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Real-World Gait Speed Estimation Using Wrist
Sensor: A Personalized Approach
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Abstract—Gait speed is an important parameter to char-
acterize people’s daily mobility. For real-world speed mea-
surement, inertial sensors or global navigation satellite sys-
tem (GNSS) can be used on wrist, possibly integrated in a
wristwatch. However, power consumption of GNSS is high
and data are only available outdoor. Gait speed estimation
using wrist-mounted inertial sensors is generally based on
machine learning and suffers from low accuracy because of
the inadequacy of using limited training data to build a gen-
eral speed model that would be accurate for the whole pop-
ulation. To overcome this issue, a personalized model was
proposed, which took unique gait style of each subject into
account. Cadence and other biomechanically derived gait
features were extracted from a wrist-mounted accelerome-
ter and barometer. Gait features were fused with few GNSS
data (sporadically sampled during gait) to calibrate the step
length model of each subject through online learning. The
proposed method was validated on 30 healthy subjects
where it has achieved a median [Interquartile Range] of root
mean square error of 0.05 [0.04–0.06] (m/s) and 0.14 [0.11–
0.17] (m/s) for walking and running, respectively. Results
demonstrated that the personalized model provided similar
performance as GNSS. It used 50 times less training GNSS
data than nonpersonalized method and achieved even bet-
ter results. This parsimonious GNSS usage allowed extend-
ing battery life. The proposed algorithm met requirements
for applications which need accurate, long, real-time, low-
power, and indoor/outdoor speed estimation in daily life.

Index Terms—Low-power, online learning, personaliza-
tion, real-world gait speed, running and walking.

I. INTRODUCTION

GAIT speed is among the most important parameters to
characterize people’s daily mobility. It is a primary out-

come in ageing and is associated with survival in elderly subjects
[1]–[3]. In clinical applications, gait speed is employed to char-
acterize orthopedic diseases, to quantify impacts of intervention,
to design functional assessments after treatment, and to predict
the risk of falling [4]–[9]. Gait speed is also used in sport to
design personalized training sessions and evaluate performance
of athletes [10].

For accurate measurement of instantaneous speed, camera-
based motion capture systems and instrumented walkways with
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pressure sensors were introduced [11]–[13]. However, apart
from being restricted to the laboratory, these need consider-
able time for preparation, measurement, and post-processing.
Gait features (e.g., step length) greatly differ between free-
living and laboratory conditions, one might have shorter gait
distances in the latter [14]–[16]. It is shown that few steps of
a person in a controlled laboratory setting cannot completely
represent his/her real performance during daily life [17]. For
objective outcome evaluation, knowledge about patients’ mo-
bility in real-world is more important than short clinical visits
and tests [18], [19]. Consequently, it is crucial to develop gait
speed measurement systems for real-life conditions.

Global Navigation Satellite System (GNSS) is the first choice
to measure gait speed in everyday situations. It offers ambula-
tory speed and position measurements with a very high accuracy
(0.05 m/s of error) [20]–[22]. However, the GNSS receiver has
high power consumption, which limits its use for a portable
device when long duration measurements are required. Fur-
thermore, communicating with satellites may not be possible
indoors, near high buildings, narrow valleys, etc.

Inertial sensors (i.e., accelerometer, gyroscope) have been
used to estimate gait speed based on the movement of lower
and/or upper limbs, like feet [23]–[25], shanks [3], [26]–[28],
thighs [29], [30], trunk [31], [32], and waist [33], [34]. In some
cases, data captured from multiple sensors (located at different
parts of the body) were fused to achieve better performance
[35]–[37]. These systems computed the cadence (number of
steps per unit time) through the detection of certain events at
each gait cycle (e.g., initial and terminal contact or mid-swing
of the foot). Step length was also estimated through either mod-
eling of human’s gait [26], double integration of acceleration
[23] or abstract modeling based on machine learning [30], [33],
[38]. Eventually, instantaneous gait speed was obtained by mul-
tiplying cadence and step length. The main advantage of such
systems was that they provided relatively accurate estimation
of gait speed outside the laboratory in free-living environments.
They overcame the GNSS problems through reduction of power
consumption and being independent of any external sources
(i.e., satellites). However, they are not as accurate as the GNSS.
They may also suffer from inconvenient sensor fixation (e.g.,
skin patch or elastic straps), especially when multiple sensors
are required, which complicates their use and may need an ex-
pert to install on body.

A more convenient approach to estimate gait speed would
be to attach inertial sensors to the wrist (e.g., as a wristwatch).
This could offer several advantages such as usability, comfort
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and a handy user interface. However, contrary to trunk and legs,
the association between wrists movements and locomotion is
not straightforward, especially during daily activities. The hand
may be motionless (e.g., in the pocket, carrying bag) during
locomotion, or moving during rest (e.g., sitting or standing).
These “independent” movements of the hand are potentially
a serious challenge for accurate wrist-based speed estimation.
This is also confirmed by limitations of speed estimation algo-
rithms in many accelerometer-based smartwatches, targeting the
consumer market, and probably why the hand has hitherto not
been favored for sensor attachment to estimate speed in research
or clinical settings [39].

