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Segmenting Diabetic Retinopathy Lesions in
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Abstract—Multispectral imaging (MSI) provides a se-
quence of en-face fundus spectral slices and allows for
the examination of structures and signatures throughout
the thickness of retina to characterize diabetic retinopathy
(DR) lesions comprehensively. Manual interpretation of MSI
images is commonly conducted by qualitatively analyzing
both the spatial and spectral properties of multiple spec-
tral slices. Meanwhile, there exist few computer-based al-
gorithms that can effectively exploit the spatial and spectral
information of MSI images for the diagnosis of DR. We pro-
pose a new approach that can quantify the spatial-spectral
features of MSI retinal images for automatic DR lesion seg-
mentation. It combines a generalized low-rank approxima-
tion of matrices with a supervised regularization term to
generate low-dimensional spatial-spectral representations
using the feature vectors in all spectral slices. Experimen-
tal results showed that the proposed approach is very ef-
fective for the segmentation of DR lesions in MSI images,
which suggests it as an interesting tool for assisting oph-
thalmologists in diagnosing, analyzing, and managing DR
lesions in MSI.
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I. INTRODUCTION

MULTISPECTRAL IMAGING (MSI) refers to a non-
invasive optical technique that facilitates the fine repre-

sentation of physical objects by using a series of spectral bands,
enabling observers to acquire information far beyond human
vision. This technique has seen widespread use in research ar-
eas of remote sensing [1], [2], dermatology [3], histopathology
[4], dentistry [5]. It has recently received increased attention in
retinal imaging, e.g., the Retinal Health Assessment (RHA, An-
nidis Health System Corp.) [6], [7]. Unlike conventional retinal
imaging techniques which are limited to capturing retinal fea-
tures visible to the human eye, MSI allows clinicians to visually
examine both the spatial and spectral characteristics of structures
throughout the thickness of retina. Specifically, MSI employs an
extensive range of carefully selected, discrete monochromatic
LED-sourced wavelengths to create a sequence of en-face fun-
dus spectral slices, as shown in Fig. 1. Each slice reveals both the
spatial distribution and light-absorbing properties of structures
from the internal limiting membrane through to the choroid [8].
With the ability to collect spatial and spectral information si-
multaneously, MSI provides a new manner to comprehensively
characterize subtle, deep or overlapping lesions of retina, and
thus can help to diagnose ocular diseases earlier than traditional
funduscopy [9], [10].

One of the most common ocular complications is Diabetic
retinopathy (DR), which is caused by prolonged hyperglycemia
damaging the retina and may result in severe vision loss and irre-
versible blindness [11], [12]. Numerous epidemiological studies
have shown that early diagnosis and treatment of DR can pro-
tect against diabetes-related visual impairment [13]–[15]. Reti-
nal imaging provides the only avenue to directly visualize and
quantify retinal structures for detecting early lesions indicative
of DR, including microaneurysms, hard exudates, hemorrhages,
etc. [16]. Assessment of the presence, size and location of these
lesions assists ophthalmologists in determining disease sever-
ity in the early stages for supplying therapeutic interventions
on time. Over the past decades, advances in retinal imaging
have provided significant improvements in the clinical care and
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Fig. 1. A sequence of MSI images captured by Annidis RHA from a patient aged 40 and diagnosed with diabetic retinopathy. Ordered from left
to right and from top to bottom, the first 11 images are captured with the wavelengths of 550, 580, 590, 620, 660, 690, 740, 760, 780, 810, and
850 nm, respectively.

management of patients with DR [17]–[19]. As an emerging
retinal imaging modality, MSI has recently been studied exten-
sively for facilitating early and accurate diagnosis due to its
potential diagnostic strengths [20]–[22].

Currently, visual estimation of both the spatial and spectral
features of MSI images, which is based on the educated
opinion of ophthalmologists, remains the reference standard
for MSI-based pathology diagnosis. However, this process
is tedious, subjective, and highly time-consuming because it
requires clinical doctors to assess intensity variations across
different slices and compare these variation properties between
different locations, while unfortunately, a MSI sequence
typically consists of more than ten spectral slices. As prac-
ticable solutions, computer-based algorithms for automatic
assessment have attracted increasing attention thanks to
their ability to provide objective and accurate assessments
and reduce labor costs [23]–[25]. An important task for
computer-based diagnosis is the automatic lesion segmentation
which can help the ophthalmologists to rapidly and reasonably
detect DR lesions in MSI images, and thus to focus more
time on evaluating disease aggressiveness and treatment
response.

