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Abstract—In this study, we propose a novel context-based
location aware algorithm for identification of low-level micro-
activities that can be used to derive complex Activities of
Daily Living (ADL) performed by home-care patients. This is
achieved by gathering location information of the target user
using a wearable beacon embedded with magnetometer and
inertial sensors. The shortcomings of beacon signal stability
and mismatch issues in magnetic field sequences are overcome
by adopting a hybrid three-phase approach for deducing the
locus of micro-activities and their associated zones in a smart
home environment. The suggested approach is assessed in two
different test environments where the main intention is to map
the location of a person performing an activity with pre-defined
house landmarks and zones in the offline labelled database.
In addition to recognition of low-level activities, the proposed
method also identifies the person’s walking trajectory within the
same zone or between different zones of the house. Experimental
results demonstrate that it is possible to achieve centimeter-level
accuracy for recognition of micro-activities and a classification
accuracy of 85% for trajectory prediction. These results are
encouraging and imply that collection of accurate low-level
information for ADL recognition is possible through integration
of inertial sensors, Magnetic Field and Bluetooth Low Energy
(BLE) technologies from the wearable without relying on other
infrastructural sensors.

Index Terms—Activity Recognition, wearable sensing, location-
based context prediction, independent living, smart home.

I. INTRODUCTION

ADVANCEMENTS in cheap sensing technology and com-
munication systems has helped improve quality of life

by developing applications for various domains. There is an
increasing demand for remote healthcare systems for one-
person households as it facilitates independent living in a smart
home setting and does not require the presence of care-givers
at all times. Routine activities such as eating, dressing, bathing,
and toileting are commonly referred to as Activities of Daily
Living (ADL), which people tend to do on a daily basis for
normal self-care [1]. In most cases, the remote monitoring
systems are developed to gather information to infer if the
person has completed their routine activities on a daily basis. A
common mode of sensing for ADL recognition is by detecting
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human object interaction through ambient and infrastructural
sensors. Additionally, collection of location information of the
resident in their homes can assist in the ADL recognition
process by providing context information and can help reduce
the number of installed infrastructural sensors.

The Global Positioning System (GPS) that has been widely
used for outdoor positioning, fails to provide adequate support
for indoor localization due to the high attenuation of the
satellite signal caused by roofs and walls inside buildings [2].
As a result, this has opened up research on alternative methods
that are reliable and capable of achieving higher accuracy.
Over the past few years, researchers have developed indoor
positioning systems that are based on different mediums. Ra-
dio Frequency (RF) based systems such as Wi-Fi, Bluetooth,
Radio Frequency Identification (RFID) and Ultra-Wide-Band
(UWB) are the most popular technologies used in existing
Indoor Positioning Systems (IPS) due to the widespread preva-
lence of hardware and existing networks [2]. Apart from these
technologies, magnetic field based positioning systems have
garnered extensive interest amongst the scientific community
due to the fact that they are not prone to multi path degradation
and can operate in obstructed Line of Sight (LOS) conditions
[3],[4]. The anomalies in the ambient magnetic field, which are
formed due to distortions caused by the surrounding structural
steel elements, form the main basis for building magnetic
maps for indoor localization [3],[5]. In comparison with Wi-Fi
or Bluetooth Low Energy (BLE), the magnetic field has low
sensitivity to changes in surrounding environment (movement
of people or furniture) and therefore, has the capability to
generate the same magnetic fingerprint over time [4]. Each of
the above-discussed technologies has its share of limitations.
UWB systems perform well in Non-Line-of-Sight (NLOS)
conditions achieving a positioning accuracy of the order of
20cm. But most of these systems are commercially expensive
when compared to other technologies and in some cases, the
signals may be blocked by large metallic objects [6]. The
decrease in accuracy of Wi-Fi based positioning caused by
user movement and presence of obstructions remains a main
concern [7]. Zhao et al. compared the positioning accuracy
of BLE and Wi-Fi in a similar test bed environment and the
results showed that BLE outperformed Wi-Fi by around 27
percent [8]. Having considered the advantages and disadvan-
tages of both of these technologies, we decided to opt for a
BLE based inverse beacon positioning method in our study
due to its inherent benefits. However, beacon signals that are
mainly suited for proximity based positioning are often erratic
and do not contribute to fine-grained positioning when used