In existing literature, a few methods have recently been in-
troduced to estimate gait speed based on a single wrist-mounted
inertial sensor. These methods extracted several features from
raw sensor data and then mapped them to gait speed though a lin-
ear or non-linear modeling. The features were in general chosen
to be indicator of intensity, energy, cadence, mean crossing rate,
but statistical features such as mean, standard deviation, mode,
and median of acceleration norm have also been employed [20],
[40]–[45]. Altitude changes, measured by a barometric pressure
sensor, were also used as a feature to improve gait speed esti-
mation in [20]. In order to model gait speed, several machine
learning approaches have been investigated such as Gaussian
process regression [40], lasso regularized least squares regres-
sion [40], [44], regularized kernel method [42], and piecewise
linear regression [20].

An important issue in machine learning when designing a
model is the training strategy. In general, a subsample of a pop-
ulation is considered to train a general model optimized for
all individuals belonging to the entire population. Such an ap-
proach does not take into account individual strategies involved
in gait modulation, e.g., one might change speed by control-
ling cadence whereas another might vary step length for the
same purpose. Therefore, a population-based training approach
cannot perform well for all gait styles and there is a need to
personalize the speed model to each individual.

Usefulness of personalization in gait speed estimation has
been shown in few previous works [46]–[48]. Generally, they
improved estimation of speed through using a reference value
(e.g., from GNSS or marked walkway) to collect a bunch of
data from each individual user and then calibrated their general
speed model to the specific user by applying an offset or scaling
factor to the model. However, the main drawback of such ap-
proaches was that they collected their personalization data only
from a very short walk period or in a controlled setting. Gait
speed of a person may vary due to change of seasons, living
or working environments, etc. Moreover, all these studies are
based on offline personalization, which means that they need all
personalization data to once calibrate the speed model.

The objective of this study is to design and validate a method
based on a single wrist-mounted accelerometer and barome-
ter for accurate and precise estimation of instantaneous speed
during real-world walking and running. We hypothesize that a
personalized speed model is feasible and will improve the per-
formance of the system. To this end, when a person is walking
or running, we sporadically use the GNSS to acquire few speed

Fig. 1. (A) Sensor configuration of the measurement. A single sensor
was fixed on each wrist and the GNSS receiver was used as the refer-
ence method. (B) Local coordinate frame of the wrist accelerometer.

data and then we personalize the speed model to the user’s
specific gait style through online learning. For further improve-
ment, we propose physically meaningful gait features based on
the biomechanics of wrist movement during gait. Eventually,
we consider requirements of real-time and low-power applica-
tions to optimize the gait speed estimation algorithm for subse-
quent implementation inside a smart wristwatch by proposing
a recursive algorithm that uses parsimoniously acquired GNSS
samples.

II. METHODS

A. Material and Measurement Protocol

Thirty healthy and active volunteers (14 women, 16 men,
age 37 ± 9 years old, height 172 ± 10 cm, and weight 68 ±
11 kg) participated in this study. Participants worn two time-
synchronized inertial sensors (Physilog IV, GaitUp, CH) on
wrists using elastic straps. The proposed method is based on
data from a single wrist. However, we recorded data on both
wrists to compare the performance of the proposed method be-
tween wrists. Fig. 1(A) and (B) show sensor configuration and
local coordinate frame of the wrist accelerometer, respectively.
Sensors recorded three-dimensional acceleration (range ±16 g)
at 500 Hz and barometric pressure at 50 Hz. The accelerometer
sensor was calibrated according to [49]. Furthermore, as ground
truth, a GNSS receiver (CAMM8Q, u-blox, CH) with an exter-
nal active antenna (ANN-MS, u-blox, CH) were mounted on the
head using Velcro attached to a cap. The GNSS receiver was set
to pedestrian mode with a sampling frequency of 10 Hz.

The measurement protocol consisted of outdoor walking and
running in free-living conditions lasting around 90 minutes. In
order to cover real-life gait diversity, the activities were per-
formed on various terrain conditions, including uphill, down-
hill and flat. Further, the participants were asked to perform
the activities at self-adjusted normal, slow and fast speeds. We
manually excluded all rest periods. Fig. 2 illustrates trial types,
elevation profile of the track and GNSS speed change during
the measurement. A local human research ethics committee had
approved the proposed protocol.

B. Reference Values for Speed

The GNSS provided the instantaneous speed at 10 Hz with
its corresponding measurement error. We processed the GNSS
speed in two steps to obtain the reference values for speed:
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Fig. 2. Trial types and elevation profile of the measurement. Color bar
shows one example of how the GNSS speed was changed during a
whole measurement for one participant (ID #1).

