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Abstract—Knowledge of the pathological instabilities in
the breathing pattern can provide valuable insights into the
cardiorespiratory status of the critically-ill infant as well
as their maturation level. This paper is concerned with
the measurement of respiratory rate in premature infants.
We compare the rates estimated from the chest impedance
pneumogram, the ECG-derived respiratory rhythms, and the
PPG-derived respiratory rhythms against those measured in
the reference standard of breath detection provided by at-
tending clinical staff during 165 manual breath counts. We
demonstrate that accurate RR estimates can be produced
from all sources for RR in the 40–80 bpm (breaths per min)
range. We also conclude that the use of indirect methods
based on the ECG or the PPG poses a fundamental chal-
lenge in this population due to their poor behavior at fast
breathing rates (upward of 80 bpm).

Index Terms—Electrical impedance pneumography, elec-
trocardiogram, NICU, paediatrics, physiological monitoring,
photoplethysmogram, respiratory rate.

I. INTRODUCTION

THE neonatal intensive care unit (NICU) is an intensive
care and high-dependency unit offering specialist care for
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critically-ill or premature newborn infants. Respiratory condi-
tions are the most common reason for admission to a NICU in
both term and preterm infants [1]. Overall, it is estimated that
between 2.2% [2] to 6.7% [3] of all births are complicated by
a respiratory disorder. In fact, one study reported that, with the
exception of infants with syndromes and those with congenital
or surgical conditions, 33.3% of all neonatal admissions at >
28 weeks of gestation had respiratory disorders as their primary
reason for admission [4]. A further study estimated that 20.5%
of all neonatal admissions showed signs of respiratory distress
[5]. Evidence of increasing rates of neonatal admissions due to
respiratory disorders has also been reported [6].

The clinical signs of respiratory disorders are thus important
to recognise. Most respiratory conditions have some manifes-
tation in the respiratory signal, namely in the morphology or
frequency of this signal (i.e., the respiratory rate). Continuous
monitoring of respiratory rate (RR) in neonatal units is generally
done by electrical impedance pneumography (IP). IP is a conve-
nient method in this setting as patients are already monitored by
electrocardiography, but is prone to inaccurate readings due to a
number of factors including poor probe placement, motion arte-
fact, and physiologic events which cause thoracic movements
unrelated to breathing (such as coughing, or crying) [7], [8].
The high prevalence of noise and high false alarm rates means
that respiratory signals are still largely disregarded in neona-
tal intensive care units. There is, therefore, a pressing need to
improve the reliability of RR monitoring in these units.

In adherence to clinical care standards, preterm infants ad-
mitted to a NICU undergo continuous monitoring of heart rate
(HR) acquired using the electrocardiograph, and peripheral
blood oxygen saturation (SpO2) acquired using pulse oxime-
ters. The cardiosynchronous signals collected by such devices
– the electrocardiogram (ECG) and the photoplethysmogram
(PPG) – have been shown to exhibit amplitude and frequency
oscillations that reflect the respiratory cycle [9]–[11]. The ubiq-
uitousness of ECG and PPG monitors in neonatal units could
provide an opportunity for concurrent RR monitoring if suffi-
ciently robust signal processing methods to estimate RR from
these two signals were available.

Algorithms for the estimation of RR from the ECG and the
PPG were first reported in 1985 [10] and 1992 [12], respec-
tively. Although a considerable amount of work on this topic
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Fig. 1. Histograms of reference vital signs of the infants recruited: (a) Heart rate derived by the patient monitor from ECG, (b) respiratory rate
derived by the patient monitor from IP, and (c) SpO2 derived by the pulse oximeter. + is the data mean, the boxplot bounds the 25% and 75%
quartiles and the whiskers bound the 9% and 91% of the data. The black curve in (1 a) shows a normal fit to the data.

has since been reported, to our knowledge no study has been
published which assesses the reliability of RR estimates pro-
vided by indirect methods based on the ECG or PPG records
of spontaneously breathing neonates. As a result, the applica-
bility of their results to the monitoring of these patients faces
several limitations. The first limitation is the range of RR values
reported; as datasets consist solely of records from adults [10],
[12]–[25] or older children [26], [27], the range of RR values in
the training and test sets is concentrated in the interval from 5
to 25 bpm (breaths per min), a range much lower and narrower
than that observed in preterm and newborn infants (Fig. 1 a).
For this reason, results from these studies are not necessarily
representative of the behaviour of the methods in our patient
group. In addition, no paper evaluates the performance of their
methods against the reference standard of manual respiratory
assessments by clinical experts.

This paper is concerned with the measurement of RR in
preterm infants. We compare RR values estimated from (a)
the electrical impedance pneumogram recorded with the ECG
electrodes, (b) the ECG-derived respiratory rates, and the (c)
PPG-derived respiratory rates against those measured using the
reference standard of breath detection provided by attending
clinical staff during manual breath counts. In the case of both
ECG- and PPG-derived respiration, we consider both amplitude
and frequency modulations of the waveforms by the respiratory
cycle and fuse the estimates from all sources of modulation to
obtain a single RR estimate from each device for each time
window.

The rest of this paper is organised as follows: Section II
introduces the dataset and III the proposed methodology. The
results of RR estimation are reported in Section IV and discussed
in Section V. The main conclusions are presented in Section VI.

II. DATA COLLECTION

Data for this study was acquired during an observational study
in the NICU at the John Radcliffe Hospital (MONITOR Study -
Research Ethics Committee: 13/SC/0597). This study involved
the recruitment of 30 preterm infants of less than 37 weeks of

TABLE I
SELECTED POPULATION DEMOGRAPHICS OF THE SUBGROUP OF INFANTS

ENROLLED IN THE NICU STUDY. GESTATIONAL AGE AND WEIGHT ARE
REPORTED FOR THE FIRST DAY OF RECORDING

†WB = White-British; WA = White and Asian.

corrected postmenstrual age. Each preterm infant was recorded
for up to four consecutive days. During this period, we recorded
the physiological signals and vital sign data collected by the pa-
tient monitor as part of routine care (Fig. 1). The main focus of
this paper is on the periods of manual measurements of respira-
tion available for the last five study subjects in this dataset (PN
26–30). The main demographic characteristics of this subgroup
are reported in Table I.

