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Evaluating and Enhancing the Generalization
Performance of Machine Learning Models for
Physical Activity Intensity Prediction From
Raw Acceleration Data

Vahid Farrahi
and Timo Jamséa

Abstract—Purpose: To evaluate and enhance the gen-
eralization performance of machine learning physical
activity intensity prediction models developed with raw
acceleration data on populations monitored by different
activity monitors. Method: Five datasets from four studies,
each containing only hip- or wrist-based raw acceleration
data (two hip- and three wrist-based) were extracted. The
five datasets were then used to develop and validate
artificial neural networks (ANN) in three setups to classify
activity intensity categories (sedentary behavior, light,
and moderate-to-vigorous). To examine generalizability,
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the ANN models were developed using within dataset
(leave-one-subject-out) cross validation, and then cross
tested to other datasets with different accelerometers. To
enhance the models’ generalizability, a combination of
four of the five datasets was used for training and the fifth
dataset for validation. Finally, all the five datasets were
merged to develop a single model that is generalizable
across the datasets (50% of the subjects from each dataset
for training, the remaining for validation). Results: The
datasets showed high performance in within dataset cross
validation (accuracy 71.9-95.4%, Kappa K = 0.63-0.94).
The performance of the within dataset validated models de-
creased when applied to datasets with different accelerom-
eters (41.2-59.9%, K = 0.21-0.48). The trained models on
merged datasets consisting hip and wrist data predicted the
left-out dataset with acceptable performance (65.9-83.7%,
K = 0.61-0.79). The model trained with all five datasets per-
formed with acceptable performance across the datasets
(80.4-90.7%, K = 0.68-0.89). Conclusions: Integrating
heterogeneous datasets in training sets seems a viable
approach for enhancing the generalization performance
of the models. Instead, within dataset validation is not
sufficient to understand the models’ performance on other
populations with different accelerometers.

Index Terms—Accelerometers, pattern recognition, artifi-
cial neural networks, activity monitor, classification.

|. INTRODUCTION

CCELEROMETERS are small, reliable, and feasible
A tools for objective measurement of physical activity (PA)
[1]. Different PA types, energy expenditure, and intensities
can be assessed from acceleration signals [1]. Classification
of acceleration data across the whole intensity spectrum is
one of the most common measures for a variety of stud-
ies including clinical, surveillance, and intervention studies
[2].

Traditionally, intensity classification of activities has been
performed using cut-point-based methods that have been estab-
lished for both activity counts and raw acceleration data [1],
[2]. However, the accuracy of the cut-points has been reported
to be limited [1], [3]. Recently, raw accelerometry and machine
learning (ML) modeling approaches have been used for both
standardization and harmonization of accelerometry results and
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precise measurement [4], [5]. It is widely accepted that the
increased output comparability provided by raw accelerometry,
together with sophisticated modeling approaches, could help
develop reliable and precise data processing techniques capa-
ble of predicting PA in various population groups regardless
of accelerometer brand [6]—-[8]. Such a technique is needed to
enable the comparability of results across studies and provide
opportunities to pool data from different cohorts [9]. To date,
a universally accepted method for predicting PA intensity from
acceleration data across the intensity spectrum is still lacking
[2], [8]. This is mainly because the generalizability of the ex-
isting methods to populations different from the one used for
model development has been limited. Several factors affecting
the generalization performance of modeling approaches. Studies
focusing on the comparability of accelerometry data have found
that raw data from various accelerometers are not equivalent [6],
[71, resulting in incomparability of activity intensity predictions
[6]. Differences in population characteristics also affect the gen-
eralization performance of the existing methods. These led to
requests for more robust data processing techniques capable of
predicting PA intensities in various populations monitored by
different accelerometers [6], [7]. Recent evidence has suggested
developing ML-based classification models to classify activities
directly according to their intensity categories. The validity of
this method [10], [11] as well as its generalizability on inde-
pendent population [12] have been shown in previous studies.
This method might be preferred over indirect methods, which
first predict the energy expenditure of activities and then clas-
sify activity intensity based on energy expenditure thresholds
[13], or first predict activity types and then collapse the cate-
gories into intensity categories [11], [12]. Previous research has
reported both high error and bias of energy expenditure predic-
tion models [12], [13] and performance deterioration of classi-
fication models as the number of activity categories increases
[14], [15].

The present study focuses on evaluating and enhancing
generalization performance on independent populations mon-
itored by different accelerometers. The specific study goals
were (a) to examine the generalization performance of PA
intensity prediction models developed with raw acceleration
data and validated using within-sample validation to other
populations monitored with different accelerometers, (b) to
investigate whether the generalization performance of intensity
prediction models can be improved by training the models
on data collected from different populations with different
wear locations (hip or wrist) and accelerometers, and (c) to
provide a robust intensity prediction model that is trained
on a variety of data sources and performs across different
populations monitored by different accelerometers and wear
locations.

The article is organized as follows. The related works are
described briefly in Section II. The dataset and data preparation
steps are presented in Section III, followed by the experimental
design in Section IV. The results are shown in Section V and
discussed in detail in Section VI. Finally, the conclusions of the
study are presented in Section VII.

[I. RELATED WORKS

A. Machine Learning Approaches for Physical Activity
Intensity Prediction

Pober ef al. were one of the first to develop and validate
ML-based models for classifying PA from acceleration data
[16]. They also demonstrated that ML-based models are more
precise for predicting PA intensities compared with regression
analysis using PA intensity cut-points. With the accumulating
evidence on the superiority of ML approaches, questions have
been raised about which technique is preferred. This has led
to the examination of different ML techniques for predicting
PA types from different wear locations in existing studies. For
example, Zhang et al. [17] tested several ML techniques with
a wrist-worn accelerometer and achieved the highest accuracy
by the support vector machine and decision tree, while other
tested ML methods including artificial neural networks (ANN),
Naive Bayes, and logistic regression also produced satisfactory
results. Another study by Kate et al. [18], testing different ML
techniques with a hip-worn accelerometer, achieved the highest
accuracy using ANN, logistic regression, and support vector ma-
chines compared to random forest, Naive Bayes, decision tree,
bagged decision tree, and K-nearest neighbors. To date, there
is still no consensus in the literature on which ML technique
is the most accurate, mainly because their performance can de-
pend on different factors such as wear location, population age
range, window size, and even defined activity categories that
can vary from one study to another [5], [12]. While various ML
approaches are still being validated, recent evidence suggests
the popularity of ANN compared to other applied approaches
[4], [5]. This might be mainly due to the repeated documenta-
tion of its reasonably high and competitive predictive accuracy
with different wear locations [14], populations [12], and win-
dow sizes [19] compared to other applied ML techniques. It has
also been known as a robust and flexible approach for predicting
PA types from raw acceleration data [4].