DR lesion segmentation aims to find the exact location and
area of suspected lesions on retinal image. It is a highly chal-
lenging task in the area of retinal image analysis due to sev-
eral obstacles, such as the high variability of lesion shapes and
sizes, the presence of easily-confused components (e.g., optic

disk, vessels, etc.), and unpredictable artifacts from nonuniform
illumination and involuntary eye movements during image ac-
quisition [49].

To address the difficulties associated with DR lesion segmen-
tation, researchers have developed a variety of methods over
the past few years [26]. Typical segmentation methods include
Fuzzy C-Means (FCM) clustering algorithms to divide image
pixels into diverse clusters [27]–[29], region growing meth-
ods to form different image regions based on some uniformity
criteria such as gray level and colour [30]–[32], and mathemati-
cal morphology operations performed by analyzing geometrical
structures of certain retina components [33]–[35]. Other meth-
ods focus on combining two or more above-mentioned methods
[36], [37], or try to classify lesion and non-lesion pixels by using
the well-known machine learning algorithms [38], [39]. In most
of the methods, an essential factor in achieving a successful seg-
mentation is the discriminative ability of features to identify the
pathological clusters, regions, or pixels [40]. The features used
in these methods involve handcrafted features predefined by
human researchers (e.g., intensity difference and gradient [41],
[42], local binary patterns (LBP) [43], etc.) and learning-based
features acquired by learning latent but discriminative represen-
tations from raw image data via machine learning [44]–[46].
Recently, convolutional neural networks (CNNs), a well-known
deep learning architecture, have also shown impressive per-
formance in extracting features that are robust to DR lesion
variations [47], [48].
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However, most of the existing techniques are restricted to
operating on a single retinal image, making them difficult to
simultaneously extract spatial and spectral features across mul-
tiple spectral slices. A possible solution to this problem is to
use a CNN architecture in which three-dimensional (3-D) con-
volutional kernels could be used to cover the entire MSI stack,
but existing 3-D CNN techniques are mainly designed for com-
monly used images (e.g. MRI brain images [49], video images
[50], [51], or hyperspectral images [52]). In addition, training
effective CNN models typically requires a huge amount of well
labelled training samples [53], and this is especially evident
when applying 3-D CNNs to MSI images since the complex
relationships in the data must be learned [54]. Unfortunately,
obtaining such a huge amount of labelled samples is not trivial in
our case due to the complexity of manual interpretation of mul-
tiple retinal slices and the limited number of well-experienced
experts in clinical practice.

In this paper, we propose a learning-based approach by ex-
ploiting both the spatial and spectral features of MSI retinal
images. It first consists in representing the feature vectors of
each pixel in all spectral MSI slices by a two-dimensional
(2-D) spatial-spectral matrix. Then, we formulate the feature
learning task in a framework of generalized low-rank approxi-
mations of matrices (GLRAM) [55], which aims to compute
low-dimensional and compact representations of a series of
spatial-spectral matrices. To achieve more discriminative fea-
tures, a supervised learning model designed for regression tasks
in [56] is adjusted to incorporate the supervision of labels into
the learning process. Finally, the 2-D spatial-spectral matrix on
the LBP features is constructed [57] to well capture the spatial
characteristics of each spectral image.

The rest of this paper is structured as follows. In Section II, we
describe the proposed approach in detail. The experiments and
results are reported in Section III, followed by the discussion in
Section IV and the conclusion in Section V.

II. SPATIAL-SPECTRAL REPRESENTATION-BASED

SEGMENTATION APPROACH

The idea of the proposed approach is to learn representative
features by jointly using the spatial and spectral information of
MSI images for pixel classification. For each sampled pixel, we
extract its LBP feature vectors from all spectral slices and con-
catenate them into a single matrix. Then, the obtained matrices
are fed into the feature learning algorithm that is formulated as
GLRAM framework with a SRT to learn new low-dimensional
representations. Finally, the learned representations are vec-
torised and used in a SVM classifier to segment healthy and
lesion pixels across MSI images.