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2

as a solo solution [9]. BLE is known to work best when
combined with other technologies. Similarly, magnetic field
matching, when used as an independent IPS solution, may not
be enough for accurate positioning as only three parameters
are considered and hence increases the probability of having
the same fingerprint in different locations [7],[9]. Therefore, an
extensive reference database consisting of continuous samples
of magnetic signatures is required to improve the accuracy
and uniqueness of the mapping. Prior research suggests that
implementing hybrid technologies for indoor localization has
proved advantageous since they exhibit sufficient positioning
accuracy [10],[11]. In this study, we propose a novel algorithm
for low-level ADL recognition (also referred to as micro-
activities) using only a wearable embedded with beacon and
magnetometer to find the locus of the target user and track
their movement between different zones of the house. This
is achieved by the collaborative use of BLE technology with
inertial sensors to reduce the search space for magnetic field
sequence matching. We perform different assessments and a
case study in order to verify the hypothesis that a standalone
hybrid implementation of the above stated technologies can
provide good recognition accuracy when a high number of
micro-activities and user trajectories are considered for clas-
sification.

The main contribution of this paper is two-fold.

• We propose a novel algorithm using a wearable for near
real-time recognition of low-level micro-activities and
their associated zone of occurrence within the house.
The resulting outcome helps in providing useful location
context information for discovery of complex ADL’s. This
method is particularly useful in developing monitoring
applications for home-care patients and also for shel-
tered accommodation, which are typically studio or one-
bedroom apartments. In order to demonstrate and verify
the accuracy of the proposed system, extensive experi-
ments are conducted in two different home environments
under strong Non-Line of Sight (NLOS) conditions.

• In addition to recognizing the micro-activities, the pro-
posed algorithm is capable of predicting accurately the
movement of a person between different landmarks within
a room and also between different zones of a house
without relying on data from other infrastructure-based
sensors.

This location aware system has been developed as part of
a larger project for monitoring depression patients at home.
The measured output data of the positioning system will
be integrated to our complex activity recognition system,
where the main objective is to sustain a minimal sensing
environment at home without compromising on the accuracy
of the predicted activities. Furthermore, the resulting location
information can also be used in segmentation of raw sensor
data stream from ambient sensors for differentiation between
individual activities.

The remainder of this paper is organized as follows. Section
II presents a survey of the related work. The necessary
background and definition concepts are explained in Section
III. A brief overview of the system architecture is presented

in Section IV, followed by the description of the algorithm
in Section V. The evaluation results investigated in the exper-
imental test-bed using the proposed approach are presented
in Section VI. In Section VII, we analyze and discuss the
findings of several aspects of the proposed method. Section
VIII concludes the paper.

II. RELATED WORK

Different sensor technologies have been used for carrying
out activity recognition. Some works such as [12],[13] rely
on smartphones for monitoring activities. The authors of
[12] use just a single smart phone to identify simple and
complex activities. Their experiments yielded a classification
accuracy of above 90% for simple activities, but drops to
50% for complex activities. Using smart phones is unrealistic
for patient or elderly monitoring applications as it forces the
resident to carry their bulky phones with them at all times.
Other works depend on object-based sensing methods for
recognizing different activities [14],[15]. Instrumenting most
of the daily-use objects with sensors increases the deployment
cost and is not a practical solution for a home environment.
Computer Vision-based systems such as RGB cameras, depth
sensors and infrared sensors have also been a popular choice
for tracking a person in an indoor environment [16]. However,
these solutions were identified as too intrusive in a smart
home environment according to a recent study [17]. The results
showed that camera based medical monitoring inside a home
had the lowest acceptance rate at 13.46%.