Another main concern regarding the use of ML approaches
for predicting PA has been their generalization performance on
independent populations especially for predicting PA intensity
[1]. Previous studies have been mostly developed using within-
sample validation (i.e., leave one subject out), resulting in a
limited understanding of the performance of ML-based models
on different populations [4], [5].

B. Previous Studies Testing the Generalization of
Machine Learning-Based Models

To date, there has been only a few studies which investi-
gated the generalization performance of ML-based models [5].
Although studies have consistently shown a performance de-
terioration when ML models are cross-tested on independent
populations, there is still no consensus on its cause. However,
the reason identified for this deterioration has been different
among these studies [5]. For example, while Bastian et al. iden-
tified that the differences between acceleration data collected
in free-living and laboratory settings is the main reason for
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Data from four independent studies

v

Extracting five datasets, each containing only hip or
wrist triaxial acceleration data

v

Mapping activity types to intensity categories using
Compendium of Physical Activity

v

Conducting the experiments with original down
sampled raw acceleration (frequency 25 Hz, intact
acceleration range) and tailored (frequency 25 Hz,

acceleration range +5g) data

Fig. 1. The general workflow of study.

the performance degradation of laboratory-calibrated models
when applied to an independent population [20], Mannini et al.
identified the differences in sample characteristics as the main
reason for degradation [21]. These discrepancies among pre-
vious studies seem to be due to the investigation of only one
factor at a time whereas there would be several contributing
factors in real-world applications, ranging from acceleration
data to sample characteristics and unseen activities [5]. It is
necessary to understand how ML-based models developed for
PA intensity prediction will perform in the presence of various
heterogeneities and to develop more robust models.

Ill. DATASETS AND DATA PREPARATION

The present study conducted three experiments using data
from a total of four independent studies comprising raw
acceleration-based motion data. This section first describes these
studies and how they collected motion data. Then, it describes
how these datasets were prepared for the experiments. The study
workflow is shown in Fig. 1.

A. Datasets

One of the four studies (University of Oulu) was performed
by our research team at the University of Oulu [10] and the
other three had open-access data (Oregon State University [22],
PAMAP2 Physical Activity Monitoring [23], Daily and Sports
Activities [24]). These studies were performed by different re-
search labs with different participant groups (i.e., youth and
adults), and each of which comprised different sets of activities
performed in different contexts (indoor and outdoor) measured
by different activity monitors. The open-access datasets were
selected since, to the best of our knowledge, they were the only
ones that were publicly available to the research community
at the time of the study, and comprised raw acceleration data
measured by wearable activity monitors. A brief description of
each study is provided in Table I, and the performed activities
are presented provided in Table II.

1) Dataset UOULU (Hip): This dataset was gathered at the
University of Oulu (UOULU). It was collected from 22 healthy
adult participants who performed 10 types of pre-defined ac-
tivities [10]. The participants were recruited from the students

and staff members of the University of Oulu. Direct observa-
tion served as the criterion measure to annotate the data. The
Hookie AM20 triaxial accelerometer was attached to the par-
ticipant’s right hip to measure raw acceleration data (scale: 16
gravitational unit [g]) with a sampling rate of 100 Hz. The data
collection protocol included activities in the following order: ly-
ing on a sofa, working on a computer, standing, table cleaning,
floor cleaning, walking slow (approximately 2-3 km/h), walk-
ing fast (approximately 5-6 km/h), playing soccer, jogging, and
cycling. Each activity trial lasted for 4 min except laying on a
sofa, which lasted for 5.5 min. In between each activity, partici-
pants rested for 1 to 6 min. Detailed information about the data
acquisition protocol has been reported previously [10].

2) Dataset OSU (Hip, Wrist): The dataset has been made
publicly available by researchers at Oregon State University
(OSU) [25]. It was collected from 52 youths performing 12
types of activities in two lab visits within two weeks and an-
notated by direct observation. The Actigraph GT3X+ triaxial
accelerometers were attached to participant’s right hip and non-
dominant wrist to measure raw acceleration data (scale: =6 g)
with a sampling rate of 30 Hz. Briefly, on the first lab visit, par-
ticipants completed six of the activities, and on the second lab
visit, they completed the remaining six activities. Each activity
trial lasted 5 min. More information about the activity protocol
can be found elsewhere [22]. The authors specified that the data
were collected from 52 subjects. However, the hip data from 50
subjects and wrist data from 16 were available for download.

3) Dataset PAMAP (Wrist): The PAMAP2 Physical Activity
Monitoring (PAMAP) dataset is a fully annotated dataset by
direct observation. It is publicly available from the UCI Ma-
chine Learning Repository [26]. The dataset was acquired from
9 adult participants who performed 18 different types of activ-
ities. The subjects were mainly employees or students at the
German Research Center of Artificial Intelligence. To capture
motion data, three Colibri wireless inertial measurement units
(IMU) were attached to participants’ chest and dominant wrist
and ankle. Each of the IMUs contained two triaxial accelera-
tion sensors (scale: +16 g and +6 g); a 3-D gyroscope sensor;
a 3-D magnetometer sensor; and temperature, orientation, and
HR monitor sensors. The raw acceleration data from both ac-
celerometers were acquired with 100 Hz sampling rate. Briefly,
each participant followed a protocol containing 12 different ac-
tivities. Additionally, participants were asked to perform some
additional activities from a list. Five of the participants did the
additional activities, including watching TV, driving a car, play-
ing soccer, and folding laundry. Detailed information about the
activity protocol can be found elsewhere [23].

4) Dataset DSA (Wrist): The Daily and Sports Activities
(DSA) dataset is another publicly available dataset. The data
and its annotation information are available from UCI Machine
Learning Repository [27]. It was collected from 8 adult subjects
performing 18 different types of activities. Five Xsens MTx
IMUs were attached to the chest and the right and left wrists and
knees to capture the motion data. Each of the IMUs contained a
triaxial acceleration sensor, a 3-D gyroscope sensor, and a 3-D
magnetometer sensor. The accelerometers of the IMUs attached
to the wrists had a scale of £5 g and the other three had a
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TABLE |

DETAILED CHARACTERISTICS OF THE FOUR STUDIES

Dataset

Collection environment

Participants

Sensors and accelerometer sensor specifics

Wear locations

University of Oulu
(UOULU)

Oregon State
University (OSU)

PAMAP?2 Physical
Activity Monitoring
(PAMAP),

Daily and Sports
Activities (DSA)

A dataset collected inside and outside

a laboratory.

An open-access dataset collected

inside a laboratory.

An open-access dataset collected

inside and outside a laboratory.

An open-access dataset collected

inside and outside a laboratory.