A. Signal Acquisition

All conventionally-monitored signals were recorded using
an IntelliVue MX800 Revision J, 2013 patient monitor (Philips,
Amsterdam, Netherlands) and relayed to a separate workstation,
a standard PC with a 4 TB disk and 8 GB RAM under Windows 7
(using ixTrend, ixEllence GmbH, Wildau, Germany) via R-232
serial transmission.

Using the MX800 patient monitor built-in software, the in-
fant’s vital signs are derived from the raw physiological signals
collected and reported at a rate of 1 estimate per second. Baseline
values for the monitored vital signs are shown in Fig. 1. RR was
estimated from the bipolar IP signals collected at 62.5 Hz using
the set of neonatal chest electrodes provided with the monitor.
HR was estimated from the single-lead ECG signal (sampled
at 250 Hz) acquired using the same pair of electrodes and a
reference electrode placed on the infant’s abdomen, and SpO2
was estimated from the PPG signal acquired by a SET LNCS
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Fig. 2. Computation of the respiratory rate and signal quality indices. (a) As a reference for RR, we computed this quantity from the instantaneous
breath information obtained during manual respiratory measurements. (b)–(d) Respiratory rates were computed from all the collected signals. (b) A
signal quality index for IP signal (SQIIP ) was also considered. Cardiac beats were segmented from (c) ECG and (d) PPG waveforms; then, signal
quality measures (SQIEC G , SQIP P G ) and surrogate respiration signals were derived. Other quantities in the diagram are introduced later in this
paper.

Neo foot oximetry probe (Masimo Corporation, Irvine, USA)
and sampled at 125 Hz.

B. Manual Measurements

For the breath counts performed on the last five infants re-
cruited, the clinical staff were instructed to press a set key
(Spacebar) on the keyboard of the study workstation at the time
each breath was registered. Each key press was logged elec-
tronically using a custom keylogger. Each manual count cycle
consists of a train of 40 time-stamped breaths. In the event of
excessive movement by the infant or fading breathing motion
rendering individual chest excursions visually indistinguishable
over the course of an ongoing counting cycle, the current count
was aborted and a new one was restarted once the infant settled
and visible breathing movements resumed. A total of 165 valid
manual counts were available (see Appendix A).

III. DATA ANALYSIS

This section presents the signal processing methods used for
estimating RR and signal quality indices (SQIs) for the ac-
quired physiological signals. Our general approach to deriving
these quantities is shown schematically in Fig. 2. For each block
(covered in more detail in Sections III-A through III-C) we have
selected methods whose performance has been tested on anno-
tated datasets available in the public domain. These datasets,
which normally consist of physiological signals collected from
adult patients in intensive care, are often used in biomedical
research to guide the selection of appropriate method parame-
ters. This can affect the overall performance of the developed
automated methods in other patient groups with different ages
or cardiovascular health. Thus, some method parameters were
adjusted to address the unique physiology of the neonatal popu-
lation based on domain knowledge of clinical experts. Instances
where any parameters used in the authors’ original implemen-
tation were modified have been indicated in the main text.

The fast-changing respiratory rates observed in the preterm
infant mean that this vital sign can change considerably over the

course of the time interval conventionally allocated to manual
breath counts (i.e., 60 seconds). We felt that a comparison of the
RR values computed at the end of each counting cycle would fail
to capture the full dynamic range of this vital sign and convey the
false impression that this signal remains approximately constant
over such a period. Thus, in this analysis, we opted instead to
segment the periods of manual breath counts into shorter time
windows of 8 seconds and perform a comparison of the RR
computed over these 8-second windows.

A. Segmentation of Cardiac Beats

The segmentation of cardiac beats in the ECG or PPG signals
relies upon the occurrence of characteristic waveform patterns
in these time series that are synchronous with the cardiac cy-
cle (QRS complexes in the ECG and the blood-volume pulse
in the PPG). Thus, by segmenting the raw signals at fiducial
points within these repeating units, one can obtain single-beat
waveforms from:

ECG ECG beat detection was performed using the well-
known Hamilton and Tompkins algorithm [28]. The
wqrs beat detector by [29] was also implemented, given
its role (alongside the Tompkins detector) in the def-
inition of ECG signal quality index described in Sec-
tion Section III-B. Both algorithms have shown high
accuracy in previous studies using the single-channel
ECG records in the MIT-BIH Arrhythmia database [30]
(99.3% for Tompkins et al., and 99.7% for Zong et al.).
In our computation of the location of the R-peaks us-
ing the wqrs open-source QRS detector, we shortened
the refractory period used by [29] to half this value
(125 ms) to accommodate for the higher heart rates
observed in neonates (as evidenced in Fig. 1 a).

PPG Much previous work exists concerning the segmen-
tation of the PPG into arterial cardiac pulses from
reference points in this waveform [31]–[34]. We
implemented three methods available in the public
literature for beat pulse segmentation (WABP [31],
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Li et al. [33], and Karlen et al. [34]) and analysed
their results on the PPG records of a subset of 12
subjects. As an outcome of this analysis, we observed
that the three methods produced similar results on
this subset, as evidenced by the high b× b scores
between matched peak locations for all possible pair-
ings of the three methods: (b× b)W ABP ×Li = 0.95,
(b× b)W ABP ×Karlen = 0.98, (b× b)Li×Karlen = 0.96.
The statistics reported are mean b× b scores computed
over 30-second time windows with no overlap.
In the following sections, we used the PPG peak and
onset locations provided by Karlen et al.’s method for
PPG pulse segmentation, which showed marginally
faster running times on the machine used for data anal-
ysis.