A. Problem Statement

Given a sequence of retinal MSI spectral slices, each slice
having m pixels. Supposing that there are n pixels (where
1 ≤ n ≤ m) randomly sampled from the lesion and background
regions according to the manually delineated ground-truth, then
we can extract n features {f1 , f2 , · · · , fn} as training sam-
ples, together with their corresponding labels {l1 , l2 , . . . , ln}.

For i = 1, 2, · · · , n, fi ∈ Rd denotes the d-dimensional vector
of features extracted from all spectral slices at pixel i, and the
class label li is usually a discrete variable (e.g., li = 1 if pixel i is
lesion and li = −1 otherwise). Our goal is to generate compact
and discriminative feature representation of each fi for pixel
classification.

B. Matrix-Based Spatial-Spectral Representation

To combine the spectral and spatial information efficiently,
we consider more natural but powerful matrix representations
instead of using vectorized training samples. Assume that d =
s× k, where s is the number of spectral bands and k is the
number of features extracted from each band. Then for each
pixel i, the features can be arranged to form a new 2-D matrix
as follow:

Mi = [fi,1 , fi,2 , · · · , fi,s ] ∈ Rk×s , (1)

where Mi is a spatial-spectral matrix representation instead of
the training sample fi at pixel i. Fig. 2 illustrates the detailed
implementation of Mi adopted in our approach. As illustrated,
features on each channel of MSI are first extracted by using the
LBP operators [57]. Then, LBP feature vectors are generated
by vectorizing the local LBP image patches of size p (centred
at pixel i) of LBP feature images from all channels. The LBP
feature vectors are finally arranged into a single matrix to form
Mi . Note that for each pixel i, Mi simultaneously contains its
spatial characteristics in columns and its spectral properties in
rows. The use of LBP is inspired by the previous finding that
retinal images usually have varieties of self-similar patterns at
different scales which can be considered texture signatures [43].

C. Generalized Low-Rank Approximation of Matrices

In order to achieve compact and low-dimensional represen-
tations for these spatial-spectral matrices {Mi}ni=1 , we formu-
late the feature learning task into the GLRAM [55] framework,
since the GLRAM can operate on a collection of matrix rep-
resentations to reduce noise and compute accurate low-rank
matrices, and moreover, it allows us to explore distinctive phys-
ical meanings residing in rows and columns of matrices to find
optimal representations. Specifically, for each Mi , the GLRAM
aims to extract a low-rank approximation by solving the follow-
ing minimization problem:

argmin
U,V , {Ai }ni = 1

1
n

n∑

i=1

‖Mi − UAiV
T‖2F , (2)

where U ∈ Rk×r1 and V ∈ Rs×r2 (where r1 � k and r2 � s)
are two transform matrices to distinctively project a spatial-
spectral matrix Mi into a new low-dimensional space, and Ai

denotes a coefficient matrix which is a low-dimensional repre-
sentation of Mi . Two constraints UTU = Ir1 and V TV = Ir2

are added with Ir1 ∈ Rr1×r1 and Ir2 ∈ Rr2×r2 to ensure that
U and V have orthogonal columns. In our case, r1 and r2 are
two pre-specified parameters which can be varied to explore the
information respectively in rows and columns of M for deter-
mining the dimensions of A.
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Fig. 2. Implementation of LBP-based spatial-spectral matrix representation.

D. Incorporation of SRT Into GLRAM

To achieve more discriminative representations of {Ai}ni=1 ,
we include SRT into GLRAM to take advantage of prior
knowledge from the label space. We first construct a symmet-
ric similarity matrix W ∈ Rn×n with the binary class labels
{l1 , l2 , . . . , ln}. The element Wij of W is computed using a
heat kernel [58] with the parameter ϕ ∈ N+ :

Wij = e−
‖ l i − l j ‖2

ϕ , i, j = 1, 2, . . . , n. (3)

The diagonal elements of W are set to zeros, i.e., Wii = 0. In
the present study, we set the parameter ϕ = 4 for class labels
(either -1 or 1). With the weights W, we minimize

∑

i,j

‖Ai − Aj ‖2F Wij . (4)

Note that for the binary class labels, the maximum weight Wij =
1 can be achieved if and only if li = lj . This choice of Wij

imposes a penalty if the class label li is different from lj . In
other words, minimizing (4) attempts to ensure that the learned
low-rank approximations with the same class label (either lesion
or healthy) tend to be spatially similar in terms of Frobenius
norm. Thus, the discrimination of new low-rank representations
can be improved.