Twenty two participants (11 males, 11
females), mean age: 27.5 + 11.2 year, age

range: 17-58 year, BMI: 25.1 + 2.2 kg.m™

Fifty two participants (28 boys, 24 girls),
mean age: 13.7 + 3.1 year, age range: 7.2-
18.9 year, body mass: 50.6 + 13.5 kg,

handedness: not specified

Nine participants (8 males, 1 females),
mean age: 27.2 + 3.3 year, age range: 23-
32 year, BMI: 25.1 + 2.6 kg.m?,
handedness: 7 right, 1 left

Nine participants (4 males, 4 females),
mean age: not specified, age range: 20-30

year, BMI: not specified, handedness: not

Hookie AM20 triaxial accelerometer, scale: +16g,

sampling rate: 100 Hz

ActiGraph GT3X+ triaxial accelerometer; scale:

+6g, sampling rate: 30 Hz

Colibri wireless inertial measurement unit
containing two 3D accelerometers, 3D gyroscope
sensor, 3D magnetometer sensor, temperature,
orientation and HR monitor sensors; scales: +16g

and +6g, sampling rate: 100 Hz

Xsens MTx wired inertial measurement unit
containing 3D accelerometer, 3D gyroscope, 3D

magnetometer; scales: +5g (wrists) and +18g

Right hip

Right hip and
non-dominant

wrist

Dominant-
wrist, dominant-

ankle, chest

Right and left
wrists, right and

left knees, chest

specified

(knees and chest), sampling rate: 25 Hz

scale of £18 g. The raw acceleration data were collected with a
sampling rate of 25 Hz. Each of the 18 activities were performed
by all 8 subjects for 5 min. Further information regarding the
activity protocol is described elsewhere [24].

B. Dataset Preparation

Raw acceleration data from the four abovementioned studies
were extracted and used to create five datasets, each containing
only hip or wrist triaxial raw acceleration data. Throughout the
text, the five datasets are referred to as UOULU (H), OSU (H),
OSU (W), PAMAP (W), and DSA (W), where H refers to hip
and W to wrist. The dataset PAMAP (W) includes the wrist
acceleration data from the IMU sensor with a scale of =16 g.
The dataset DSA (W) includes the right wrist acceleration data.

1) Mapping Activity Types to Intensity Categories: In all the
datasets, direct observation served as the criterion for physical
activity. The Compendium of Physical Activity for adults [28]
and youths [29] were used to assess the energy expenditure
associated with each activity in the adult (UOULU, PAMAP,
DSA) and youth (OSU) dataset, respectively. The Compendium
of Physical Activity is a widely accepted tool and has been
used with direct observation in previous studies as criterion
measures for defining activity intensities [11], [12]. Based on
the anatomical postures suggested by the Sedentary Behavior
Research Network (SBRN) [30] and absolute MET (metabolic
equivalent) thresholds, the activities were categorized into three
intensity categories: <1.5: sedentary behavior (SB), 1.6-2.9:
light PA (LPA), and >3.0: moderate-to-vigorous PA (MVPA).
The performed activities and their corresponding codes in the
Compendium of Physical Activity and intensity categories are
displayed in Table II. The donut charts in Fig. 2 show the per-
centage distribution of the three intensity categories for all the
subjects in each dataset.

2) Sampling Frequency and Acceleration Range: The
datasets had different sampling frequencies ranging from 25 Hz
to 100 Hz. Previous studies have shown that sampling frequency
can slightly affect the results of classification models. To mini-
mize the effect of sampling frequency, acceleration data in all the
five datasets were downsampled to 25 Hz, which is previously
shown to be enough for activity classification [31]. Another
factor which can possibly affect the results of predictions is
acceleration range. To date, it remains unknown which acceler-
ation range is enough for predicting activity intensity from raw
acceleration data. Therefore, we performed all the experiments
both with the downsampled intact original raw acceleration data
and with tailored data. In the experiments with tailored acceler-
ation, the acceleration range was limited to 5 g, which is the
minimum acceleration range across the datasets.

IV. EXPERIMENTAL DESIGN, MODELING APPROACH, AND
PERFORMANCE ANALYSIS

This section first covers how the experiments were designed
to evaluate and enhance the generalization performance of ML
models for PA intensity prediction. Then, it describes the mod-
eling approach followed by the performance evaluation and sta-
tistical analysis.

A. Experiments

1) Experiment 1: Leave-one-subject-out (LOSO) cross-
validation is a commonly used validation approach in existing
studies [4]. In this approach, data from all but one participant are
used to train the model, and the left-out participant’s data is used
to validate the model; the procedure is repeated until all the par-
ticipants are tested [32]. This experiment was designed to clarify
the generalization performance of models validated within one
population to independent ones with different characteristics
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TABLE Il
PERFORMED ACTIVITIES IN THE DATASETS AND, THEIR CORRESPONDING
CODES IN THE ADULT [28] OR YOUTH [29] COMPENDIUM OF PHYSICAL
ACTIVITY, AND ACTIVITY INTENSITY CATEGORIES

. Compendium | Activit;
Activity type codep in(ensi(yy
University of Oulu (UQULU)™
Lying on a sofa 07011 SB
Computer work 11580 SB
Standing 07040 LPA
Table cleaning 05042 LPA
Floor cleaning 05011 LPA
Walking slow 2-3 km/h 17151 LPA
Walking fast 5-6 km/h 17200 MVPA
Playing soccer 15610 MVPA
Jogging 12020 MVPA
cycling 01010 MVPA
Oregon State University (OSU)*
Lying 50100 SB
Hand writing 55500 SB
Computer game 35200 SB
Sweeping 45180 LPA
Underarm throw and catch 20100 LPA
Aerobic dancing 40100 MVPA
Laundry task 45240 MVPA
Self-paced walking 80120 MVPA
Brisk walking 80300 MVPA
Brisk treadmill walk 80240 MVPA
Playing basketball 65100 MVPA
Jogging 60140 MVPA
PAMAP?2 Physical Activity Monitoring (PAMAP)"
Lying 07011 SB
Sitting 07021 SB
Watching TV 07020 SB
Computer work 11580 SB
Standing 07040 LPA
Car driving 16010 LPA
Folding laundry 05090 LPA
House cleaning 05025 LPA
Walking 17190 MVPA
Running 12020 MVPA
Nordic walking 17302 MVPA
Ascending stairs 17133 MVPA
Descending stairs 17070 MVPA
Vacuum cleaning 05043 MVPA
Playing soccer 15610 MVPA
Rope jumping 15552 MVPA
Cycling 01010 MVPA
Daily and Sports Activities (DSA)"
Lying on back 07011 SB
Lying on right side 07011 SB
Sitting 07021 SB
Standing 07040 LPA
Standing in an elevator 07040 LPA
Moving around in an elevator 17151 LPA
Walking in a parking lot 17151 LPA
Rowing 18040 LPA
Ascending stairs 17133 MVPA
Descending stairs 17070 MVPA
Walking on a treadmill 4 km/h 17170 MVPA
Wa}k.mg on a treadmill 4 km/h in 15 degree inclined 17211 MVPA
position
Running on a treadmill 8 km/h 12030 MVPA
Exercising on a stepper 03018 MVPA
Exercising on a cross trainer 02048 MVPA
Stationary cycling in horizontal position 02010 MVPA
Stationary cycling in vertical position 02010 MVPA
Jumping 15552 MVPA
Playing basketball 15055 MVPA