B. Computation of Signal Quality Indices

The use of reliable signal quality indices (SQIs) is of funda-
mental importance as a pre-processing step to signal analysis
so that the latter is only attempted in epochs for which the
recorded signals communicate adequate representations of the
underlying physiological mechanisms. The following SQIs were
implemented:

SQIIP The metric adopted for determining the quality of IP
signals, spectral purity (Γs), was derived from the
EEG domain. Its use as a measure of signal period-
icity was first proposed by [35] in EEG studies and
later extended to other physiological signals [36] and
successfully applied to IP signals [25], [37].
Γs is a heuristic related to the Hjorth descriptors
[38] (namely the complexity descriptor H3), which
describe the spectrum of a signal in terms of its mo-
ments. The nth order spectral moment Ω̄n of a signal
is given by the integral

Ω̄n =
∫ π

−π
ΩnPw (ejΩ)dΩ (1)

where Pw (ejΩ) is the power spectrum of the
windowed signal and Ω is the angular frequency
(Ω = 2πf , with f in physical frequency units).
Γs is defined as the ratio between the squared
2nd order moment, and the product of the 0th or-
der moment (i.e., the total power) and 4th order
moment [39]:

Γs =
Ω̄2

2

Ω̄0Ω̄4
(2)

Γs is designed to reflect the bandwidth of the sig-
nal, i.e., how well the signal may be described by
a periodic signal with a single dominant frequency.
Following (2), Γs is a strictly positive quantity with
a maximum value of unity for a sinusoidal signal.
To obtain SQIIP we computed Γs over sliding win-
dows of 30 seconds with a 1-second shift between
windows. Γs was estimated using the temporal ex-
pressions of the spectral moments.

SQIECG In clinical ECG analysis, a great deal of emphasis
has been placed on the definition of SQI metrics to
reduce false alarm rates in adult intensive care units
(ICUs). With this in mind, most definitions of ECG
signal quality found in the literature have been de-
veloped for adult ICU patient data, particularly in the
work of [40]–[42]. In our analysis, in order to assess
the quality of ECG records, the SQI defined in [41]
was applied as originally implemented by the authors
with the exception of the following: (a) when assess-
ing the quality of the single-lead ECG signal bSQI
(Section 2.1.1, Eq.(1) in [41]), a shorter tolerance
interval ξ = 50 ms was adopted for computing the
ratio of beats detected synchronously by both QRS
detection algorithms, and (b) as a single ECG lead
was available, the multiple lead iSQI (Section 2.1.2,
Eq.(2) in [41]) was set to iSQI = 1. The former pa-
rameter change is justified by the higher heart rates
observed in neonates.

SQIP P G To assess the reliability of PPG signals we followed
the morphological approach by Li et al. [43]. Li
et al.’s SQI index, or SQI�P P G , takes as input param-
eters the peak or onset locations that segment each
beat in order to build a dynamic beat template. In
our implementation, the peak locations were found
using the methods in Section III-A. In addition, the
minimum and maximum beat-to-beat intervals used
by [43] were shifted to 0.5 and 1.5 s, respectively.
These values correspond to the inverse of the limits
of the aforementioned neonatal respiratory range
(
[
40; 120

]
bpm).SQI�P P G obtained in this way is de-

fined on a beat basis. A window-based SQIP P G (w)
was calculated as the mean SQI�P P G score over the
cardiac beats in the analysis window w.

C. Extraction of Respiratory Signals

The physiological signals collected in the NICU fall into two
categories. Some measure the respiration signal explicitly, ei-
ther in the shape of tidal flow (e.g., capnography), changes in
intrathoracic volume or resistivity (e.g., electrical impedance
pneumography) or other measurand from which the respiratory
waveform can be directly extracted, whereas in others, such as
the physiological signals monitored more routinely (e.g., ECG
or PPG), respiration exerts only a modulatory effect on the origi-
nal signal. Thus, a fundamental step in the estimation of RR from
the ECG and PPG is the extraction of the respiratory signal from
the amplitude and frequency modulation of these waveforms. In
the following analysis, ECG and PPG-derived respiratory sig-
nals were derived over 8-second windows with 1-second shifts.
As a result of this procedure, 3799 time windows were available
for respiratory rate estimation. To facilitate comparison between
the estimated respiratory rates and the reference manual rates,
these windows were defined so that they overlapped with those
used in the computation of manual respiratory rates RRζ .
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ECG ECG-derived respiration can be obtained from two
effects: changes in beat morphology and respiratory
sinus arrhythmia (RSA).
The methodology for extracting respiratory in-
formation from changes in beat morphology
was first explored in the seminal paper by
Moody et al. [10], which measured the oscil-
lation in the ratio of the QRS areas measured
in two ECG leads as a measure of respiratory activity.
There has since been a surge of interest in this
topic resulting in a multitude of signal processing
algorithms to derive respiratory-induced modulations
from multi-lead ECG signals [44], [45]. In this study,
a single ECG lead was available. Given the precedent
of its use in neonatal ECG data [37] in contrast to
recent methods, we adopt the approach based on
QRS area summation pioneered by Moody et al. [10]
to obtain the ECG-derived respiration signal (EDR)
from the ECG records.
The second approach relies on the well-known mod-
ulation of heart rate by the respiratory effort through
respiratory-induced pressure changes in the main and
peripheral arteries. These variations in the instanta-
neous heart rate are governed by the respiratory sinus
arrhythmia and may be extracted as the time series
of beat-to-beat R-R intervals (henceforth RSA� ) [20]–
[23], [46]. The R-R intervals in the analysis window
w were calculated as the difference between the times
of successive R-peaks (found using [28]).
Finally, both the EDR� and RSA� time series were
linearly interpolated at a sampling rate of 4 Hz to
obtain the evenly-sampled time series EDR and RSA,
respectively.