Fig. 3. Processing GNSS speed. Step 1: Enhancing the speed sam-
ples. Step 2: Down-sampling the speed to 1 Hz required for the wrist-
based algorithm.

enhancement and down-sampling (see Fig. 3). In the enhance-
ment step, first, samples of GNSS speed outside the range of
[0.10, 7.00] (m/s) were discarded and not included in neither
training nor test. In fact, according to [50], maximum speed of
normal and long-term running (e.g., marathon) was less than
6 (m/s). In addition, based on our manual labels, the GNSS
speed values were higher than 0.1 (m/s) for all gait periods.
GNSS samples with speed less than 0.1 (m/s) corresponded to
non-locomotion activities such as shuffling around, standing,
sitting, etc. Here, the reported speed values were in the range
of GNSS reported error i.e., 0.12 (m/s) (a median error dur-
ing our measurement), even though the manufacturer reported a
speed mean error of 0.05 (m/s) at 30 (m/s). Then, we removed
samples with GNSS error higher than 0.5 (m/s), which prob-
ably occurred due to the lack of sufficient satellite coverage.
This sample removal as well as data loss of the GNSS receiver
led to an unevenly-sampled time series for the speed signal.
Consequently, we filtered both the speed values and the cor-
responding time instants using a moving average filter with a
width of 0.5-second (in 10 Hz) to obtain a smooth signal. Fi-
nally, we used linear interpolation to generate an equally spaced
sampled speed time series at 10 Hz. Since the proposed wrist-
based speed estimation algorithm needs GNSS speed values at
1 Hz, we designed a down-sampling step. To this end, first, an
anti-aliasing fourth-order low-pass Butter-worth filter (with a
cutoff frequency of 0.25 Hz) was applied on the signal. Sec-
ond, the resulting signal was resampled at 1 Hz. The obtained

gait speed (v(t)) was considered as: (a) actual speed values for
the personalization procedure provided in section C, and (b)
reference speed for validation in section D.

C. Personalized Wrist-Based Speed
Estimation Algorithm

The proposed wrist-based algorithm used the 3D accelerome-
ter signal (a(t)), barometric pressure (p(t)), and a subset of the
reference speed (v(t)). Gait speed is the product of step length
and cadence. We have already developed an accurate algorithm
for cadence estimation [20]. Therefore, instead of modeling
gait speed, which involve non-linearity, here, we modeled step
length and then multiplied that with cadence. Fig. 4 shows the
block diagram of the algorithm. First, recorded signals were
segmented and relevant features were extracted to estimate step
length. Then the algorithm included two recurrent phases: per-
sonalization and estimation. The personalization phase models
fluctuations in step length during walking and running that occur
due to differences in individual functional ability and specific
aspects of the environment. In estimation phase, the personal-
ized model was used to estimate the speed. A more detailed
description of the method is provided below.

Segmentation- First, both a(t) and p(t) were low-pass fil-
tered using a fourth-order Butterworth filter at 4 Hz according
to [20]. Then, the signals were segmented every second using a
7-second moving window with 6-second overlap to provide seg-
mented acceleration (A[n]) and pressure signal (P [n]), where
n indicates window number. Sx [n], Sy [n] and Sz [n] were de-
noted as segmented acceleration along axes of the accelerometer
(Fig. 1(B)). The length of the window was selected to be long
enough to have sufficient data for frequency analysis, and short
enough to provide required time resolution.

Feature extraction- In order to represent walking and run-
ning, we defined various numbers of features based on biome-
chanics of wrist movement (such as energy, periodicity, posture,
etc.) as well as statistics (like mean, median, standard deviation,
kurtosis, etc.). We employed LASSO (least absolute shrink-
age and selection operator) feature selection method according
to [51] to create the best possible features sets for walking and
running using training dataset. As we expected, since movement
and posture of the wrist during walking and running are differ-
ent, two different sets of features were chosen. Consequently, it
is necessary to distinguish between walking and running before
using the proposed method. In this study, we labeled manually
walking and running periods. For running, four features were
chosen as follows:

Cad[n] = Cadence: Locomotion cadence has a high corre-
lation with the step length and was estimated based on the
algorithm proposed in [20].

AltΔ [n] = Altitude change of the path: During running, gait
speed may change with the slope of the path, e.g., longer
(shorter) flying phase when running on downhill (uphill) com-
pared to level running. Altitude change of the path was computed
within window number n from barometric pressure as the slope
of a line fitted to (−1) × P [n] using the least squares method,
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Fig. 4. Block diagram of the proposed method. Data were first segmented and relevant features were extracted. During the personalization phase,
the step length model was personalized using the extracted features and limited number of speed data sampled randomly for each individual
during daily life. In the estimation phase, the step length was estimated using the extracted features and the most updated model resulted from
personalization phase. Eventually, the speed was calculated using the estimated cadence (Cad[n]) and the step length ( ̂Sl[n]).

according to (1).

AltΔ [n] = −
∑q

i=1 (i − ī)
(

P i [n] − P̄ [n]
)

∑q
i=1 (i − ī)2 × Fs (1)

where q is the number of samples within window number n, Fs

is the sampling frequency, and P i [n] is the i-th sample of the
pressure vector within window number n. In addition, P̄ [n] and
ī are computed based on (2) and (3).