Combining (2) and (4), we obtain our objective
function:

arg min
U,V , {Ai }ni = 1

1
n

n∑

i=1

‖Mi−UAiV
T‖2F +λ

∑

i,j

‖Ai−Aj‖2F Wij ,

(5)

where the first term (GLRAM) is to seek a low-rank approxi-
mation A for each input matrix M , while the second term in-
troduces the supervision of labels to improve the discriminative
ability of A with λ ∈ (0,∞) being a parameter for controlling
the trade-off between approximation accuracy and discrimina-
tive ability. The goal is to find the optimal solutions of U , V
and {Ai}ni=1 and use the obtained U and V to project spatial-
spectral matrices {Mi}ni=1 onto low-dimensional space for DR
lesion segmentation.

E. Alternate Optimization of U and V

To jointly solve for U , V and {Ai}ni=1 in (5), we employ an
alternate optimization strategy [55] instead of directly solving
the objective function. Specifically, the first term in (5) can be
rewritten as follows based on the property of trace of matrices:

1
n

n∑

n=1

‖Mi − UAiV
T‖2F

=
1
n

n∑

i=1

tr((Mi − UAiV
T)(Mi − UAiV

T)T)

=
1
n

(
n∑

i=1

tr(AiA
T
i ) +

n∑

i=1

tr(MiM
T
i )

− 2
n∑

i=1

tr(UAiV
TMT

i )

)
,

(6)

where the term
∑n

i=1 tr(AiA
T
i ) comes from the fact that both

U and V are orthogonal, and for any two matrices, tr(AB) =
tr(BA). Moreover, the term

∑n
i=1 tr(MiM

T
i ) is a constant

because {Mi}ni=1 is given. Hence, the minimization of (6) is
equivalent to minimizing

1
n

(
n∑

i=1

tr(AiA
T
i )− 2

n∑

i=1

tr(UAiV
TMT

i )

)
. (7)

Setting the derivatives of (7) with respect to Ai to 0, the mini-
mum of (7) is achieved only if Ai = UTMiV , for i = 1, · · · , n.
This implies that for each i, Ai is uniquely determined by U
and V with Ai = UTMiV . Inserting Ai = UTMiV into (5)
and changing the sign of the optimization problem, we get an
equivalent maximization problem as follows:

arg max
U,V

1
n

n∑

i=1

‖UTMiV ‖2F −λ
∑

i,j

‖UT(Mi−Mj )V ‖2F Wij .

(8)
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The objective function of (8) has no closed-form solution. To
find the optimal solution of U and V, we rewrite (8) as:

arg max
U,V

1
n

tr

(
n∑

i=1

UTMiV V TMT
i U

)

− λ tr

⎛

⎝
∑

i,j

UT(Mi −Mj )V WijV
T(Mi −Mj )U

⎞

⎠ .

(9)

For a given V , the objective function of (9) is equivalent to
maximizing tr(UTΨuU), where

Ψu =
1
n

n∑

i=1

MiV V TMT
i

− λ
∑

i,j

(Mi −Mj )V WijV
T(Mi −Mj )T .

(10)

Note that the maximum is achieved only if U ∈ Rk×r1 consists
of the r1 eigenvectors of matrix Ψu corresponding to the r1
largest eigenvalues. Similarly, for a given U , (9) is equivalent to
the maximization of tr(V TΨvV ), where

Ψv =
1
n

n∑

i=1

MiUUTMT
i

− λ
∑

i,j

(Mi −Mj )UWijU
T(Mi −Mj )T .

(11)

The solution of V ∈ Rs×r2 consists of the r2 eigenvectors of
matrix Ψv corresponding to the r2 largest eigenvalues.

The above observations provide an iterative strategy for ob-
taining the optimal solutions of U and V : optimizing U by fixing
V , and optimizing V by fixing U . Specifically, for a given V , we
obtain U by computing the eigenvectors of the matrix Ψu . With
the obtained U , V can be updated by computing the eigenvec-
tors of the matrix Ψv . We repeated this procedure until conver-
gence. In our method, we employ singular value decomposition
(SVD) [59] to solve the the standard eigen decomposition be-
cause the truncated SVD can achieve the best approximation
of given matrices with the Frobenius norm [55], [60]. Pseudo-
code for the details of the proposed learning algorithm is given in
Algorithm 1.