PPG Respiratory-led fluctuations in the PPG signal can be
decomposed into three fundamental modulations of
this waveform [11]. Often the preferred methods to
extract respiration from this signal consist in a com-
bination of these modulations [13] and that is the ap-
proach we adopt here. Given a PPG record segmented
into a series of peaks and troughs by the algorithm in
Section III-A, the following rhythms were computed
as surrogates of the respiratory signal [25]:

– RIIV� (Respiratory-induced intensity variations)
consisting of the time series of PPG peak ampli-
tudes;

– RIAV� (Respiratory-induced amplitude variations)
consisting of the time series of amplitude differ-
ences between the peak and the onset of a PPG
pulse;

– RIFV� (Respiratory-induced frequency variations)
consisting of the time series of intervals between
consecutive PPG peaks. This quantity was inverted
to reflect frequency variations.

The RIIV� , RIAV� and RIFV� time series were then
linearly interpolated at a sampling rate of 4 Hz to
obtain the evenly-sampled time series RIIV, RIAV and
RIFV.

D. Estimation of Respiratory Rate

1) From Manual Breath Counts: As a reference for RR,
we computed this quantity from the instantaneous breath
measurements obtained during manual respiratory assessments
(Fig. 2 a). The timestamps of key presses during the study ses-
sions were parsed into separate counting cycles in the manner
described in Appendix A. In summary, a total of 209 indepen-
dent counting cycles were recorded. Out of these, 39 breath
counts were aborted by the clinical staff due large infant move-
ments, wriggling motion, or other causes. Out of the remaining
measurements, 5 were recorded when the monitoring equip-
ment was not in operation. This left a total of 165 manual breath
counts, or 6924 events if individual breaths are considered.

We modelled each counting cycle c as series of nc breaths
defined by a train of spikes ζc(t) at instants, tc0 , ..., t

c
nc−1 which

mark the timing of individual breaths. These time instants may
correspond to either expiration or inspiration end times:

ζc(t) =

{
1, if t ∈ tc0 , ..., t

c
nc−1

0, otherwise
(3)

The choice between selecting the end-inspiratory or the end-
expiratory pause as the onset of each respiratory cycle was left
at the discretion of the nursing staff performing the manual
count. Therefore, this choice was consistent within the same
manual counting cycle but not across cycles. The nc − 1 inter-
breath intervals, IBIζ (t), were then computed trivially as the
time differences between consecutive breaths and assigned the
timestamp of the later breath:

IBIζ (tcn ) = tcn − tcn−1 , n ∈ {1, ..., nc − 1} (4)

For each c, the start of the first analysis window was set
to tc0 . The last window for this cycle was the last one whose
right limit was below tcnc−1 . For each time window w, RRζ (w)
was computed as the inverse of IBIζ (w), the mean value of the
IBIζ data points within the window and assigned the timestamp
corresponding to the centre time point of the window.

2) From Derived Respiratory Rhythms: The respiratory rate
was derived for each source through analysis of the spectral
content of the respiratory signals extracted for each window.
Many techniques are available to do this; we adopted an auto-
regressive (AR) model due to its superior frequency resolution
over traditional (non-parametric) methods based on the Fast
Fourier Transform (FFT) periodogram [47]. Prior to model-
fitting, it is useful to remove the baseline wander and high-
frequency noise. This was achieved through the use of digital
filters. The respiratory time series were filtered using a 40th or-
der (i.e., a 10-second long) bandpass, linear phase, finite impulse
response (FIR) filter, using a Hamming window and cut-off fre-
quencies which encompass the range of plausible respiratory
rate values for the population under study (20–140 bpm). A
9th order AR model was then fitted to the filtered waveforms
using Burg’s algorithm [48]. The frequency corresponding to
the peak of the autoregressive power spectral density function
in the aforementioned range of frequencies was taken as the
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respiratory rate estimate and represented by

RRi, i ∈ {IP,EDR,RSA,RIIV,RIAV,RIFV } (5)

where the underscript index i refers to the original respiratory
signal from which this rate was computed.

The challenges placed on indirect methods of extracting the
respiratory signal are aggravated in real-life monitoring scenar-
ios. For this reason, a post-processing stage, whereby simulta-
neous RR estimates corresponding to different modulations of
the same source are fused, received particular attention:

RRECG A fused ECG-derived estimate of respiratory rate
RRECG (w) for window w was selected among
{RREDR (w), RRRSA (w)}, using the pole mag-
nitude criterion [14]. The RR estimate was chosen
as the frequency of the highest magnitude pole of
the two 9th order AR models obtained from auto-
regressive spectral analysis of the resampled EDR
and RSA respiratory signals.

RRP P G A fused PPG-derived respiratory rate RRP P G (w)
was estimated using the approach in Karlen et al.
[13] as the mean of the three respiratory-induced
variations derived from PPG {RRRIAV (w),
RRRIIV (w), RRRIF V (w)}. In compliance with
the authors, for windows for which the standard
deviation of the three estimates exceeds 4 bpm, no
RR estimate was provided (i.e., RRP P G (w) = 0).

E. Error Analysis

For a quantitative comparison between the performance of
the methods implemented, the mean absolute error (MAE), the
error means (bias), and standard deviation (SD) of RR estimates
were computed against RRζ .

IV. RESULTS

Fig. 3 shows the IP signal and the respiratory-induced mod-
ulation of ECG and PPG signals through a sample of 25 com-
plete respiratory cycles. The modulation of the R-peak and the
changes in IP with ventilatory effort are clearly seen. Less ev-
ident in this segment is the amplitude modulation of PPG with
respiration.

A. Respiratory Rate From Direct Methods

In Fig. 4, we compare the accuracy of re-derived RRIP and
the RR estimates provided by the patient monitor from the same
source (RRMON ). By default, the monitor estimates are given
at 1-second intervals. For comparison, these were interpolated
at the time instants of the RRIP data points.