P̄ [n] =
1
q

q
∑

i=1

P i [n] (2)

ī =
1
q

q
∑

i=1

i (3)

ESy [n] = Energy of acceleration along axis y: When a per-
son increases his step length, the range of hand movement may
increase as well, which leads to an increase in the energy of
the acceleration signal along the longitudinal axis of the hand
(y in Fig. 1B). ESy

[n] was estimated using standard deviation
according to (4).

ESy
[n] = std (Sy [n]) (4)

Jerk[n] = Mean absolute jerk: During locomotion, repet-
itive impacts at the step frequency appear on the wrist
acceleration. The mean absolute value of jerk (time derivative
of acceleration) provides information about the load changes
of such impacts. We hypothesized that the mean absolute
value of jerk (adopted from [52]) of axis y would be correlated
with step length during running. Equation (5) shows how to
compute this feature within window n where Si

y [n] is the i-th
sample of vector Sy [n].

Jerk [n] =
1
q

q
∑

i=1

∣

∣Si
y [n] − Si−1

y [n]
∣

∣ (5)

In conclusion, the feature vector for running (hrun [n]) was
defined by (6). Our data revealed non-linearity between altitude
change and step length. Therefore, we also included the square

of AltΔ[n] to the running feature vector.

hrun [n] = [1 Cad[n] AltΔ[n] ESy
[n] Jerk[n] AltΔ[n]2 ]

(6)
For walking step length estimation, two new walking-specific

features were chosen through LASSO supporting the fact that
the nature of arm movement during walking and running gives
rise to fundamental differences in wrist-recorded acceleration.
For instance during walking, the extended arm and forearm lead
to a sort of pendulum swing movement of the wrist in the relative
transvers plane of the wrist (< x, z >) whereas during running
the flexed forearm prevents such a transverse swing. Therefore,
in addition to Cad[n], AltΔ[n] and Jerk[n], we defined the
following two new walking-specific features:

Is[n] = Intensity of hand swing: it is the energy of acceler-
ation in the transversal plane relative to the wrist < x, z >,
computed through (7). Owing to the cylindrical geometry of the
wrist, our combined use of data from both axes, forming the
transversal plane, makes this feature robust to sensor rotation
which may sometimes occur during walking.

Is [n] = std

(
√

Sx [n]2 + Sz [n]2
)

(7)

Norm[n] = Mean of acceleration norm: During walking,
amplitude of trunk movement is related to the step length [31].
In walking, we can consider the arm as a moving pendulum,
which swings about the shoulder joint. We hypothesized that
the back and forth movement of the arm, relative to the trunk,
would have an average value associated with trunk movement.
The feature was obtained from (8).

Norm [n] = mean

(
√

Sx [n]2 + Sy [n]2 + Sz [n]2
)

(8)

For walking the feature vector (hwalk [n]) was defined ac-
cording to (9).

hwalk [n] =
[

1 Cad [n] AltΔ [n] Jerk [n] Is [n] Norm [n]
]

(9)
Personalization phase- In the personalization phase, we pro-

pose to calibrate the step length model for each user by sporad-
ically sampling the GNSS signal during daily life. The GNSS
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samples along with the corresponding features were used to
calibrate the step length model.

GNSS sampling and segmentation- To keep power consump-
tion low, it is important to restrict the usage of GNSS to a mini-
mum but still have enough number of speed data. Ideally, GNSS
should be used when a significant change in user gait pattern
occur. In this study, as a first attempt for GNSS data selection,
we used random sampling. The speed v(t), obtained through
random GNSS sampling and segmented as V [n] (similar to the
segmentation rule described above), along with the correspond-
ing feature vector hwalk [n]or hrun [n], constituted our person-
alization data set.

Step length computation- Sl[n] is the actual step length com-
puted through (10) for each window n from the personalization
data set. In equation (10), V [n], Cad[n], and Sl[n] are GNSS
speed (m/s), cadence (steps/min), and step length (m), respec-
tively.

Sl [n] = 60 × V [n]
Cad [n]

(10)

Step length personalization- H[n] and vector SL[n] were
defined as the feature matrix and the actual step length vector,
respectively, from the start of personalization up to time n.

H [n] =

⎡

⎢

⎢

⎣

h [1]
...

h [n]

⎤

⎥

⎥

⎦

(11)

SL [n] =

⎡

⎢

⎢

⎣

Sl [1]
...

Sl [n]

⎤

⎥

⎥

⎦

(12)

We chose a linear approach to model the step length by assum-
ing a quasi-linear relationship between our features and the step
length. Moreover, this approach decreased computational cost
and facilitated the implementation on a wearable device. More
importantly, the linear model needs much less training data than
non-linear models, thereby, reducing GNSS usage time. This
leads to a reduction in power consumption of the system. Step
length was modelled according to (13).

SL [n] = H [n] β + ε (13)

where β is a column vector providing model coefficients. Ac-
cording to the conventional least squares approach, we have:

β =
(

H[n]T H [n]
)−1

H[n]T SL [n] (14)

Equation (14) needs all personalization data from the begin-
ning of personalization up to time n, which this consumes a lot
of memory space and requires much computation. Therefore,
a recursive least squares (RLS) fitting approach was employed
which provided an acceptable computational cost for the system
and was able to work in real-time. Moreover, RLS worked in
an online fashion avoiding store all seen personalization data,
thereby, reducing memory usage.