F. Implementation of Lesion Segmentation

Based on the obtained U and V , we adopt a support vec-
tor machine (SVM) classifier [61] to perform training and
testing for lesion segmentation. In the training process, we
use the computed U and V to project the matrix representa-
tions {Mi}ni=1 ,Mi ∈ Rk×s onto the low-rank approximations
{Ai}ni=1 , Ai ∈ Rr1×r2 . These {Ai}ni=1 are then vectorized as a
series of (r1 × r2)-dimensional feature vectors to train a SVM
classifier with a Gaussian kernel. In the testing process, all pix-
els from the evaluation dataset are first arranged into the 2-D
spatial-spectral matrices M and then transformed into low-rank
approximations A by using U and V . The obtained A are vector-
ized as (r1 × r2)-dimensional features and fed into the trained
SVM model for classification.

Algorithm 1: Algorithm for Learning Spatial-Spectral
Features From MSI Images.

Input: A collection of MSI spectral images {Iτ }sτ =1 and
their corresponding ground-truth image G containing
the manually degraded area of DR lesions.

1: Sampling n pixels from the lesion and background
regions randomly based on G;

2: for each: spectral image Iτ do
3: Construct the corresponding LBP feature image Fτ

by computing the LBP code for all the pixels in it.
4: end for
5: for each: sampled pixel i do
6: Construct the spatial-spectral matrix Mi by using

{Fτ }sτ =1 and (1).
7: end for
8: Compute the similarity matrix W using the n

corresponding labels {li}ni=1 ;
9: Initialize V (0) = (Ir2 , 0)T and set n← 1 ;

10: repeat
11: Calculate the matrix Ψu by using (10);
12: Compute the r1 eigenvectors {αj}r1

j=1 of Ψu

corresponding to the r1 largest eigenvalues;
13: U (n) = [α1 , α2 , α3 , · · · , αr1 ];
14: Calculate the matrix Ψv by using (11);
15: Compute the r2 eigenvectors {βj}r2

j=1 of Ψv

corresponding to the r2 largest eigenvalues;
16: V (n) = [β1 , β2 , β3 , · · · , βr2 ];
17: n← n + 1;
18: until The objective functions (9) converges
Output: The projection matrices U and V .

III. EXPERIMENTS AND RESULTS

A. Databases

The database for evaluating the proposed approach is com-
posed of 50 sequences of MSI images acquired using an
Annidis RHAT M instrument (Annidis Health Systems Corp.,
Ottawa, Canada), including 40 unhealthy sequences and 10
healthy sequences. These images are of oculus dexter (OD)
or oculus sinister (OS) from 20 patients diagnosed with DR and
5 healthy subjects. They are in the format of DICOM with a
bit depth of 16, and each image is of size 2048× 2048. Each
sequence comprises 11 spectral slices captured using wave-
lengths of 550, 580, 590, 620, 660, 690, 740, 760, 780, 810, and
850 nm, respectively. In each sequence, all the slices were reg-
istered using a feature-point-matching based approach [62] to
eliminate the spatial misalignments introduced during the imag-
ing process. From the unhealthy images, several types of DR
lesions such as microaneurysm, retinal hemorrhages, hard ex-
udates, cotton wool spots, or macular edema are documented.
Two ophthalmologists manually drew the lesion areas by care-
fully observing and comparing different spectral slices. They
were invited to mark all lesion pixels across multiple bands with
the Paint tool in Microsoft Windows. The final manually anno-
tated results were served as ground-truths in the experiments.
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TABLE I
RETINOPATHY GRADE IN MESSIDOR DATABASE

NM , NH and NV denote the number of microaneurysms, hemorrhages and
neovessels, respectively.

In particular, the annotations from one of the two ophthalmol-
ogists were only used to validate the segmentation stability of
our approach.