An overview of recent work on ADL recognition systems,
where location information is used for identification of low-
level or complex activities, is presented here. Torres et al
carried out experiments with a smart phone in seven different
urban flats to study whether the Wi-Fi fingerprinting approach
is feasible for in-home monitoring applications [13]. Their
results provided an average accuracy of 89%. In [18] and
[19], the authors implemented a BLE fingerprinting approach
using beacons for monitoring of nursing home residents and
for detecting frailty in older adults based on indoor localization
habits, respectively. However, all these systems were designed
to predict simple activities based on the user’s location with
just room-level accuracy. Other studies have used location
as one of the parameters alongside other sensing methods
to predict multiple complex ADL’s [15][20]. The authors of
[20] use positioning sensors along with power meters for real
time recognition of routine activities in a smart home. The
system achieves an overall classification accuracy of 79.39%.
In [15], multiple events from binary sensors, a capacitive
smart floor and a wearable beacon with an accelerometer are
combined together in a real-time segmentation-free approach
to predict 24 different personal activities in an apartment.
Such systems predict a high number of ADLs, but increase
the deployment cost and sensing complexity. Failure to track
user movement between different zones of the house is also
a major drawback in the above-discussed solutions. This may
provide inconsistent results due to missing sensor readings in
real or near real-time recognition systems. We prefer to have a
system in place that makes use of low-cost sensing equipment
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and is still able to provide adequate accuracy when predicting
more than ten activities.

Locating a person inside a home requires contextual and
useful information related to their inherent surroundings,
which can be mapped easily to an activity recognition frame-
work. Using a global coordinate system for location map-
ping inside a house for such applications is impractical. The
Received Signal Strength Indicator (RSSI) collection process
during the training stage is much less strenuous when a
sequence of RSSI samples can be collected along a known
pathway as opposed to dividing the house floor plan into
a grid like pattern and collecting data over random discrete
points. Prior research suggests that position estimation using
sequential RSSI values along a path is less variant when
compared to point based prediction methods [21]-[23]. RF
fingerprinting performed in this way is known to be more
resilient to changes in the surrounding environment because
the sequential values collected along a pathway have a distinct
signature and consequently, this approach is more suitable for
beacon fingerprinting to account for its high signal variability.
The authors of [21] and [23] have used sequences of RSSI data
for radio map creation, but importance has not been given to
the inclusion of routes that reflect a person’s daily routine. It
is rather helpful to create a system, which integrates various
elements of a home such as couch, dining area, sink, stove, bed
and so on into the fingerprint collection database. The focus
of our developed system is not in finding the (x,y) coordinates
of the target, but determining whether the target is stationary
at certain defined locations of interest, e.g., sitting on the
couch or in the dining area, or moving along certain defined
paths, e.g., dining to kitchen area, bedroom to bathroom and
so on. Previous work focussed on a hybrid two-phase approach
for recognition of landmarks and routes in a complex indoor
environment using a wearable and a smartphone [22]. The
current study builds on our prior work using a single wearable
coupled with inertial sensing to infer context from location
assessed in two different trial homes.

III. BACKGROUND AND DEFINITIONS

In this study, we refer to micro-activities as a combina-
tion of low-level activities derived from location context that
maybe part of a high-level complex activity such as preparing
breakfast, watching TV and so on. The study also focuses on
recognizing the walking routes to account for the transition
when a person moves between different landmarks within the
house. The walking routes have been further categorized as
short routes (less than 5 steps) and long routes (greater than
5 steps) based on the average number of steps a person takes
in order to overcome the issue of overlapping routes in a
given space. We present below the background, along with
the definition of several important concepts.

A. Inverse Beacon Positioning

Most of the existing positioning systems employ a set of
fixed beacons at known locations and a moving receiver such
as a mobile phone. However, using multiple receivers at fixed
positions to track a moving beacon is better suited for use

cases such as monitoring a person or asset tracking [24].
This type of technique is commonly referred to as the Inverse
Beacon Positioning method. The implementation is based on
the principle that the RSSI signal decays with the increasing
distance between the beacon and the receiver.