“Youth Compendium of Physical Activity was used. "Adult Compendium of Phys-
ical Activity was used. SB: Sedentary behavior, LPA: Light physical activity,
MVPA: Moderate-to-vigorous physical activity.

and accelerometers performing different sets of activities from
the one used to develop the model. To achieve the goal, the
placement-specific classification models were validated using
LOSO cross-validation within each dataset, and the most opti-
mal fit with the highest accuracy for each dataset was obtained.
The final models were trained with the data of all participants.
The optimal established models were then cross-validated on
independent populations with similar accelerometer placement

Sedentary behavior (SB)

28%

B Light physical activity (LPA)
osU @) B Moderate-to-vigorous physical
activity (MVPA)

UOULU (H) '

32%

16%

27%

0SU (W) PAMAP (W) DSA (W)

4

Fig. 2. Percentage distribution of the three intensity categories (SB,
LPA, and MVPA) for all the subjects in the five datasets.

(a) Experiment 1: Leave-one-subject-out-based models and
their generalization performance
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(c) Experiment 3: Merging a subset of subjects in all the datasets for training a model
and validating with the remaining subjects.
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Fig. 3. General schema of the three experiments.

(out-of-sample testing) to evaluate their generalization perfor-
mance. Fig. 3(a) demonstrates how Experiment 1 was designed
to test the generalization performance of LOSO-based validated
models.

2) Experiment 2: This experiment was conducted to test
whether the generalization performance of intensity prediction
models on independent populations can be improved and more
robust models can be provided by incorporating the informa-
tion that acceleration data from different body sites (i.e., hip
or wrist) acquired from various populations might contain. For
this, to keep the validation set independent, one dataset was
used for validation at a time and was left out from model
development (it was not used as training data). Then, us-
ing the remaining datasets, a merged dataset consisting of a
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combination of both hip- and wrist-based datasets was built and
used as a training set to train an intensity classification model.
The trained model using the merged training set was then val-
idated with the left-out population. To find the most optimal
model, all possible dataset combinations were tested to find the
optimal training sets achieving the highest accuracy in predict-
ing activity intensity categories in the left out dataset. For each
created merged training set, the most optimal fit was found, and
the most optimal model for classifying the left out was selected
as the final model. These steps were repeated when one of the
five datasets was left out at a time to find the most optimal
merged training set for all the five left-out datasets. As an exam-
ple, Fig. 3(b) demonstrates how the datasets were merged when
the DSA (W) was left out.

3) Experiment 3: This experiment was conducted to test
whether it is possible to develop a single classification model
that performs acceptably on different populations wearing a sin-
gle hip- or wrist-worn accelerometer. To test this possibility, a
merged training set comprising data from all the hip- and wrist-
based datasets was created and used to train a single model for
classifying PA intensities across the five datasets. For this, the
data of 50% of the subjects from each dataset were selected
randomly, and their data were merged in a dataset for training
the model. The data of the remaining 50% of the subjects in
each dataset were then used to validate how the model performs
across all the datasets. Data splitting by subject may lead to
better representative data subsets for model development and
validation, compared with splitting the whole dataset into half.
Previous studies have also used this method for validating the
performance of ML models [20]. Fig. 3(c) depicts how a single
model was trained using a subset of subjects selected from all
datasets and validated with all the remaining subjects.

B. Modeling Approach

1) Feature Extraction: The same feature sets were ex-
tracted for all the five dataset/placements. The nonoverlapping
60-second window length was chosen to segment the data.
This window length has been used in recent studies to estab-
lish activity type classification and energy expenditure estima-
tion models for youths [19] and adults [15]. For each inter-
val, time- and frequency-domain features (obtained using a fast
Fourier transform) were extracted from all the three axes of
measurement (i.e., X, ¥, and z) and also for the vector magnitude
(i.e., /x% + y? + 7z2). Time-domain features included the 10th,
25th, 50th, 75th, and 90th percentiles of acceleration signals.
Frequency-domain features included the 10th, 25th, 50th, 75th,
and 90th percentiles of signal frequency, total signal power,
dominant frequency, and dominant frequency between 0.6 and
2.5 Hz. The extracted feature set is very similar to those that
were used and validated in previous works [11], [33].

2) Classification Algorithm: The extracted features were
used as inputs to develop ML models. Artificial neural networks
(ANNs) were selected to classify the three different activity
intensities: SB, LPA, and MVPA. ANN, composed of mathe-
matical nonlinear functions, can model complex relationships
between inputs and outputs [19]. ANN was chosen because it
has been used frequently in previous studies, and it has been

reported to be highly accurate in predicting both activity type
and energy expenditure from accelerometer data in different age
groups [11], [19]. Further description of the theoretical basis and
structure of ANN can be found in past studies focusing on de-
veloping ANN models to predict activity types or intensities
[11], [19].

In this study, the nnet package in R was used to train the
ANNS. Each network comprised a single hidden layer with
10 nodes. To ensure that the models are converged, each
network was trained for a maximum of 10000 iterations. These
parameters were selected based on reasonably high accuracy
in previous works developing activity and intensity prediction
models [11], [12].

C. Performance Evaluation and Statistical Analysis

Confusion matrices, showing the proportion of instances of
the three intensity categories that were correctly and incorrectly
classified, were used to evaluate the classification and misclas-
sification rate of the ANN models. An overall classification
accuracy of the models with 95% confidence interval was also
produced by calculating the percentage of correctly classified
60-second time windows for each subject. To ensure that the
overall predication accuracy was not by chance, the agreement
between predicted and actual intensity categories was calculated
by weighted Kappa statistics (K), which is known as an appropri-
ate performance metric for multiclass classification tasks [34].
We followed the common and accepted interpretation of Kappa
values (k) suggested by Landis and Koch [35], where the follow-
ing categorization is used: poor (0.0-0.2), fair (0.2-0.4), moder-
ate (0.4-0.6), substantial (0.6-0.8), and almost perfect (0.8—1.0).

Besides classification accuracy, it is also important to test
whether a single model is providing comparable results for
different intensity categories across the dataset [9]. Thus, in
Experiment 3, we further tested the comparability of classifi-
cation results by calculating sensitivity and specificity for each
intensity category across the datasets. The means of sensitiv-
ity and specificity were compared to test whether they differ
significantly. One-way analysis of variance (ANOVA) with the
Tukey-Kramer post-hoc test was used because it accounts for
unequal sample sizes. The significance level was set to p < 0.05.