Fig. 5. Block diagram of the proposed step length personalization ac-
cording to recursive least squares. For each individual, the step length
personalization consists of model initialization (using first 50-second of
GNSS data) and online learning based on recursive least squares. The
output of the block diagram is the most updated model coefficients, β[n].

Let H[n − 1] and β[n − 1] be the matrix of features and
model coefficients vector up to time (n − 1), respectively. In
order to compute the coefficient vector at time n (β[n]) in an
online fashion, RLS approach is used based on (15).

β [n] = β [n − 1] + D [n] h [n]
(

Sl [n] − h[n]T β [n − 1]
)

(15)
where h[n] and Sl[n] are respectively the feature vector and
the actual step length of personalization data set in time n. In
addition, D[n] is defined in (16).

D [n] =
(

H[n]T H [n]
)−1

(16)

We computed D[n] in a recursive way according to (17) where
only the matrix D[n − 1] and the personalization data at time n
were needed. K[n] is defined according to (18).

D [n] = D [n − 1]
(

I − h [n] (I + K [n])−1h[n]T D [n − 1]
)

(17)

K [n] = h[n]T D [n − 1] h [n] (18)

Fig. 5 depicts a detailed block diagram for the proposed step
length personalization method. For each subject, the first 50-
second (experimentally adjusted) of personalization data set was
used to build an initial model (H[50], SL[50],D[50], β[50]),
named “Model initialization”. Then, the initial model was
adapted to every new personalization sample during “Online
Learning”.

Estimation phase- When GNSS data were not used (e.g.,
GNSS receiver was off), the vector of updated model coefficients
(β[n]), resulted from personalization phase, and the extracted
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TABLE I
ERRORS OF PERSONALIZED SPEED ESTIMATION ALGORITHM FOR DAILY WALKING AND RUNNING UNDER VARIOUS SPEED RANGES AND TERRAIN

CONDITIONS ON EITHER BOTH OR SINGLE WRIST

features were used to estimate the step length ( ̂Sl[n]) in an
arbitrary time window n.

̂Sl [n] = h [n] β [n] (19)

Finally, gait speed (V̂ [n] (m)) was estimated through (20) us-
ing cadence (Cad[n] (steps/min)) and step length ( ̂Sl[n] (m)).

V̂ [n] =
Cad [n]

60
× ̂Sl [n] (20)

D. Cross-Validation and Error Computation

The proposed personalized speed estimation method was val-
idated against GNSS data (as reference). For each individual
subject, first the data was divided into packets of 10-second.
Then, half of packets of each trial were randomly selected for
online learning and the other half was selected as the test set.
The error between the reference and the proposed method in test
data set (personalization data set was excluded) were computed
sample-by-sample with a resolution of 1 second. Intra-subjects,
Lilliefors test was used to check normality of the speed error.
In the case of non-normal distribution, median (as bias), Inter-
Quartile Range (IRQ, as precision), and Root Mean Square
Error (RMSE) of the speed error were computed for all trials of
each subject. Inter subjects, median and IQR of bias, precision
and RMSE were reported. The Bland-Altman approach [53] was
used to display error plots for estimated speed. To analyze corre-
lations between parameters, we performed Spearman rank cor-
relation [54]. In addition, we used Kruskal–Wallis [55] to inves-
tigate whether trials circumstances and/or participant physical
condition had significance effects on the speed estimation error.

In order to evaluate the effect of personalization on the speed
error, we compared the personalized algorithm to a kind of its
non-personalized version. The non-personalized method used
the same features and model (i.e., fixed instead of recursive least
squares) as personalized but the difference is the way of training,
i.e., offline instead of online. To perform a fair comparison, the
following procedure was done for an arbitrary subject λ: the
personalized method was trained using half of data of the subject
λ (randomly selected in time) in an online fashion and tested
using the other half of its data. For the non-personalized method,
the model was trained on data from all subjects except the subject

Fig. 6. An illustration of reference and predicted speed values during
daily walking and running for a typical subject (ID#1).

λ and then tested on exactly the same test data as personalized
method; this process was repeated until each subject had been
the test subject exactly once. The error of the non-personalized
model was estimated in the same way as personalized model (as
described above).

III. RESULTS

We analyzed outdoor activities of 30 participants, both wrists,
including a total 41.7 hours of walking and 17.5 hours of running
under real-life circumstances. GNSS sensor reported a median
speed error of 0.11, 0.11, and 0.12 (m/s) for slow, normal and
fast walking activities (see Table I for the definition of different
walking), respectively. It also showed a median speed error
of 0.16, 0.17, 0.17 (m/s) for slow, normal and fast running,
respectively.

A. Personalization Performance

For a typical subject, Fig. 6 illustrates an example of high
ability of the proposed personalized method to follow the
reference speed under various speed ranges and outdoor circum-
stances during both walking and running. Lilliefors test showed
that instantaneous speed error do not follow normal distribu-
tion (p < 0.001). Consequently, for each subject, we computed
median (as bias), IQR (as precision), and RMSE of the estima-
tion error in test data set (personalization data set was excluded).