We observe that the MAE of both RRIP and RRMON

estimates decrease monotonically when only estimates from
windows with progressively higher thresholds in SQIIP are
considered. In spite of the increase in accuracy achieved
through SQI thresholding, a considerable difference in the
error performance between the two methods persists with
MAE(RRIP ) = 6.7 bpm and MAE(RRMON ) = 11.2 bpm at

Fig. 3. An example of (b) IP, (c) ECG, and (d) PPG signals during
a manual counting cycle on PN 28. Modulation through 25 complete
respiratory cycles is shown. The (a) manually-counted breaths on the
upper trace are reproduced as grey vertical lines on the subsequent
plots.

SQIIP � 0.75. At this SQI threshold, respiratory rates were
computed for 67.3% of the IP windows.

B. Respiratory Rate From Indirect Methods

Figs. 5 and 6 illustrate the reduction in the MAE error for
the indirect methods of RR estimation based on the ECG and
the PPG when only estimates from windows with progressively
higher thresholds in SQIECG or SQIP P G are considered. For
reasons explained later in the paper, this analysis is limited to
estimates with RRζ � 80 bpm.

We observed, as expected, that indirect methods based on
either source provide RR estimates that are less accurate than
those provoked by direct methods based on the IP. Regard-
ing ECG-derived rates, RSA-derived RR has been shown to
be less accurate than EDR-derived estimates. This relationship
was maintained at all SQIECG levels. RREDR and RRECG

(selected from RREDR and RRRSA using the pole magni-
tude criterion of [14]), showed similar performance. With re-
spect to the PPG-derived rates, a substantial reduction in MAE
was seen across all modulations of this waveform for stricter
thresholds on SQIP P G . Of the three sources of modulation
of the PPG waveform, the lowest error rates were consistently
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Fig. 4. Relationship between the threshold on SQIIP , the percentage of windows retained and the mean absolute error (MAE) of retained RRIP

and RRM ON estimates against RRζ during manual breath counts. RRM ON are the RR estimates provided by the patient monitor.

Fig. 5. Relationship between the threshold on SQIEC G , the percentage of windows retained and the mean absolute error (MAE) of retained
RREDR , RRRSA and RREC G estimates against RRζ for RRζ � 80 bpm during manual breath counts.

Fig. 6. Relationship between the threshold on SQIP P G , the percentage of windows retained and the mean absolute error (MAE) of retained
RRRI I V , RRRIAV , RRRIF V and RRP P G estimates against RRζ for RRζ � 80 bpm during manual breath counts.
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Fig. 7. Distribution of respiratory rate estimates from periods of manual breath counts. Histograms are shown for (a) manual, (b) IP-, (c) ECG-,
and (d) PPG-derived rates.

TABLE II
SUMMARY OF ERROR ANALYSIS FOR THE ALGORITHMS FOR RESPIRATORY RATE EXTRACTION FROM IP, ECG AND PPG-DERIVED RESPIRATORY SIGNALS.

THE ERRORS WERE COMPUTED WITH RESPECT TO THE REFERENCE SIGNAL RRζ . ALL THE FIGURES ARE SHOWN IN BREATHS·MIN−1 (BPM)

seen in RIIV estimates (e.g., MAE(RRRIIV ) = 8.3 bpm at
SQIP P G � 0.85) followed closely by RIAV estimates (e.g.,
MAE(RRRIAV ) = 8.7 bpm at SQIP P G � 0.85). Both were
appreciably more accurate than frequency-modulated estimates
(e.g., MAE(RRRIF V ) = 9.8 bpm at SQIP P G � 0.85). As
seen in RRECG , fusion techniques enabled a reduction in
MAE. Using Karlen et al.’s criterion, a reduction in MAE of
approximately 0.5 bpm in relation to RR extracted from the best-
performing source of modulation (RRRIIV ) was seen across all
SQI thresholds.

C. Distribution of Respiratory Rates

The distribution of respiratory rates as estimated from all
sources for the periods of manual breath counts are shown in
Fig. 7. The aliasing effect caused by the undersampling of the
respiratory signal at the heartbeat frequency is evidenced by the
failure of techniques for RR estimation from PPG or ECG in
detecting accurate RR values above 80 bpm.

D. Error Analysis

The time series of RR estimates was linearly interpolated
at the time instants of RR estimates from the reference mea-
surements (RRζ ) and error metrics were calculated over the

time windows of manual counts. Previous papers on respiratory
rate estimation from the ECG have reported suboptimal perfor-
mance at high respiratory rates [14]. Thus, the performance of
the RR estimation methods was assessed by calculating error
values for two different frequency ranges: (a) RRζ < 80 bpm
(84.7% of windows) and RRζ � 80 bpm (15.4% of windows).
The results are summarised in Table II. Only those windows
for which the raw signal (IP, ECG or PPG) was reliable were
retained for RR estimation. This was achieved by setting
the following conditions: SQIECG � 0.9, SQIP P G � 0.9,
SQIψ � 0.9, SQIIP � 0.9. As a result, 50.1% of the data
was used in validating ECG-derived estimates, 54.7% for
PPG-derived estimates, and 54.7% for IP-derived estimates.
These thresholds were selected from qualitative analysis of
the third column of Figs. 4 through 6 to achieve low MAE
rates while retaining a meaningful proportion of estimates
(> 50%).

V. DISCUSSION

The median reference respiratory rate (computed over manual
breath measurements) was found to be 61 bpm (Fig. 7 a), with a
range extending from 44 to 120 bpm. These figures validate our
choice of passband for the digital filters used in RR derivation
(20–140 bpm). A filter whose passband is slightly wider than
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the range of frequencies of interest is known to help avoid edge
effects near the cut-off frequencies.