V. RESULTS
A. Experiment 1: Leave-One-Subject-Out Models

The performance of ANN models validated using LOSO
cross-validation within the datasets with raw data and tailored
data (acceleration limited to +5 g) are shown in Table III. In
LOSO cross-validation, with both raw and tailored data, the
overall classification accuracy of the hip- and wrist-based mod-
els were high, achieving above 80% (range: 81.8-95.4%), ex-
cept for the dataset PAMAP (W), which showed a slightly lower
classification accuracy (raw: 71.9%), tailored: 79.6%). The hip-
based models exhibited an almost perfect agreement (range:
K = 0.81-0.94) except in the dataset UOULU (H) when
trained using raw data that exhibited substantial agreement (K
= 0.78). The wrist-based models showed substantial agreement
(K = 0.63-0.72) except in the dataset OSU (W) where the
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TABLE IlI
CONFUSION MATRICES SHOWING THE PERFORMANCE OF ANN MODELS IN
ACTIVITY INTENSITY CLASSIFICATION WITH RAW DATA AND TAILORED DATA
(ACCELERATION LIMITED TO +5 g) VALIDATED USING
LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION WITHIN DATASETS

TABLE IV
CONFUSION MATRICES SHOWING THE PERFORMANCE OF
LEAVE-ONE-SUBJECT-OUT VALIDATED ANN MODELS IN ACTIVITY INTENSITY
CLASSIFICATION IN AN INDEPENDENT POPULATION GROUP WITH RAW DATA
AND TAILORED DATA (ACCELERATION LIMITED TO +5 g)

Validation: OULU (H) Model: UOULU (H), Validation: OSU (H)
Raw Tailored Raw Tailored
LPA | MVPA | Accuracy: Class LPA | MVPA | Accuracy: LPA | MVPA LPA | MVPA | Accuracy:
85.6 22
(80.2-91.0) (48.855.7)
Kappa, K: Kappa, K:
0.81 0.47
Model: OSU (H), Validation: UOULU (H)
Raw Tailored
LPA | MVPA Ac;l;r;cr- LPA | MVPA LPA | MVPA
(94.1-968) 3 r
Kappa,K:
0.94
LPA | MVPA | Accauracy:
0.0 36 87.1
(815-926)
Kappa, K.
0.84

Tailored

Validation: DSA (W)

LPA MVPA

Tailored
LPA | MVPA

Modd: PAMAP (W), Vali osU (W)

The values across the intensity categories and overall accuracy (95% confidence
interval) are presented in percentage (%). SB: Sedentary behavior, LPA: Light
physical activity, MVPA: Moderate-to-vigorous physical activity. *The raw data
and tailored data were similar.

agreement was almost perfect (raw data: K = 0.85, tailored
data: K = 0.84). With respect to the three intensity categories,
in all the datasets except UOULU (H), the LPA had the min-
imum classification accuracy, but the observations in SB and
MVPA were mixed. Across all the five datasets, the differences
in classification accuracy of the three intensity categories with
raw and tailored data were marginal (range: 0.2-9.2 percentage
points), resulting in marginal differences in overall classifica-
tion accuracy (0.7-7.7 percentage points) and Kappa values (K
=0.01-0.09).

Table IV shows the performance of the models validated by
the LOSO technique within a population when cross-tested on
other populations with raw and tailored data. When the models
were cross-tested with another dataset, the overall classification
accuracies across the different datasets ranged from 41.2% to
59.9% and the Kappa values from K = 0.21 to 0.48. All models
demonstrated lower performance than those obtained by within
dataset cross-validation (Table III). The reduction in classifi-
cation accuracy ranged from 20.1 to 44.3 percentage points.
The Kappa values were also lower ranging from K = 0.24 to
0.63, resulting in fair or moderate agreement (K = 0.21-0.48).
Raw and tailored data, even though in some cases favoring the
classification accuracy of one or two of the intensity categories
interchangeably, minimally affected the overall accuracies (0.7—
13.1 percentage points) and Kappa values (K = 0.01-0.11).

B. Experiment 2: Merging Various Sources of Data,
Validation With Independent Dataset

The performance of the ANN models trained on merged train-
ing sets in the classification of activity intensities in another
population that was not part of the training data are shown in

Raw
LPA | MVPA | Accunmacy:
439
(39.0-485)
Kappa, K:
030

Accuracy:
458
(412-50.4)
Kappa, K:
0.21
Modd: DSA (W), Vali

Accuracy:
441
(39.5-487)
Kappa, K:
025
Model: DSA (W), Vali

PAMAP (W)

Tailored

Accuracy: LPA | MVPA | Accuracy
49.1 49.8
(37.6-60.5) (38.5-6L1)
Kappa, K: Kappa, K
0.24 0.25

The values across the intensity categories and overall accuracy (95% confidence interval)
are presented in percentage (%). SB: Sedentary behavior, LPA: Light physical activity,
MVPA: Moderate-to-vigorous physical activity.

Table V for both raw and tailored data. All possible dataset
combinations were analyzed, having one population left out at
a time, but only the most optimal results are reported here. The
overall classification accuracy of the models trained on merged
datasets ranged from 65.9 to 83.7% with substantial agreement
(K =0.61-0.79). In some cases, raw and tailored data favored
the classification accuracy of one or two intensity categories
interchangeably. However, the differences in overall accuracies
(0.07-10.6 percentage points) and Kappa values (K = 0.01-
0.11) remained marginal.

In all cases, the models trained on the merged datasets yielded
abetter generalization performance (Table V) compared to those
obtained by placement-specific models (Table 1V). This was
primarily attributable to the better classification of all three
intensity categories. The overall classification accuracy and
agreements across the datasets were lower (2.5-19.3 percent-
age points, K = 0.01-0.21) but approached those obtained by
within-dataset cross-validation (Table III) and for the dataset
PAMAP (W) slightly higher to those obtained by within-dataset
cross-validation (raw: 7.5 percentage points, K = 0.10; tailored:
4.1 percentage points, K = 0.06).
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TABLE V
CONFUSION MATRICES SHOWING THE PERFORMANCE OF ANN MODELS
TRAINED ON MERGED DATASETS WITH RAW DATA AND TAILORED DATA
(ACCELERATION LIMITED TO +5 g) IN ACTIVITY INTENSITY CLASSIFICATION
IN AN INDEPENDENT POPULATION

Model: OSU (H) + OSU (W) + PAMAP (W), Validation: UOULU (H)

TABLE VI
CONFUSION MATRICES SHOWING THE PERFORMANCE OF ANN MODELS IN
ACTIVITY INTENSITY CLASSIFICATION WITH RAW DATA AND TAILORED DATA
(ACCELERATION LIMITED TO +5 g), TRAINED ON A MERGED DATASET
CONSISTING OF 50% UOULU (H), 50% OSU (H), 50% OSU (w), 50%
PAMAP (W) AND 50% DSA (W) SUBJECTS, AND VALIDATED WITH
THE HOLD-OUT SUBJECTS