664 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 3, MARCH 2020

Fig. 7. Boxplot of walking and running speed errors versus trials con-
ditions. Blue boxes and the lines inside are IQR and median values.
Dashed lines are whiskers, which show 3/2 of IQR measured from the
top and bottom of each box. Red signs “+” also represents the outliers.
For information about test conditions, refer to the footnote of Table I.

Fig. 8. Error plots for walking and running speed estimation. For walk-
ing, the 5th, 25th, median, 75th, 95th percentiles are −0.09, −0.02, 0.00,
0.03, 0.07 m/s, respectively. For running, the parameters are −0.23,
−0.08, 0.00, 0.08, 0.22 m/s.

Table I reports inter-subjects median and IQR of RMSE, bias and
precision for different conditions of walking and running per-
formed on the track (Fig. 2) on either both or single wrist. Totally,
for walking, the proposed personalized method has achieved an
RMSE of 0.05 [0.04 0.06] (m/s), a bias of 0.00 [−0.01 0.00]
(m/s), and a precision of 0.06 [0.05 0.07] (m/s). For running, it
has obtained an RMSE of 0.14 [0.11 0.17] (m/s), a bias of 0.00
[−0.01 0.02] (m/s), and a precision of 0.18 [0.14 0.23] (m/s).
Fig. 7 displays distribution of speed error versus trial conditions
thorough box plot.

Spearman’s test showed a high correlation (R2 = 0.96 for
walking and R2 = 0.94 for running) between the reference and

Fig. 9. Importance of personalization for the step length modeling. (A),
(B) and (C) show the correlation between the feature cad (cadence) and
the step length of participants #11 (red squares), #30 (green circles), and
both together. R2 Spearman’s correlation values were also indicated for
each case.

Fig. 10 Evolution of the RMSE error of the proposed speed estimation
method over personalization procedure for both walking and running. The
dark line and the area are respectively mean and standard deviation of
RMSE error over all subjects. x axis corresponds to numbers of GNSS
data used for personalizing the step length model.

predicted speed values. For average speed per person, the cor-
relation coefficients increased to R2 = 0.99 for both walking
and running. Fig. 8 illustrates Bland-Altman plot [53] for speed
estimation confirming low correlation between the error and es-
timated speed values (R2 = 0.07 for running and R2 = 0.06 for
walking). Kruskal–Wallis test demonstrated a significant effect
(p < 0.001) for altitude changes of the path and participants
on the speed error during walking and running. Lastly, the pre-
dicted speed values and age, height and weight for both walking
and running were uncorrelated (R2 < 0.06).

B. Personalized vs Non-Personalized Method

The importance of personalization for step length model-
ing is demonstrated in Fig. 9. In fact, this example shows
how a high correlation (R2 > 0.83) between the individual
cadence (Cad[n]), as a typical feature, and the individual step
length was dropped (R2 > 0.12) when data of the two partici-
pants were mixed. Generally, biomechanically-derived features
showed different degrees of correlation with step length ranging
from R2 ∈ [0.10 0.95]. Nevertheless, each feature has reached
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TABLE II
OVERALL PERFORMACE OF PERSONALIZED AND NON-PERSONALIZED APPROACHES FOR SPEED ESTIMATION IN DAILY WALKING AND RUNNING

a R2 ≥ 0.41 for at least one subject, which higlights the useful-
ness of all features.

Fig. 10 indicates the evolution of RMSE of the proposed speed
estimation method over personalization procedure. In order to
obtain this result, for each subject, training samples were fed
one-by-one into the recursive personalization procedure where,
after feeding each sample, the most updated model was eval-
uated through all data in the test set (i.e., half of data of the
subject). Then, inter-subjects mean and standard deviation of
RMSE were computed as dark line and the shadow in Fig. 10,
respectively. According to this figure, using only 600 samples
of GNSS for personalization decreased the RMSE value to less
than 0.1 and 0.2 (m/s), respectively.

Table II compares overall performance of the proposed per-
sonalized method and its non-personalized version, according to
average number of samples and numbers of subjects in training
to build each model. Both methods are evaluated on test data set
which is half of data of each subject (randomly selected) and
personalization data set was excluded from error computation.
In order to build a non-personalized speed estimation model, on
average 70000 and 30000 samples collected from 29 subjects
were used for walking and running, respectively. However, for
personalized model only 600 and 1200 samples (on average)
collected from only one subject were employed for walking and
running respectively. Fig. 11 indicates cumulative distribution
of RMSE, bias, and precision of the proposed personalized and
non-personalized methods. Eventually, Fig. 12 displays the cor-
relation between actual and estimated speed values thorough the
proposed personalized and non-personalized methods.

IV. DISCUSSION AND CONCLUSION

In this paper, we devised a personalized approach for accurate
speed estimation during walking and running using a wrist-
mounted accelerometer and barometer under various real-world
conditions. Several terrain conditions as well as speed ranges
were considered to test the method.