When we compare the distribution of RRζ values in Fig. 7 a
against the distribution of rates reported by the patient monitor
for the entirety of the study period (shown in Fig. 1 b), we
observe that (a) the median rate obtained during the manual
measurements is higher than the median RRMON reported by
the patient monitor at the cotside by approximately 8 bpm, and
(b) the breathing rates in the 20 - 40 bpm range have not been
sampled during the manual breath counts. This was anticipated
as this range comprises abnormally low rates that should prompt
clinical inspection, and therefore, were not recorded under the
stable conditions under which manual counts were scheduled.

We notice also that the range of resting respiratory rates de-
tected is much wider than that found in adults at rest (12 20 bpm
[49]). The immaturity of the respiratory centres in the lower
brainstem of the premature infant leads to frequent periods of
fast shallow breathing, and hence to fast-changing respiratory
rates. This renders the problem of accurate RR estimation in this
population much more challenging than in the adult population.

A. Errors Associated With Direct Methods

We have re-derived RR from the raw IP signal using stan-
dard algorithms for RR extraction found in the literature. It
was surprising to note the lower error rates of the RR esti-
mates derived in this manner in relation to those provided by
the patient monitor during manual breath counts (Fig. 4); with
MAE(RRIP ) = 3.6 bpm versus MAE(RRMON ) = 8.2 bpm
for RRζ < 80 bpm and MAE(RRIP ) = 10.7 bpm versus
MAE(RRMON ) = 16.9 bpm for RRζ � 80 bpm (Table II).

This result suggests that there is room for improvement in the
manufacturer’s built-in software for deriving respiratory rates
in premature infants. The discrepancy between the error rates
in RRIP and RRMON was observed even when no IP signal
windows were discarded based on poor signal quality. For this
reason, the better performance of RRIP over RRMON cannot
be attributed to our use of a signal quality index to differentiate
between artefactual and non-artefactual windows.

B. Errors Associated with Indirect Methods

Two data fusion methods were adopted to estimate RR from
the rates derived from amplitude and frequency modulations of
the ECG and PPG waveforms. In both cases, the mean abso-
lute error was reduced as a result of the use of the data fusion
approach (Figs. 5 and 6), although this reduction is greater in
the case of fused PPG-derived estimates. Nevertheless, the ac-
curacy achieved by both methods was lower than that seen in
IP-based estimates of RR (Table II). The differences in the er-
ror rates reported were less pronounced in the low RR range
(RRζ < 80 bpm) than in the higher range (RRζ � 80 bpm), as
shown in the bottom two rows of Table II.

C. Errors Associated With Different RR Ranges

We calculated the RR estimation errors for two frequency
ranges of respiratory rates. The lowest error rates were found

for RRζ < 80 bpm. It is clear from the analysis of Table II that
none of the algorithms evaluated based on indirect methods, i.e.,
for either ECG or PPG, could detect rates above this value (note
that for RRζ � 80 bpm, ME � MAE values are seen for both
ECG and PPG-derived methods).

Both indirect methods suffer from one drawback. As the res-
piratory signal is only sampled once per cardiac beat, in order for
these methods to reveal the fundamental frequency of this sig-
nal, this frequency cannot exceed half of the instantaneous heart
rate – measured in beats per minute (beats·min−1) – during the
same time epoch. However, a retrospective analysis of the joint
distribution of (HR,RR) values during the periods of manual
breath counts revealed that instances in which this condition was
not observed were not uncommon for this patient group (Fig. 8).

As shown in Fig. 1 a, the HR measured in the study cohort
has a bell-shaped distribution with a sample median of approx-
imately 157 beats·min−1 . Thus, in instances where the respi-
ratory frequency exceeds half this frequency (approximately
80 bpm), the extraction of RR through indirect methods is likely
to be affected by temporal aliasing. In fact, some degree of
aliasing of RR estimates by PPG and ECG-based techniques at
frequencies as low as 65 bpm as a result of this phenomenon is
also to be expected from the analysis of Fig. 8. This suppression
of indirect RR estimates is also clear when Fig. 7 a and 7 b are
compared to Fig. 7 c and 7 d.

D. Errors Associated With Amplitude-Based Respiration
Sources

We found that MAE errors were lower for RRIP when com-
pared to amplitude-based signals, i.e., RRRIAV , RRRIIV , and
RREDR (Fig. 4 to 6). In contrast to the protocol of volunteer
studies, where subjects are compliant, subject motion during
this observational study was largely unrestricted. Motion unre-
lated to respiration but within the range of breathing frequen-
cies causes amplitude variations that contaminate the amplitude
modulation of the detected signals, which ultimately has a dele-
terious effect on the accuracy of amplitude-based estimates of
RR. This may help explain the poor performance of this class
of methods in this study.

Given the arrangement of IP/ECG electrodes, an association
in the presence of motion noise between these sources was ex-
pected. This was confirmed by the comparable percentages of
ECG and IP windows retained (50.1% and 54.7%, respectively)
after thresholds were set on the applicable SQIs. Furthermore,
the similar percentage of PPG windows retained (54.7%) sug-
gests the same artefacts may also affect the PPG sensor, for
example, as a result of compound body movement. Further
research would be needed to investigate whether a temporal
relationship exists between the signal quality of these sources.