As color fundus photographs are now routinely used for clin-
ical diagnosis of DR, the well known MESSIDOR database
[63] constructed for evaluating computer-assisted diagnoses of
DR was also used to assess the proposed approach. It contains
1200 color fundus images which were captured using a Top-
Con TRC NW6 Non-Mydriatic fundus camera with a 45 degree
field of view. These images are packaged in three sets of 400
images, whose sizes are respectively 1440× 960, 2240× 1488,
and 2304× 1536 with 8 bits per color plane. For each image,
two diagnoses were provided by medical experts: DR grade and
risk of macular edema. We used only the DR grade in the present
study. Table I provides the description of the DR grades with the
number of images for each grade. To evaluate our approach, 128
images were randomly selected from the database (28 healthy
images from grade 0 and 100 unhealthy images from grades
1–3) and then were resized to 800× 600. From the unhealthy
images, hemorrhages and microaneurysms regions were manu-
ally marked by the two ophthalmologists. These marks are taken
as ground-truths.

B. Evaluation Metrics

Four quantitative metrics were employed to evaluate the seg-
mentation performance in terms of sensitivity (Se), specificity
(Spe), accuracy (Acc), and the area under the curve (AUC) [64].
They were computed by comparing each resulting image with
the corresponding ground-truth. Se and Spe refer to measures
of effectiveness in correctly identifying lesion pixels and non-
lesion pixels, respectively. Acc and AUC reflect the ability to
correctly identify the total number of pixels. To be intuitive, the
receiver operating characteristic (ROC) curve was also used for
performance evaluation. It is a 2-D plot that allows us to analyze
the trade-off between Se and Spe. A ROC curve closer to the
top left corner means a better performance.

C. Experimental Setting

In our experiments, there are several parameters to control:
λ, nitr (number of iterations), Ls and Lr (sampling points and
radius of the LBP operator), p (size of local LBP image patch,
as mentioned in Section II-B), r1 and r2 (reduced dimensional-
ity). The parameter λ was empirically set to 0.8 for a trade-off
between reconstruction accuracy and discriminative ability. We

repeated our algorithm for a number of times, each time per-
forming 15− 20 iterations. We found that the iterative solution
converges fast within few iterations, and the experiments also
show that the accuracy tends to be stable when Ls = 8 with a
smaller Lr . We thus simply chose nitr = 8, (Ls, Lr ) = (8, 2)
to obtain satisfactory results in all experiments. In addition,
the performance of the proposed approach highly relies on the
choice of reduced dimensionality r1 , r2 and the patch size p,
which will be investigated in Section III-D1.

For all experiments, a leave-one-out-cross-validation was
performed. For the MSI database, we did the training and testing
experiments 50 times, with each time leaving out one of the 50
sequences for training, and using only the omitted one sequence
for testing. The final result is the average from the 50 runs. For
the MESSIDOR database, the 128 color fundus images were
divided into 8 sets. Then leave-one-out tests were performed on
the 8 sets of images: at each time, 7 sets of images were used
to train a model and the remaining one set was used for testing,
and this step was repeated until all the 8 sets of images had been
used for testing. All the experiments were performed on a single
Linux machine with 3.6GHz CPU and 48GB of system memory
(RAM).

D. Results

1) Effect of Patch Size and Reduced Dimensionality: To il-
lustrate the effect of patch size p and reduced dimensional-
ity r1 , r2 on MSI-based DR lesion segmentation, we give in
Fig. 3 the segmentation accuracies of the proposed approach
with patch size p = 9, 17, 25, and 33 under various reduced di-
mensionalities. The parameters r1 and r2 were tested by varying
one while keeping the other fixed, e.g., varying r1 by keeping
r2 = 5. The results show that the reduced dimensionality and the
patch size have clear influence on segmentation performance.
In Fig. 3 we can observe that the accuracy of segmentation was
low when p = 9 or p = 33, and among the best when p = 17.
Moreover, Figs. 3(a) and (b) also indicate that the proposed ap-
proach achieves the best performance when r1 = 7 and r2 = 5,
respectively. We will use this optimal parameter setting in all
experiments.

2) Joint Spatial-Spectral Representation: The performance
of our joint spatial-spectral representation on segmentation was
evaluated by varying the number of spectral slices within each
MSI sequence. Fig. 4 shows the ROC curves and the AUC val-
ues of the proposed approach on the MSI database with four
different numbers of spectral slices, including 1 slice at 550 nm,
4 slices ranging from 550 nm to 620 nm, 8 slices ranging from
550 nm to 760 nm, and 11 slices ranging from 550 to 850 nm,
respectively. The parameter r2 used in this experiment was spe-
cially set to 1 to keep a uniform dimensionality of the low-rank
approximations for comparison. As we can see from Fig. 4,
the proposed approach achieves an AUC value of 0.819 on one
spectral slice (550 nm). By increasing the number of spectral
slices, the segmentation results are improved gradually. The
best ROC curve and AUC value are obtained when all the 11
spectral slices within the MSI sequences are used. That demon-
strates the gradually increasing discriminative ability obtained
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Fig. 3. Segmentation performance with different patch sizes and di-
mensions. p is the patch size, r1 the reduced dimensionality by U and
r2 the reduced dimensionality by V .