Raw Tailored
LPA | MVPA | Accunacy: Class LPA | MVPA | Accuracy: L
SB 12 12 703 Validation: 50% UOULU (H)
(77.8840) - - (64.9-757)
Kappa, K: LPA 3 212 Kappa, K: Raw Tailored
0.7 MVPA | 31 | 93 0.66 LPA | MVPA [ Accuracy: LPA | MVPA Accuracy
11 835 73 80.4
Modd: UOULU (H) + PAMAP (W) + DSA (W), Validation: OSU (H) . (75.7-91.3) - (72.8-88.0)
Raw Tailored Kappa, K: Kappa,K
Class LPA [ MVPA Accuracy: Class LPA | MVPA Accuracy: 0.78 0.74
SB 179 | 00 S SB 25 | 00 e Validation: 50% OSU (.
(8L4-844) (79.7-84.6) o )
LPA | 147 40 Kappa, K: LPA 3.5 Kappa, K: Tailored
MVPA [ 17 | 147 0.79 MVPA | 13 | 160 0.7 Accuracy:
Model: UOULU (H) + PAMAP (W) + DSA (W), 0SU (W) ® 7899'31 5
Raw Tailored Kli,l;h K
Chss | SB | LPA | MVPA | Accumoe Chss | SB | LPA | MVPA | Accunacy: 0.88
= w0 | o = X )
tPA_| 00 | 61 | o7 TPA_| 00 | B3| 07D Validation: 50% OSU (W)
MVPA | 12 | 145 0.64 MVPA | 00 | 235 0.67 Raw Taflored
Model: OSU (H) + OSU (W) + UOULU (H), Vali PAMAP (W) Class P4 | MVPA Accaraey:
Raw Tailored - (80.0-88.2)
Chss | SB | LPA | MVPA | Accunqy: Chss LPA | MVPA | Accuracy: Kappa, K:
SB 152 0.0 794 SB 15 % 8.7 A
LPA | 232 54 (72.7-862) TPA | 196 | BT (76.9-90.9
- Kappa, K: - Kappa, K Validation: 50% PAMAP (W)
MVPA | 11 | 103 0.7 MVPA | 11 | 103 oz
Tailored
Model: OSU (H) + OSU (W) + UOULU (H), Vali DSA (W) Accuracy:
Raw Tailored 85.6
LPA | MVPA | Accumqy: Chass LPA | MVPA | Accuracy: (7“'4‘96‘7?
67.1 B 258 7.1 Klzp;; K:
(639-70.9) - (663759 .
LPA | 69 | 300
Kappa, K: Kappa, K A
e MVPA | 36 | 234 e Validation:
The values across the intensity categories and overall accuracy (95% confidence Accuracy
. . . . 4
interval) are presented in percentage (%). SB: Sedentary behavior, LPA: Light (74?‘2“ 9)
physical activity, MVPA: Moderate-to-vigorous physical activity. KIEP7=6K=

C. Experiment 3: Merging Various Sources of Data,
Validation Across all Datasets

The performance of the ANN models trained with merged
data of 50% of the subjects in each dataset and validated with
the remaining 50% of subjects is shown in Table VI. With both
raw and tailored data, across all the five datasets, the model
performed with over 80% classification accuracy (80.4-90.7%)
and substantial or almost perfect agreement (K = 0.68-0.89).
Across the five datasets, there were also small differences in
the classification accuracy of the three intensity categories with
raw and tailored data (0.0-19.2 percentage points), resulting
in minor differences in overall classification accuracy (0.3-4.1
percentage points) and Kappa statistics (K = 0.01-0.04).

The sensitivity and specificity of the model developed with
original raw data in classifying the three intensity categories
across the five datasets are shown in Fig. 4. Since only minimal
differences between raw and tailored were observed, the results
of the tailored data are not shown here. Across all the datasets,
the model classified SB and MVPA with both high (>80%) and
comparable sensitivity except the SB in the UOULU (H) and
OSU (W), which were classified by a sensitivity of slightly lower
than 80% and significantly lower than OSU (H), and MVPA in
DSA (W), which was over 80% but significantly lower than
the datasets UOULU (H) and OSU (W). Similarly, the model
also had high and comparable specificity in classifying the SB
and MVPA across all the datasets except in OSU (W) and DSA
(W) where the MVPA was significantly lower than OSU (H).
For LPA, however, the model preformed with relatively lower
sensitivity yet comparable across all the five datasets (~60—
80%). The specificity of classifying LPA was also high and
comparable in the five datasets.

The values across the intensity categories and overall accuracy (95% confidence interval)
are presented in percentage (%). SB: Sedentary behavior, LPA: Light physical activity,
MVPA: Moderate-to-vigorous physical activity.

VI. DISCUSSION

The purpose of this study was to evaluate and enhance the gen-
eralization performance of ML-based PA intensity prediction
models to other populations monitored by different accelerom-
eters from the one used in model development. The results
demonstrated that merging data from hip and wrist accelerom-
eters collected from various population groups monitored with
different devices is a viable approach to enhance the generaliza-
tion performance of ANN models in PA intensity classification
across different population groups monitored by a single hip- or
wrist-worn accelerometer. Instead, it seems that the high perfor-
mance of LOSO-validated models is not generalizable to other
population groups with accelerometers and characteristics dif-
ferent from the ones used to develop the models.

A. Leave-One-Subject-Out-Based Models and Their
Generalization Performance

In LOSO cross-validation within each dataset, the hip- and
wrist-based models with both raw data and tailored data with
harmonized acceleration range showed high and comparable
overall performance (Experiment 1), achieving over 80% accu-
racy (except for the PAMAP (W) dataset). The comparable over-
all performance of the models in activity intensity classification
is consistent with previous studies that developed activity type
classification models using hip and wrist accelerometer data [3],
[15], [22]. With respect to the intensity categories, the LPA had
the lowest classification accuracy across the datasets (except
the dataset UOULU (H)), and the classification accuracy of the
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Sensitivity

% UOULU (H)

% OSU (H)

Specificity % OSU (W)

100
% PAMAP (W)

% DSA (W)

sB P, MVPA

Fig. 4. Sensitivity and specificity of the ANN model with raw data in pre-
dicting sedentary behavior (SB), light physical activity (LPA), moderate-
to-vigorous physical activity (MVPA) across the five datasets, trained on
a merged dataset consisting of 50% UOULU (H), 50% OSU (H), 50%
OSU (W), 50% PAMAP (W) and 50% DSA (W) subjects and validated
with the hold-out subjects. a: significant difference compared to UOULU
(H), b: significant difference compared to OSU (H), c: significant differ-
ence compared to OSU (W). Bars and the error bars represent mean
values and their standard deviation.

other two categories were mixed. The relatively lower classifi-
cation accuracy of LPA compared to SB and MVPA is consis-
tent with past studies supporting the difficulty of distinguishing
between LPA and lower- and higher-intensity categories [36].
According to a previous research showing the effects of data
acquisition protocols on the performance of ML-based mod-
els [20], [37], the mixed results for the classification accuracy
of SB and MVPA across the datasets with similar placement
is perhaps due to differences in data acquisition protocols and
performed activities in the datasets. This also may explain the
higher accuracy of UOULU (H) in the detection of LPA, as the
performed activities were mainly those with upper body move-
ment. Similarly, the detailed observation of the datasets revealed
that in PAMAP (W), the participants performed different sets
of activities with a few overlapping activities, which might ex-
plain its low overall accuracy both across all the datasets and the
wrist models. The performances of the PA intensity prediction
models in the current study are similar to a recent one that val-
idated ANN-based activity intensity predictions from various
wear locations including hip and wrists [11].