E. Errors Associated With Frequency-Based Respiration
Sources

The highest errors were found for methods based on
frequency-based sources (RRRIF V and RRRSA ), which rely
on the RSA as a pathway to respiration. There are conflicting
reports in the literature regarding the presence of RSA in preterm
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Fig. 8. Heatmap of the distribution of (HR,RRζ ) estimates. Marginal distributions of both variables are also shown. Asterisks represent outliers.
The HR values shown were obtained after the cardiac frequency estimates derived by the study monitor from the ECG trace were interpolated at
the time instants of RRζ computation. The red curves represent isolines of the local density of data points. The dark dashed line represents the
Nyquist limit for respiratory frequency estimation. For estimates below this line, RRζ >

1
2 HR, so the respiratory signal is insufficiently sampled from

cardiac beats for accurate detection of the true RR.

infants. Several studies which have estimated RSA in neonates
[50] suggest that although there is an interaction between heart
rate variability and respiration, this cardiorespiratory interaction
is not as continuous as in adults, and may only develop later in
some infants. In fact, it has been suggested that RSA may serve
to gauge the developmental maturity in neonatal intensive care
patients [51]. The evidence for the use of RSA in the continuous
monitoring of RR in neonates is scarce [16], [52]. Monasterio
et al. [37] included both pulse rate and heart rate variability
as features in a classifier for apnoea-related desaturations in
preterm infants, nevertheless the reliability of these two signals
was not assessed against a respiration standard.

VI. CONCLUSIONS

The immaturity of the brain mechanisms governing the res-
piratory rhythm in preterm infants results in irregular breathing
patterns. In neonatal clinical practice, monitoring the breath-
ing pattern of preterm infants allows for a better recognition of
physiological instability, and so can provide valuable insights
into the cardiorespiratory status of the neonate as well as their
maturation level.

The respiratory assessment of the neonate involves primarily
the measurement of respiratory rate. In this paper, we have
estimated respiratory rates from the three different signal
sources available to the patient monitors commonly used in
neonatal practice (ECG, PPG, and IP). We excluded periods
of poor signal quality, as identified by motion-sensitive signal
quality indices. At all times when the infant was at rest (73.1%
of time windows), we assessed the performance of previously
developed techniques for RR derivation from all signal sources
against the reference manual respiratory rates RRζ during 165
manual breath counts. To our knowledge, this is the first study to
assess the performance of these methods against the reference
standard of manual respiratory assessments. The work reported
has demonstrated a stark performance difference between direct
and indirect methods (i.e., based on the analysis of the ECG
or the PPG signal) at different frequency ranges of respiratory
rate. While comparable error rates were found between RR
estimates derived using indirect methods and those derived
from analysis of the IP signal in the 40–80 bpm frequency range
(with mean absolute error rates of 7.5 bpm for ECG-derived
estimates, 7.8 bpm for PPG-derived estimates, and 3.6 bpm for
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Fig. 9. Effects of application of the selection criteria defined on (9 a) the
distribution of the total number of manual counting cycles over the study
sessions of NICU subjects PN 26 - 30, and (9 b) the distribution of the
total number of breaths over manual counting cycles. While most counts
include upwards of 40 breaths, some shorter counts were concluded
before this number was reached. Discarded counts with over 38 breaths
were due to the absence of physiological records in the course of the
respiratory assessment.

IP-derived estimates at this range), we nevertheless observed
that the measurement of respiratory rate in this population
using indirect methods poses a fundamental challenge at fast
breathing regimes (upwards of 80 bpm) due to aliasing effects.

These findings have critical implications for the development
of indirect methods for RR monitoring in neonatal units as they
evidence the performance limits of RR estimates delivered by
the ECG and PPG sources currently available in these units.
While further studies are required to assess how well our results
would generalise to the entire neonatal population, we believe
our results should motivate such studies as well as inform the
design of alternative non-invasive solutions for the physiological
monitoring of these patients.

APPENDIX A
PARSING THE KEY LOGS

This appendix describes the processes used to parse the key-
logger files produced in order to (a) identify counting cycles,
(b) eliminate key presses associated with UI operation, and (c)
remove aborted counting cycles.

TABLE III
CONFUSION MATRIX OF COMPLETE MANUAL COUNTING CYCLES (WITH

UPWARDS OF 38 BREATHS) versus RECORDING STATUS

To achieve (a), key logs were split into individual counting
cycles by defining a maximum interval between keystrokes be-
longing to the same cycle (8 s). As a result of this parsing, 209
manual counting cycles were identified in the 14 recording ses-
sions on 5 study subjects for which the manual respiratory mea-
surements had been logged (Fig. 9 a). Manual measurements
were taken during periods for which the infants were stable
and at rest (i.e., the signal of interest is the resting respiratory
rate). This may explain the discrepancy in the total number of
measurementes performed from session to session evidenced in
Fig. 9 a.

In our analysis, we were careful to only include counting
cycles carried to completion. Although our protocol specified
40-breath counts, a considerable number of counting cycles was
found with a total of nc = 38 or nc = 39 breaths (Fig. 9 b). We
hypothesize that a mismatch of a mere couple of breaths is
likely to be due to human error, rather than the count being
aborted for one of the reasons specified in the study protocol.
Thus, cycles composed of fewer than 38 keystrokes (see Fig. 9
b) were considered to have been either a result of casual UI
operation (case (b)) or aborted by the attending clinical staff
due to excessive wriggling, infant motion or other factors which
rendered breathing motion imperceptible (case (c)).

Manual counts performed when the recording apparatus was
not in use were also discarded. Table III presents a breakdown of
counts under each of these categories. After both selection crite-
ria were applied, a total of 165 manual counts were considered
for further analysis.

ACKNOWLEDGMENT

The authors would like to acknowledge the assistance of the
Research Nurses in the Neonatal Unit at the John Radcliffe Hos-
pital, Oxford (Sara Davis, Sheula Barlow, and Sharon Garrett)
and the families of the participants in the MONITOR Study -
Research Ethics Committee: 13/SC/0597.

REFERENCES

[1] A. K. Pramanik, N. Rangaswamy, and T. Gates, “Neonatal respiratory
distress: A practical approach to its diagnosis and management,” Pediatric
Clin. North Am., vol. 62, no. 2, pp. 453–69, 2015.

[2] F. F. Rubaltelli et al., “Acute neonatal respiratory distress in Italy: A
one-year prospective study. Italian Group of Neonatal Pneumology,” Acta
Paediatrica, vol. 87, no. 12, pp. 1261–1268, 1998.

