE(days) MRAE(%) rL rR

HRtoF 32.1±1.2 16.2±0.5 0.945±0.008 0.981±0.003

PLSR 51.7±1.8 39.6±1.5 0.939±0.004 0.963±0.002

SVR 52.1±1.7 36.4±1.8 0.934±0.004 0.960±0.002

GPR 48.5±1.0 23.8±0.6 0.937±0.002 0.962±0.001

ENLR 59.9±2.7 47.8±2.3 0.928±0.007 0.951±0.004

NonS-GPR 53.6±1.5 36.2±1.6 0.931±0.003 0.958±0.004
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Table III.

The broken down MAE (days) obtained by HRtoF, PLSR, SVR, GPR, ENLR, and NonS-GPR at the 7 time 

points. Mean and standard deviation were obtained from the 100 times of 10-fold cross validation; ‘M’ is short 

for ‘month’.

HRtoF PLSR SVR GPR ENLR NonS-GPR

 1M 11.1±0.3 30.4±1.7 24.3±1.8 11.7±0.5 37.5±2.9 24.2±1.5

 3M 11.0±0.4 48.8±2.5 48.6±2.6 28.1±1.0 59.6±3.5 49.1±2.8

 6M 17.8±1.9 44.9±2.5 47.8±2.4 39.3±1.2 58.7±3.3 45.2±2.0

 9M 29.9±3.1 51.8±2.7 52.1±2.9 59.1±1.5 59.5±4.4 53.0±2.6

12M 52.9±3.9 65.0±3.0 64.7±3.0 68.7±1.7 67.7±4.2 64.3±2.7

18M 58.5±4.7 62.8±2.8 63.5±3.1 62.9±1.6 77.8±4.3 61.6±2.1

24M 60.7±5.8 61.3±3.4 70.1±3.0 84.7±2.2 61.5±5.3 74.1±3.5
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Table IX.

The sensitivity analysis of the belief threshold θ. %(> θ) represents the percentage of the scans predicted by 

the fine prediction stage; %(Correct & > θ) represents the percentage of the scans correctly classified by the 

rough prediction stage and further predicted by the fine prediction stage. MAE represents the MAE obtained 

by HRtoF accoring to the belief threshold θ. Mean and standard deviation of the values were obtained from 

the 10 times of 10-fold cross validation.

% (> θ) %(Correct & > θ) MAE

θ = 0.99 0.71±0.021 0.69±0.008 40.1±1.8

θ = 0.89 0.89±0.007 0.74±0.005 32.1±1.2

θ = 0.90 0.91±0.007 0.76±0.008 32.7±1.5

θ = 0.80 0.93±0.008 0.78±0.012 34.8±1.7

θ = 0.60 0.97±0.008 0.81±0.014 35.6±1.8

θ = 0.50 0.98±0.005 0.82±0.012 36.7±2.4

θ = 0 1 0.83±0.010 36.9±2.9
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