Definition 1. A beacon RSSI profile (
−−−−→
RSSIi) is a vector of

individual RSSI values observed at position
−→
Li from n nearby

receivers.
−→
Li = (di

x, d
i
y) corresponds to a specific point marked

by its two-dimensional Cartesian label. In this study, we use a
set of Raspberry-Pis as the receiver of the beacon signal. The
RSSI vector measured at any given point is represented by:

−−−−→
RSSIi = {PiRSS1, ..., PiRSSn } (1)

where PiRSS1, ..., PiRSSn are the individual signal strength of
the Raspberry-Pi receivers.

Definition 2. The beacon RSSI fingerprint database
(RSSIDB) is modeled as:

RSSIDB = {RSSS1, . . . , RSSSK }(1 ≤ k ≤ K) (2)

where RSSSk
represents the collective beacon fingerprint mea-

surement for an individual micro-activity or walking route
identified by Sk(1 ≤ k ≤ K) with K being the total number
of micro-activities and routes in the database. For any given
Sk , N training samples are present where each sample is an
individual fingerprint Bi .

A beacon RSSI fingerprint (Bi) is a combination of
RSSI profile

−−−−→
RSSIi measured at location

−→
Li , labeled by its

corresponding route or micro-activity Sk . It is represented by:

Bi = [
−→
Li,
−−−−→
RSSIi, Sk](1 ≤ i ≤ N) (3)

For cases where Sk is a walking route, the training examples
will be a sequence of RSSI values recorded at their corre-
sponding position co-ordinates along the considered walking
path. The database may contain duplicate values of

−→
Li as

several RSSI readings are captured at the same position.
Sample data of the training database (RSSIDB) is presented
in Table I.

TABLE I
RSSI TRAINING DATABASE SAMPLE

X Y PiRSS1 PiRSS2 PiRSS3 PiRSS4 PiRSS5 PiRSS6 PiRSS7 PiRSS8 Micro-Activity/Route
5.296 -0.647 -60 -79 -86 -75 -76 -81 -74 -82 Main Door to Bedroom Door
5.296 -0.647 -57 -75 -85 -69 -84 -89 -76 -79 Main Door to Bedroom Door
5.296 -0.647 -55 -74 -79 -72 -77 -85 -79 -82 Main Door to Bedroom Door
1.811 1.046 -72 -84 -81 -90 -74 -78 -81 -76 Couch to Main Door
1.811 1.046 -78 -89 -83 -91 -69 -78 -84 -77 Couch to Main Door
1.811 1.046 -70 -85 -84 -92 -69 -82 -87 -92 Couch to Main Door

B. Magnetic Field Vector (MFV) Sequence Matching

Definition 3. The Magnetic Field Vector,
−−−−→
MFVi profile rep-

resents the magnetic field strength in x, y, z direction observed
at position co-ordinates

−→
Li = (di

x, d
i
y). It is represented by:

−−−−→
MFVi = {MFVx, MFVy, MFVz} (4)

Definition 4. Similar to RSSIDB, the MFV training database
(MFVDB) is populated with sequential three-dimensional vec-
tor readings modeled as:

MFVDB = {MVS1, . . . , MVSK }(1 ≤ k ≤ K) (5)
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where MVSk
represents the collective magnetic field mea-

surement for each micro-activity or walking route identified
previously as Sk(1 ≤ k ≤ K). Each MFV fingerprint (Mi)
observed at position co-ordinates

−→
Li = (di

x, d
i
y) for a given

micro-activity or route Sk is represented by:

Mi = [
−→
Li,
−−−−→
MFVi, Sk](1 ≤ i ≤ N) (6)

where N is the number of training samples observed for
individual Sk .