Our analysis showed that while the correlation between fea-
tures and step length might be high for when each individual
was considered separately, it dropped when we mixed data from
two or more individuals (see Fig. 9). Consequently, to provide
a more accurate speed estimation, a personalized model was
designed for each individual. The personalized model was up-
dated whenever new GNSS data were acquired in order to adapt
the model to new gait styles adopted by the user. As depicted
in Fig. 10, at the beginning of the personalization procedure,

Fig. 11. Cumulative distribution of RMSE, bias and precision of the
proposed personalized and non-personalized methods for walking and
running. For example on the most top right plot, the red star demonstrates
that the RMSE error of the personalized method is less than 0.27 (m/s) for
90% of the population. However, for non-personalized method (i.e., blue
star), the RMSE error is less than 0.53 (m/s) for 90% of the population.

Fig. 12. Estimated speed versus reference for the proposed personal-
ized and non-personalized methods.
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the error in estimated speed was quite high since there were not
enough data to build a reliable speed estimation model. How-
ever, as more and more personalization data were given as input
to the online RLS-based learning process, the RMSE were grad-
ually decreasing. The personalized approach relied on the same
features and similar rule than non-personalized approach (RLS
instead of conventional least square) where only the training
data were different. In fact, the personalized model was initial-
ized through training by a small initial data set coming from
the participant. An alternative was to train the initial model by
the data belonging to the whole population. However, the ini-
tial model that we proposed led to a faster convergence of the
model and did not require a large training dataset involving high
numbers of participants.

The proposed personalized method was able to follow GNSS
speed every second under different speed ranges ([0.5 5.2] m/s)
and environmental conditions (i.e., uphill, flat, downhill). Com-
pared to GNSS speed, the proposed method has achieved a
proper RMSE of 0.05 [0.04 0.06] (m/s) and 0.14 [0.11 0.17]
(m/s) for walking and running, respectively. It also provided
almost zero bias for both walking and running. Eventually, the
method has obtained a very good precision of 0.06 [0.05 0.07]
(m/s) and 0.18 [0.14 0.23] (m/s) for walking and running, re-
spectively (see Table I). These errors showed how much the
proposed method was different from GNSS speed which itself
had a median measurement error of 0.12 (m/s), in spite the
low accuracy provided in the GNSS receiver datasheet (0.05
(m/s)). Our algorithm performed better for walking than run-
ning, and this was due probably to the greater robustness of
the walking features extracted from hand movement. Moreover,
the proposed method was also robust enough to have similar
performance on both wrists.

In order to show the power of personalization, we com-
pared the personalized method with its non-personalized ver-
sion where features, model, and test data were the same and
the difference came from training approach. We demonstrated
that using 50 times less training samples than non-personalized
method (i.e., 600-1200 samples compared to 30000-70000), the
personalized method has achieved a better RMSE, bias, and pre-
cision. It should be also noted that the personalized method was
trained by data of only 1 subject, compared to non-personalized
method trained by data of 29 subjects. In particular, by person-
alization, the IQR of bias dropped by at least ten times, which
led to more accurate estimation of average speed within a period
of speed measurement. Moreover, the personalization led to a
great improvement in the RMSE and precision (at least 3 times),
which resulted a precise instantaneous speed estimation. Fig. 11
supports these results by showing that the proposed personalized
method performs excellent for almost all types of people where
the range of error is very low (e.g., RMSE varies in ranges
[0.06 0.36] and [0.03 0.15] (m/s) for walking and running,
respectively). On the other hand, the performance of non-
personalized method highly varies among different types of peo-
ple (e.g., RMSE varies in ranges [0.14 0.75] and [0.04 0.26] for
walking and running, respectively). Consequently, the personal-
ized model is more reliable than non-personalized method. How-
ever, if data of a specific person was not enough to train a reliable

personalized model, which depends on the variety of his/her gait
styles, the non-personalized method may perform better due to
the support of a much higher training data (i.e., higher gener-
alization ability). This issue can be seen in the most bottom
left subfigure of Fig. 11 where for a small number of subjects
the precision of non-personalized walking speed method was
slightly better than the personalized one. Fig. 12 illustrates that
through personalization the correlation between reference and
predicted speed is increased by more than 23 (%) and 15 (%) for
walking and running, respectively. Totally, the results show that
the performance of the personalized method was more similar to
that of the reference GNSS system than non-personalized one.

In the personalized method, low number of GNSS samples
used implies having the GNSS ON for each subject only for
few minutes (i.e., 10 minutes). This parsimonious usage of
GNSS could be distributed over one or two weeks (e.g., some
GNSS samples per day) to obtain enough diversity in the gait
styles (different speeds, terrain conditions, etc.) of a user. In
this study, we employed a random selection strategy to choose
a subset of GNSS samples to personalize the speed estimation
model. However, a more smart strategy can be designed (as
a prospective of this study) to turn GNSS ON when there is
new information in the gait behavior of the user. This leads to
capturing the most informative GNSS samples through using
the GNSS as less as possible.