Fig. 4. ROC curves of the proposed approach when varying the num-
ber of spectral slices in a MSI sequence (550 nm, from 550 to 620 nm,
from 550 to 760 nm, from 550 to 850 nm, respectively).

by adding the spatial and spectral information jointly for feature
representations.

3) Dimensionality Reduction: In this experiment, the per-
formance of the proposed approach in terms of dimension-
ality reduction was evaluated. Three different techniques for
low-dimensional representations were performed on the MSI

Fig. 5. ROC curves of the untransformed feature strategy, SVD,
GLRAM and proposed scheme (GLRAM with SRT) in DR lesion seg-
mentation on MSI images.

TABLE II
QUANTITATIVE RESULTS OF LESION SEGMENTATION

WITH DIFFERENT STRATEGIES

database, including SVD, GLRAM and the proposed approach,
with segmentation results given in Fig. 5. The GLRAM algo-
rithm was carried out by running our algorithm with the pa-
rameter λ = 0 to only keep the GLRAM term. For suitable
comparison, the SVD algorithm was run with the dimension re-
duction parameter d = r1 × r2 to maintain a uniform dimension
in the low-dimensional space. In addition, the untransformed
features (Fig. 5) were obtained by vectoring all the matrix rep-
resentations {Mi}ni=1 of pixels as (k × s)-dimensional feature
vectors directly to train the SVM classifier. As we can observe
from Fig. 5, the low-dimensional representations learned by
SVD, GLRAM, and our approach produce better results than
the untransformed features without dimensionality reduction.
Moreover, the AUC values of the GLRAM and our approach
are respectively 0.086 and 0.131 higher than that of the SVD
algorithm. This indicates the high performance of dimension-
ality reduction obtained by applying two-sided transformations
on matrices.

4) Incorporation of SRT Into GLRAM: The performance of
incorporating SRT into GLRAM was assessed by comparing
our algorithm with the GLRAM as well as other techniques.
From Fig. 5, we observe that the ROC curve of the proposed
approach is above that of the GLRAM, and the AUC value of
the proposed approach is higher than the GLRAM by 0.045. Ta-
ble II summarizes the quantitative results of the untransformed
features, SVD, GLRAM and the proposed approach. The pro-
posed approach achieves the highest values of Se, Spe and Acc
among all the methods. Fig. 6 illustrates the qualitative segmen-
tation results of the proposed approach, the GLRAM, and the
manual annotations on a MSI sequence. Note that the results
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Fig. 6. Qualitative results of the proposed segmentation scheme with and without SRT. The lesion regions are indicated by the orange color added
in the MSI spectral slice. The bottom row shows the close-ups cropped from the top images. From left to right: (a) Original spectral slice of 580 nm in
Fig. 1. (b) Manual annotations (Ground-truth) from ophthalmologist. (c) Results of segmentation without SRT (GLRAM). (d) Results of segmentation
with SRT.

Fig. 7. ROC curves of the proposed approach when taking respectively
annotations provided by ophthalmologist # 1 and ophthalmologist # 2 as
the ground-standard.

of the proposed approach (Fig. 6(d)) are closer to the manually
delineated ground-truth compared to the results of GLRAM
(Fig. 6(c)).

5) Segmentation Stability: The segmentation stability of the
proposed approach was tested by running our algorithm with
different manual annotations. Fig. 7 shows segmentation results
obtained by taking the manual annotations of the two ophthal-
mologists as ground-truth. The ROC curves corresponding to
the first and the second ophthalmologists are plotted in red and
blue dashed, respectively. Leave-one-out experiments were per-
formed on the MSI database. In Fig. 7 we observe that the ROC
curve for the first ophthalmologist is slightly but not signif-
icantly above the curve for the second ophthalmologist. Fur-
thermore, the proposed approach obtains an AUC of 0.965 for
the first ophthalmologist, and an AUC of 0.929 for the second

TABLE III
PERFORMANCE OF LESION SEGMENTATION ON THE MESSIDOR DATABASE

Opt. #1 and Opt. #2 denote the manual annotations provided by the first and the
second ophthalmologists, respectively.

ophthalmologist, both of which indicate high segmentation ac-
curacy of our approach.