Definition 5. The Dynamic Time Warping (DTW) technique
is used as the distance measure to compute the similarity
between two MFV sequences. DTW is a well-known algorithm
to measure the similarity between two sequential series of
different lengths that vary in time or speed. It has widespread
application in image processing, speech recognition, data min-
ing, robotics, manufacturing and other classification techniques
[25]. The DTW distance measure has an innate advantage
over Euclidean distance for time series measurement as the
latter fails to provide a correct measure when there are
small distortions in the time axis. DTW is more robust
for comparing MFV sequences as it allows a one to many
mapping (compression and stretching the time axis) of one
or both the sequences to obtain a suitable alignment. An
iterative procedure is performed for all the eligible routes,
which involves constructing a matrix between the offline and
measured magnetic sequence to find the warping path that
minimizes the overall cost function. This is calculated using
the dynamic programming approach given by Eq(7).

DTW(n,m) = d(qn, cm)+

min{DTW(n − 1,m − 1),
DTW(n − 1,m),DTW(n,m − 1)}

(7)

where d(qn, cm) = (q[n] − c[m])2 is the squared distance
between the sample points. Q = {q1, q2. . . ..qN } and C =
{c1, c2. . . ..cM } are the online and offline magnetic sequences
of length N and M, respectively. Squared Euclidean distance is
selected to calculate the cost measure in Eq(7) as it provides
better accuracy in comparison with Euclidean or Manhattan
distance measures. The final predicted route is the one with
the least distance measure, which implies a high similarity
between the measured sequences.

Definition 6.
−−−−→
RSSIOnline and

−−−−→
MFVOnline are the respective

online beacon and magnetic sequences collected using the
wearable for prediction of location context of the target user
using the reference RSSIDB and MFVDB. The task is to find
the label SK using the algorithm described in Section V.

IV. SYSTEM OVERVIEW

A. Hardware Requirements

The overall system architecture is composed of a set of
Raspberry-Pis that function as receivers and a transmitting
wearable beacon with embedded sensors known as MetaMo-
tionR manufactured by MbientLab [26]. The wearable allows
on-chip logging or streaming of sensor data and it comes
enclosed in a waterproof casing with a rubber clip. Amongst

the multiple onboard sensors present in the wearable, we use
the magnetometer, the built-in step detector module and the
beacon functionality. Raspberry Pi 2 Model B devices were
used in Trial home-1 and Raspberry Pi 3 Model B devices
were used in Trial home-2 as receivers of the beacon signal.
The number of Raspberry-Pis to be deployed in a specific
household is decided such that every part of the house falls
within the coverage area of at least two Raspberry-Pis and their
placement is decided based on the activities to be monitored.
The coverage was roughly estimated by taking into account
the number of Raspberry-Pis detecting the beacon for any
given route or micro-activity [27]. Accuracy is improved with
increasing numbers of receivers detecting the beacon.

B. Design and Implementation

One of the Raspberry-Pis is programmed to be the master
and the remaining devices function as slaves. All Raspberry-
Pis collect beacon RSSI data along with the timestamp. The
master Raspberry-Pi receives the raw data from the slaves
every few seconds and combines it into a single file. Linear in-
terpolation is performed in case of missing RSSI readings per
second. The magnetometer sensor readings and step counter
data with the corresponding timestamp are simultaneously
transmitted from the wearable to the master receiver. The final
processed data consisting of the beacon RSSI, magnetometer
and step detector readings are used as input for Algorithm 1.

C. Battery Life and Power Consumption

The MetaMotionR wearable is powered by a rechargeable
100mAH lithium-ion 3.7V battery that can last for about
1.5 weeks on a single battery charge. Other wearables from
MbientLab that use a coin cell battery can also be worn that
may be more suitable for elderly monitoring applications, in
which case the battery can last up to 1 year. The power
consumption of the MetaMotionR wearable ranges from 20µA
to 20mA @ 3.0V. In this study, the sampling frequency of the
beacon is set at 10Hz ( fs1 = 10Hz) and the magnetometer
sampling frequency is set at 10Hz ( fs2 = 10Hz), such that
the battery life of the wearable is effectively prolonged while
maintaining sufficient accuracy.