[3] A. Kumar and B. V. Bhat, “Epidemiology of respiratory distress of new-
borns,” Indian J. Pediatrics, vol. 63, no. 1, pp. 93–98, 1996.

[4] A. Parkash, N. Haider, Z. A. Khoso, and A. S. Shaikh, “Frequency, causes
and outcome of neonates with respiratory distress admitted to neonatal
intensive care unit, national institute of child health, Karachi,” J. Pakistan
Med. Assoc., vol. 65, no. 7, pp. 771–775, 2015.



2346 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 6, NOVEMBER 2019

[5] L. L. Qian et al., “Current status of neonatal acute respiratory disorders:
A one-year prospective survey from a Chinese neonatal network,” Chin.
Med. J., vol. 123, no. 20, pp. 2769–2775, 2010.

[6] J. Ersch, M. Roth-Kleiner, P. Baeckert, and H. U. Bucher, “Increasing
incidence of respiratory distress in neonates,” Acta Paediatrica, Int. J.
Paediatrics, vol. 96, no. 11, pp. 1577–1581, 2007.

[7] T. H. Warburton D, and A. R. Stark, “Apnea monitor failure in infants
with upper airway obstruction,” Pediatrics, vol. 60, no. 5, pp. 742–744,
1977.

[8] R. T. Brouillette, A. S. Morrow, D. E. Weese-Mayer, and C. E. Hunt, “Com-
parison of respiratory inductive plethysmography and thoracic impedance
for apnea monitoring,” J. Pediatrics, vol. 111, no. 3, pp. 377–383, 1987.

[9] J. a. Hirsch and B. Bishop, “Respiratory sinus arrhythmia in humans:
How breathing pattern modulates heart rate,” Physiology, vol. 241, no. 4,
pp. H620–H629, 1981.

[10] G. B. Moody and R. G. Mark, “Derivation of respiratory signals from
multi-lead ECGs,” Comput. Cardiol., vol. 12, pp. 113–116, 1985.

[11] D. J. Meredith, D. Clifton, P. Charlton, J. Brooks, C. W. Pugh, and L.
Tarassenko, “Photoplethysmographic derivation of respiratory rate: a re-
view of relevant physiology,” J. Med. Eng. Technol., vol. 36, no. 1, pp. 1–7,
2012.

[12] L. G. Lindberg, H. Ugnell, and P. A. Oberg, “Monitoring of respiratory and
heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput., vol. 30,
no. 5, pp. 533–537, 1992.

[13] W. Karlen, S. Raman, J. M. Ansermino, and G. a. Dumont, “Multipa-
rameter respiratory rate estimation from the photoplethysmogram,” IEEE
Trans. Biomed. Eng., vol. 60, no. 7, pp. 1946–1953, 2013.

[14] C. Orphanidou, S. Fleming, S. Shah, and L. Tarassenko, “Data fusion
for estimating respiratory rate from a single-lead ECG,” Biomed. Signal
Process. Control, vol. 8, no. 1, pp. 98–105, 2013.

[15] E. Olsson, H. Ugnell, P. a. Oberg, and G. Sedin, “Photoplethysmogra-
phy for simultaneous recording of heart and respiratory rates in newborn
infants,” Acta Paediatrica, vol. 89, no. 7, pp. 853–861, 2000.

[16] A. Johansson, P. A. Oberg, and G. Sedin, “Monitoring of heart and res-
piratory rates in newborn infants using a new photoplethysmographic
technique,” J. Clin. Monit. Comput., vol. 15, no. 7-8, pp. 461–467, 1999.

[17] J. Lázaro and E. Gil, “Deriving respiration from the pulse photoplethys-
mographic signal,” Comput. Cardiol., vol. 38, pp. 713–716, 2011.

[18] S. Fleming, L. Tarassenko, M. Thompson, and D. Mant, “Non-invasive
measurement of respiratory rate in children using the photoplethysmo-
gram,” in Proc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2008,
pp. 1886–1889, 2008.

[19] S. G. Fleming and L. Tarassenko, “A comparison of signal processing
techniques for the extraction of breathing rate from the photoplethysmo-
gram,” Int. J. Biol. Life Sci., vol. 2, no. 4, pp. 233–237, 2006.
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“Comparison of respiratory rates derived from heart rate variability, ECG
amplitude, and nasal/oral airflow,” Ann. Biomed. Eng., vol. 36, no. 12,
pp. 2085–2094, 2008.

[47] S. M. Kay and S. L. J. Marple, “Spectrum analysis—A modern perspec-
tive,” Proc. IEEE, vol. 69, no. 11, pp. 1380–1419, Nov. 1981.

[48] J. P. Burg, “Maximum entropy spectral analysis,” Proc. 37th Annu. Int.
SEG Meet., vol. 6, p. 0, 1975.

[49] A. C. Guyton, J. E. Hall, and J. P. Fisher, Respiration: Ventilation, Circu-
lation, and Transport, 11th ed. John P. Fisher, Ed. Philadelphia, PA, USA:
Saunders, 2012.

[50] P. Indic, D. Paydarfar, and R. Barbieri, “Point process modeling of inter-
breath interval: A new approach for the assessment of instability of breath-
ing in neonates,” IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2858–
2866, Oct. 2013.

[51] M. T. Clark et al., “Breath-by-breath analysis of cardiorespiratory inter-
action for quantifying developmental maturity in premature infants,” J.
Appl. Physiol., vol. 112, no. 5, pp. 859–867, 2012.

[52] D. Wertheim, C. Olden, E. Savage, and P. Seddon, “Extracting respira-
tory data from pulse oximeter plethysmogram traces in newborn infants,”
Archives Disease Childhood—Fetal Neonatal Ed., vol. 94, no. 4, pp. F301–
F303, 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