6) Lesion Segmentation on Color Fundus Images: The ro-
bustness of the proposed approach was evaluated on the MES-
SIDOR database. In this experiment, the dimension parameter
r2 of our algorithm was set to 1, and the green channel of each
fundus image was used as input (only the green channel is rou-
tinely adopted in the research community [65]). The well-known
dimensionality reduction technique, principal component anal-
ysis (PCA) [66], was also implemented for comparison. Ta-
ble III gives the quantitative results of PCA, GLRAM, and our
approach on the MESSIDOR database when taking different
manual annotations as ground-truth. The results for the first
ophthalmologist’s annotations show that the proposed approach
achieves the best segmentation performance in terms of Se, Acc,
and AUC among all the methods, and with Spe = 0.914, which
is only 0.02 lower than the highest score (0.916) achieved by
GLRAM. For the second ophthalmologist’s annotations, the Se,
Spe, Acc, and AUC of the proposed approach are among the
highest.
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IV. DISCUSSION

The proposed approach possesses several advantages in han-
dling the problem of MSI-based DR lesions segmentation. First,
the proposed 2-D spatial-spectral matrix provides a flexible yet
powerful solution to make use of both the spatial and spectral
information of multiple MSI images. Second, the GLRAM em-
ploys two-sided transformations to transform a collection of 2-D
matrices into low-dimensional space, which allows us to exploit
distinctive physical quantities (e.g., spatial characteristics and
spectral properties) residing in rows and columns of matrices to
learn compact descriptors. Third, the SRT encodes the intrinsic
local geometrical structure of label space, enabling the learned
patterns closely related to their class labels for generating more
discriminative representations. Moreover, the LBP-based fea-
ture extraction and the regularization strategy embed prior spa-
tial and label information into the learning process, making the
proposed approach capable of learning effective representations
with limited number of training samples.

In the experiments, the optimal values of the parameters p, r1
and r2 were used. The choice of p depends on several factors,
such as image resolution, magnification and the area covered
by DR lesions. A small value of p often leads to limited spatial
information whereas increasing the value of p too much causes
inaccurate information to be extracted from patches. The pa-
rameters r1 and r2 control the number of eigenvalues of Ψu

and Ψv to form the models U and V , and thus influence the di-
mension of low-rank approximations Ai . The optimal value of
r1 depends on the inherent spatial characteristics of DR lesions
on each spectral slice, and that of r2 on the inherent spectral
properties of DR lesions across different slices. A small value
of r1 or r2 may lack inherent spatial or spectral information of
DR lesions. Besides, according to (10) and (11), Ψu and Ψv are
calculated from the spatial-spectral matrix Mi which inevitably
contains the information of easily-confused components (e.g.,
optic disk, vessels, etc.) or noise. Therefore, a large value of r1 or
r2 may introduce eigenvectors dominated by other components
or noise. By changing the value of p, r1 and r2 , our approach is
flexible to be applied to various images and applications.

Another interesting point would be to compare the proposed
approach with CNNs-based approaches. The power of CNNs
lies in their deep neural networks that are shown to be per-
tinent for representing training samples and are able to find
complex feature patterns from data. Moreover, convolutional
kernels with different patch sizes used in 3-D CNN architec-
tures are especially suitable for MSI data. In this direction, ap-
propriate regularization strategies may need to be developed to
avoid overfitting problem caused by the high complexity of 3-D
input data and the limited number of training samples available
in practice.

V. CONCLUSION

Retinal MSI generates a sequence of retinal spectral slices
that allow ophthalmologists to characterize DR lesions compre-
hensively. We have proposed a new feature learning approach
for DR lesions segmentation in MSI images. It is formulated as
a generalized low-rank approximation of matrices with a SRT

to learn low-dimensional spatial-spectral representations from
the feature vectors in all spectral slices. Experimental results
showed that the proposed approach is very effective for the seg-
mentation of DR lesions in MSI images, which suggests it as
an interesting tool for assisting ophthalmologists in diagnosing,
analyzing, and managing DR lesions in MSI.
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