D. Data Collection Process: Beacon RSSI, Magnetometer and
Step Counter data

The wearable beacon is clipped on to the shirt collar such
that it is positioned at chest level at all times. The training
and the test data were collected over a ten-day period in Trial
home-1 and over a week in Trial home-2. The measurements
were made on different days and at different times of the day.
A number of walking routes and micro-activities were chosen
to reflect regular domestic human behavior to provide the most
realistic scenario for testing. The RSSI and MFV samples
were collected for conditions when a person is performing
an activity with minimal movement (e.g., sitting in the dining
area or couch) and when a person walks along a certain path
both in the forward and reverse directions (e.g., bedroom
to bathroom, bathroom to bedroom). Due to the nature of
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the classification technique used during the training stage,
sequences of continuous readings of RSSI and MFV are
considered in this study instead of point-to-point estimation.
For the radio map construction, the sequences were measured
for 30s at each position along a walking route with step
size measuring approximately 50cm. The corresponding times-
tamp and route/position label were recorded using a mobile
application for annotation developed by us. All the routes
present in the training database are classified as either Micro-
Activities/Short Routes or Long Routes based on the resulting
step count measured using the built-in step detector module
in the wearable. The training database size and overhead in
this case is considerably less when compared to other existing
data collection methods as limited samples are amassed for
a short duration of 30s, making the calibration stage simple.
The ground truth of the collected test data in terms of position
co-ordinates for cross-validation were measured using a laser
distance meter and recorded using the developed annotation
application for accuracy calculation in both the trial homes.

Fig. 1. Schematic Diagram of the Proposed System

V. ALGORITHM FOR DETECTION OF MICRO-ACTIVITIES
AND WALKING ROUTES

The proposed algorithm constitutes three main phases for
detection of low-level activities and walking routes. It follows
a data-driven approach as the method relies on the training
data collected using the wearable and their respective ground
truth labels expressed in terms of landmarks and routes within
an indoor environment. Fig. 1 illustrates the overall system
architecture. A brief description of the three phases involved
in the positioning algorithm is given below and their respective
pseudocode is shown in Algorithm 1.

A. Description of the Positioning Algorithm

a) Phase I - Route Selection Using Beacon RSSI Finger-
printing: The offline collected RSSI training samples and the
online measured sequences are initially sorted based on their
strongest beacon signal strengths. An individual rank matrix

Algorithm 1 Route Prediction and Detection of Micro-
Activities

Inputs:
−−−−→
RSSIOnline and

−−−−→
MFVOnline, stepCount

Output: R ← Predicted Walking Route or micro-activity
1: for i = 1: sizeo f (RSSIDB) do
2: A ← Sort

−−−−→
RSSI i in descending order

3: end for
4: for i = 1: sizeo f (RSSIOnline) do
5: B[i] ← Get corresponding label Sk for matched

−−−−→
RSSI i

in RSSIDB after sorting in descending order
6: occ[i] ← Compute frequency of occurrence of matched

Sk in B[i]
7: end for
8: C ← Sort B based on Sum(occ), groupCount incase of

ties, where groupCount = no. of routes grouped by occ
9: D ← Retrieve top 10 or less Sk from C

10: if stepCount ≥ 0 && stepCount ≤ 5 then
11: selectedSk ← All Micro-activities & Short Routes

applicable in D
12: else
13: selectedSk ← All Long Routes applicable in D
14: end if
15: MFVTrain ←

−−−−→
MFV i of selectedSk from MFVDB

16: for i = 1: sizeo f (MFVTrain) do
17: R ← f indBestSk(

−−−−→
MFVTrain(i),

−−−−→
MFVOnline) //Predict

Sk label using DTW
18: end for
19: return R

for the training and online data is then created, where each
row contains the Raspberry-Pi identifier arranged in order of
the strongest signal. Both these ranked datasets are compared
against each other to find similarities between them and a list
of corresponding matched Sk labels are returned. The routes
and positions for the next phase are selected based on the
total number of occurrences of matched labels (Sum(occ)) and
frequency of occurrence for each position co-ordinate over the
entire length of the measured test sequence (groupCount).
The number of highest ranked positions/routes considered
for Phase II depends on the accuracy of the Beacon RSSI
fingerprinting method. An optimal count is chosen such that
the correct position/route is part of the magnetic search area
in the next phase. In this study, we have set the maximum
count to ten or less for selection from the resulting output of
Phase I.