When cross-validated to another population, the performance
of all the models decreased, which was in line with previous
studies [12], [20], [21], [38]. Compared to the achieved accu-
racy values in the previous studies (Table VII), our ANN mod-
els showed even more severe performance reduction using either
raw or tailored data ranging from 20.1 to 44.3 percentage points.

Recently, there has been a growing body of evidence showing
that raw data acquired from different accelerometer brands or
even models are incomparable, which can cause performance
reduction when a model developed for one accelerometer is ap-
plied to another accelerometer [6], [7]. The differences in pop-
ulation characteristics and data acquisition protocols have also
been identified as contributing factors to the predictive ability
of models [12], [20], [21]. It appears that the more significant
performance reduction of the ANN models might be due to
the presence of multiple sources of heterogeneities across the
datasets rather than merely one of them, including heterogeneity
in data acquisition protocols (e.g., sensor attachment, monitored
activities, etc.), population characteristics, and raw data (various
activity monitors).

Consistent with previous findings on the generalization per-
formance activity classification models [12], [20], [38], the re-
sults of this study highlight that the high accuracy of LOSO-
validated models is not transferable to another population, and
within-dataset cross-validation alone is not sufficient to under-
stand how developed models will perform in a new population.
Our results extend this finding by signifying that raw accelerom-
etry and advanced modeling techniques do not necessarily war-
rant the generalizability of models on different populations,
whose activities are monitored by different accelerometers.
However, mainly due to the presence of several heterogeneities
across the datasets and limited available meta-data from the
open-access datasets, it is difficult to provide conclusive infor-
mation about which factors played a more important role in the
overall performance reduction of within-dataset-validated mod-
els. For the same reason, it remains elusive which factors to what
extent caused a model trained on a certain dataset have a rela-
tively better accuracy in classifying certain intensity categories
in another dataset.

Minimal differences were seen in the performance of ANN
models developed with raw or tailored data, when validated in-
dependently. It might be argued that rather than only limiting
the acceleration range and sampling frequency, ascertaining the
equivalency of raw data across different activity monitors using
more sophisticated data conversion/filter strategies or extracting
features that are comparable across monitors could have favored
the generalization performance of the models. While this might
be legitimate, it remains unclear how accelerometer outputs can
be processed to provide comparable raw data, and controversies
exist regarding comparable features across different accelerom-
eters [1], [6], [39].

B. Merging Various Data Sources to Improve the
Generalization Performance of the Models

The ANN activity intensity prediction models trained on a
merged training set classified with acceptable performance the
activity intensity in another population that was not part of the
training phase and was monitored by a different accelerometer
(Experiment 2). Their accuracies were 11.2 to 36.4 percentage
points better than those obtained by the within-sample validated
models, when applied to an independent population. The
findings of accelerometry studies as well as in other fields of
research can explain why the idea of merging data from multiple
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TABLE VII
ACHIEVED ACCURACY VALUES AND CHARACTERISTICS OF POPULATIONS IN STUDIES CROSS-TESTED A WITHIN-SAMPLE VALIDATED MODEL
ON AN INDEPENDENT POPULATION

Population used for model development with within-sample validation

Population used for independent validation of the within-sample validated model

Machine Wear Mean age+ Mean age+
Stud learnin locati Number of standard Accelerometer Accurac Number of standard Accelerometer Accurac
Y a roafh on Participants deviation/age sensor uracy Participants deviation/age sensor uracy
PP range range
: 20 (NR)
120] f:gf‘f::}‘] Hip gg gg;‘g‘) 373£10.6/19-55  MotionLogs 80.9% NR/I8-39 MotionLogs 54.3%
Support 00200ys 50 31115 Waocket 91.0% JZaimen \rigs Wocket 71.8%
21] vector Wrist girls) emales)
[ T S Bdlmen g Wocket 87.0% 20(12boys. 34 3115 Waocket 69.8%
(SVM) 22 females) ocke e 8 girls) : ocke o7
[12] 3 (19 males, ) 1,4 3R GENEActiv 92.8% 24(12men, 64119 NR GENEActiv 77.3%
Random Wrist 20 females) 12 females)
forest
24(12men, 465419 NR GENFActiv 80.2% 319 males, ) 14 3NR GENEActiv 78.5%
12 females) 20 females)
Accuracy in the independent
population using merged training
sets (Table V) 4
22 (11 males, . 52 (28 boys, 13.74£3.1/7.2- ActiGraph
11 females) 27.5+11.2/17-58 Hookie AM20 83.4% 24 girls) 18.9 GT3X+ 46.5% 80.9%
Hip
52 (28 boys, ActiGraph o 22 (11 males, . o
24 girls) 13.743.1/7.2-18.9 GT3X+ 94.4% 11 females) 27.5+11.2/17-58 Hookie AM20 59.9% 82.2%
ActiGraph o 9 (8 males, 1 ~ - o o
Artificial 16 (NR) NR/NR GT3X+ 87.8% females) 27.243.3/23-32 Colibri IMU 51.8% 79.4%
This nueral 8 (4 males, 4
study* networks females) y NR/20-30 Xsens IMU 44.1% 67.1%
(ANN)
9 (8 males, 1 ~ - o ActiGraph o o,
i females) 27.243.3/23-32 Colibri IMU 71.9% 16 (NR) NR/NR GT3X+ 43.9% 68.5%
rist
8 (4males, 4 g 2930 Xsens IMU 45.8% 67.1%
females)
8 (4 males, 4 e ActiGraph
females) NR/20-30 Xsens IMU 81.% 16 (NR) NR/NR GT3X+ 44.1% 68.5%
9 (8 males, 1 Lo
- 27.243.3/23-32 Colibri IMU 49.1% 79.4%
females)

*The achieved accuracy values with downsampled raw acceleration data are presented. IMU: Inertial measurement unit, NR: Not reported.

population groups and different wear locations is plausible. The
use of multiple accelerometers (e.g., hip and wrist) has shown
improvements in the prediction accuracy of classification mod-
els [40]. For instance, classifying energy-consuming activities in
which the wrist motion is limited (e.g., cycling) has been shown
to be challenging with wrist accelerometers while the presence
of motion from other wear locations (e.g., hip) seems to help
classify such activities more accurately (or vice versa for other
activities) [15]. While attaching multiple accelerometers might
be cumbersome for the subjects and not feasible for real-world
applications, combining data from various populations acquired
from a single body-worn accelerometer may be more feasible for
incorporating the information in data from various accelerom-
eter placements. Previous studies have also demonstrated that
training models on a wide range of activities along with the
presence of interparticipant variability in age, body composi-
tion, and others can improve the generalization performance
of ML-based models to a new population [12], [21]. Increased
variability in raw acceleration data (data collected under
different protocols or from different age groups) has been sug-
gested to improve the generalization performance of ML-based
models [20], [21], [37]. Indeed, according to demonstrations by
other fields of research (e.g., speech recognition), the increased
variability in population and raw data can be deemed as the
addition of noise to the input data of an ANN during training,
which results in significant improvements in generalization
performance [41].