In addition to personalization, we defined wrist-based
biomechanically-derived features to obtain more accurate speed
estimation. These features showed different degrees of correla-
tion with step length depending on the individual’s gait style as
was illustrated for cadence in Fig. 9. The results determined that
each feature reached a R2 ≥ 0.41 for at least one subject. This
demonstrated that all the proposed features conveyed useful in-
formation and had complementary effects. By selecting only
a few but relevant gait features, we reduced computation and
complexity costs of the step length model, which is important
for real-time algorithms implemented on portable devices like
wristwatches.

The results highlighted the dependence of the gait speed errors
on the speed values: overestimation for low speed and underes-
timation for high speed (Fig. 8). One possible reason could be
due to the limitation of the linear model which was preferred in
order to decrease computation and algorithm complexity. An-
other reason may be the limited number of training samples at
low and high speed. This could be confirmed by using non-linear
models and increasing sample size. Another issue is the outliers,
which can be seen in Fig. 7. One possible reason for these may
be the lack of perfect synchronization between the proposed
wrist-based speed estimation method and the reference GNSS
system. In fact, the wrist-based method used a 7-second slid-
ing window that prevented it from responding to rapid changes
of speed, which might be quite probable in real-life situations.
Hence, sometimes, there was a time delay between the proposed
personalized wrist-based method and the GNSS reference sys-
tem, especially after immediate speed transitions, which led to
generating the outliers observed in our error plots. Apart from
this, the GNSS sensor sometimes yielded very noisy data due to
low quality of satellite signals or unexpected body movement,
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which alone can generate outliers. The method presented in
Section II-B and Fig. 3, aimed at reducing noise in GNSS data.
However, other techniques for better GNNS signal enhancement
could be considered.

Compared to previous studies, the proposed personalized
speed estimation algorithm has achieved excellent performance
even though the sensor placement on the wrist was challenging
and measurements were performed in the free-living environ-
ment. For walking, the proposed personalized method provides a
median error of 0.00 (m/s) and an IQR of 0.06 (m/s) where [20],
as one recent non-personalized wrist-based walking speed esti-
mation algorithms, achieved a median error of 0.02 (m/s) and an
IQR of 0.18 (m/s) using single accelerometer and barometer sen-
sors. Methods based on foot sensors also have reported a mean
error of 0.01 (m/s) and the precision of 0.08 (m/s) for indoor
walking [56] where both accelerometer and gyroscope sensors
were employed. Moreover, shank and thigh sensors-based algo-
rithms used at least three sensors to provide a precision of 0.10
(m/s) [26]. For running, few works have been introduced to es-
timate speed using inertial sensors. The proposed personalized
method has obtained a median error of 0.00 (m/s) and an IQR
of 0.18 (m/s) for running speed estimation. Foot-fixed sensors
were used to estimate running speed with a median error of 0.07
(m/s) and range of 0.13 (m/s) [25] where an accelerometer and a
gyroscope were used on each foot. Yang et al. also estimated run-
ning speed on treadmill using an accelerometer and gyroscope
shank-mounted sensors with a root mean square error of 0.10
(m/s) [57]. Moreover, [58] tested four different speed estimation
algorithms using an IMU implemented into a shoe sole and, in
the best case, reported a mean (± std) error of 0.03 (±0.27) m/s
for an algorithm based on the foot trajectory estimation.

The proposed method offers a versatile measurement tool that
could be used in a variety of target populations. In sport appli-
cations, it can be used to help trainers and trainees to optimize
their walking/running performances. In clinical applications, the
method provides the potential to monitor patients, adults or el-
derly people. For instance, we have planned to apply this method
to a large population to study the effect of various diseases (e.g.,
obesity, frailty, cardiovascular disorders), or aging on the activ-
ity profile of people (i.e., gait speed). However, the proposed
method would need to be complemented by other techniques
for locomotion-bout detection, to automatically classify gait
bouts that could be then used for speed estimation. Our analysis
showed that using only one unique model for both walking and
running speed estimation could increase the error up to 4 times.
Since the proposed personalized method has been optimized for
healthy population, it may need some tuning and validation for
elderly and patient populations.

To conclude, the present study provided a personalized ap-
proach for accurate, precise, and low-power estimation of in-
stantaneous speed during daily-life gait. It demonstrated that
personalization leads to a great improvement of speed estima-
tion based on wrist sensor (despite the challenges posed by
the sensor location) by achieving results comparable to the
GNSS reference. While in free-living conditions, the proposed
method were tested on normal gaits where wrists were swing-
ing around the trunk. Further analysis should be done to validate

the algorithm under abnormal gaits or where independent arm
movements (e.g., hand-in-pocket, carrying a bag, talking with
phone) exist. Nevertheless, our previous work showed that the
cadence estimation was not affected significantly by these in-
dependent movement [20]. As other future work, the proposed
algorithm could be improved to manage non-linearity between
the chosen features and step length, validated in abnormal gait,
integrated with an automatic locomotion-period recognition al-
gorithm (such as methods proposed in [59], [60]), and rendered
even lower-consuming through a smart strategy to minimize
GNSS usage.
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