The results of this study suggest that integrating multiple
datasets with data from only hip- or wrist-worn accelerometer

into the training set might be a viable approach to augment
the generalization performance of the models. This was sup-
ported by the performance enhancement of the ANN models
close to the within-dataset validation performance or even bet-
ter, when trained on merged datasets. The comparison between
the achieved accuracy values in the present study and previous
ones further indicates the robustness of the developed models
using merged datasets (Table VII) even though the populations
were monitored with different accelerometers and their char-
acteristics remained different. The performance enhancements
also support that integrating multiple datasets helps incorporate
the information from accelerometers placed at the hip and wrist,
together with increasing interparticipant and acceleration data
variability. This finding is promising given that there has been a
lack of methodologies for enhancing the robustness and gener-
alization capability of ML models [4], [6], [12]. The marginal
differences between raw and tailored data are also encouraging
because they imply that enhancing the generalization perfor-
mance of intensity prediction models can be done by combining
original raw data even without data preprocessing (e.g., data
filtering or conversion).

Finally, we also trained the model with a subset of subjects in
all the datasets and validated it with the remaining subjects from
all datasets (Experiment 3). This cross-study procedure resulted
in a model with acceptable performance in classifying activ-
ity intensities across the datasets, achieving over 80% accuracy
in all the five datasets. The model provided both comparable
and high performance across the intensity categories, as evi-
denced by the high sensitivity and specificity of the model, with
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significant differences in only a few cases across five datasets.
These results imply that a robust model that can predict activity
intensities with both acceptable and comparable performance
not only across different population groups with various ac-
celerometers but also across hip- and wrist-worn accelerome-
ters is achievable. This is new and noteworthy because it might
have potential implications on enabling the comparability of
accelerometry results.

Previous research has already shown several sources of het-
erogeneities that can independently or mutually affect the com-
parability of accelerometry data and subsequently the predictive
performance of modeling approaches [6], [7], [20], [42]-[44].
To narrow down the gap between differences in accelerome-
try results, the existing literature has demanded a consensus
on a single wear location [45]. However, even adopting this
might not completely resolve the challenge since there are other
sources of heterogeneities that are often inevitable (e.g., data ac-
quisition protocol, sensor specifications, raw data from different
accelerometers) and affect the comparability accelerometry data
and modeling approaches (this was also shown in Experiment 1).
Developing a robust generalizable model capable of operating
acceptably in the presence of several heterogeneities might be
a more feasible solution. It remains unclear how the in-lab pre-
diction models will perform in free-living settings. Over longer
periods, these nonsignificant differences in prediction perfor-
mance of the model could lead to substantially different results.
Independent cross-validation of the model is needed to ascer-
tain that the model still provides comparable results under truly
free-living settings and new populations.

C. Study Strengths and Limitations

The main strength of this study is the use of five differ-
ent datasets. To the best our knowledge, this is the first cross-
population study conducted on more than two populations, elu-
cidating the generalization performance of PA prediction mod-
els. The heterogeneity of the datasets is also a strength; our study
assumed that there would be heterogeneities in both accelerom-
etry data and data collection protocols. This is not unrealistic,
given that a variety of accelerometer-based activity monitors
with different specification are now being designed that mea-
sure raw triaxial data, and researchers have started to obtain
raw data with different protocols, parameters, and populations
[5]. To facilitate generalizability and comparability between ac-
celerometry results, our ANN models used the increased output
comparability offered by raw accelerometry to provide more ro-
bust models rather than confining the measurement parameters,
participants’ age groups, and data collection protocols to certain
and not-agreed-upon decisions.

This study has some limitations as well. Almost all the
participants in the datasets PAMAP (W) and DSA (W) were
right-handed, and for the dataset OSU (W), handedness was
not specified. Due to the limited available meta-data regarding
the detailed characteristics of participants in all the three sets
of open-access data, it was not possible to eliminate the left-
handed participants from the study. Using direct observation
and the Compendium of Physical Activity as criterion measures
to define activity intensities is also a limitation. This decision

was made due to the lack of measured energy expenditure in
the datasets and resulted in assigning all the activities of the
same type to the same intensity category without considering
the variability between the subjects in energy expenditure and
performing a certain activity. Using similar MET thresholds for
defining activity intensity categories in both adults and youths
might also be a limitation. Previous studies on adults have con-
sistently used the MET thresholds used in the present study
to define intensity thresholds. However, there has been debate
among calibration studies regarding the selection of MET in-
tensity thresholds for youths [46]. We used the same value of
>3 MET to define MVPA for both youths and adults to study
the generalization performance of the models across the five
datasets, which is an adapted intensity threshold for the both
age groups in previous studies [13], [47].

VIl. CONCLUSION

In conclusion, our cross-population study found that inte-
grating heterogeneous datasets containing hip or wrist data in
training sets is a viable approach to enhance the generalization
performance of the ANN models as well as provide a model that
predicts activity intensities across different populations with a
single different hip- or wrist-worn accelerometers. Independent
validation of within-sample validated models indicated that the
ANN models developed with raw data and a within-population
cross-validation technique (i.e., LOSO) are not generalizable to
other populations monitored with different accelerometers. It
seems that the performance deterioration might be mainly due
to the presence of multiple sources of heterogeneities across
datasets. Some of these heterogeneities, such as sensor specifi-
cations and population characteristics, are often inevitable and
might not be resolved even through consensus on sensor place-
ment, for example. The experiments further revealed that while
the heterogeneities in datasets can adversely affect the general-
ization performance of intensity prediction models, if addressed
properly in analytical approaches, they can be beneficial for im-
proving the robustness of activity intensity prediction models.
Our proposed method integrates various data sources in train-
ing sets to address heterogeneities in modeling level and train
more robust models. However, it is still needed to confirm in
future studies that the proposed method is capable of provid-
ing models that are robust enough to predict PA intensities in
datasets acquired under fully free-living conditions with accept-
able accuracies. The proposed method also seems a transparent,
replicable, and feasible method, and can also be extendable as-
suming that the research lab will continuously share their data
with proper meta-data. Sharing data seems essential to under-
stand the effects of different inevitable heterogeneities on the
results of ML-based models and to develop more robust models.
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