b) Phase II - Elimination of Inconsistent Routes from
Phase I Using the Step Detector Module: Data from the step
counter is used to identify if the selected routes from Phase
I fall under Type I (Micro-Activities and Short routes (≤ 5
steps)) or T ypeI I (Long routes (> 5 steps)) category. Based
on this classification, extraneous routes are excluded and only
the relevant routes are carried forward to the next phase.
Micro-activities and short routes have been grouped together
as there is a likelihood that the step detector may produce
false positives or false negatives when small strides between
‘kettle to sink’ or ‘fridge to microwave’ are considered. This
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Algorithm 2 1-Nearest Neighbor DTW

Inputs: MFVTrain ← MFV of selectedSK from MFVDB,
−−−−→
MFVOnline ← MFV of Online sequence

Output: Re f erence MFV
1: best so f ar ← ∞
2: Re f erence MFV ← MFVTrain[1]
3: for i = 1: sizeof(MFVTrain) do
4: DTW distance ← DTW(MFVTrain[i],

−−−−→
MFVOnline)

5: if DTW distance < best so f ar then
6: best so f ar ← DTW distance
7: Re f erence MFV ← MFVTrain[i]
8: end if
9: end for

10: return Re f erence MFV

is especially true in a kitchen scenario when the objects
of interest such as kettle, stove, sink, microwave are very
close to each other and transitional changes between two
stationary positions near different objects/landmarks need to
be taken into consideration. Inclusion of the step counter
assists in improving the accuracy by easily eliminating the
overlapping routes in an indoor space. For example, Couch to
Dining is a short route that overlaps with the longer route
Couch to Main Door. Results from the step detector help
in differentiating and choosing the applicable route for that
particular instance. It is also beneficial for the next phase
as it further reduces the magnetic matching searching space.
This helps in improving the overall time complexity since
the DTW technique that is used in the next phase is known
to be a computationally expensive algorithm. Based on the
requirement, the step detector can be configured in 3 modes:
Normal/ Sensitive/ Robust.

c) Phase III - Magnetic Matching (MM) using DTW:
The magnetic signatures of the selected routes from Phase
II are alone considered from the MFV training database and
consequently, the overall efficiency is improved as the search
space for MFV fingerprinting is significantly reduced. We
apply a low pass filter to smooth the noise of the magnetometer
sensor data before calculating the similarity measure. Nearest
Neighbor Dynamic Time Warping algorithm that makes use of
the dynamic programming approach given by Eq(7) is used
to compute the similarity between two MFV sequences. The
pseudocode for the 1-Nearest Neighbor DTW is presented in
Algorithm 2.

VI. EXPERIMENTAL STUDY

A. Layout of the Test-Beds

The suggested approach is assessed in two different test
environments where the main aim is to map the target’s
location with the pre-existing routes and positions in the ref-
erence database. Two different individuals in their respective
flats carried out the experimental study. Both the test-beds
chosen are one-bedroom apartments, as we focussed our study
to find ways to effectively distinguish activities based on
location information when a person moves between various
landmarks in a small space. Fig. 2(a) and Fig. 2(b) illustrate

(a) Trial Home-1

(b) Trial Home-2

Fig. 2. Trial Home Layout

the layout of Trial home-1 (6.45m x 6m) and Trial home-2
(10.57m x 4.44m), respectively, along with the placement of
the master and the slave Raspberry-Pis. To provide compre-
hensive Bluetooth coverage of the entire house, a total of eight
Raspberry-Pi receivers were deployed in Trial home-1, while
five Raspberry-Pi receivers equipped with either 1dBi or 5dBi
external antennas were placed in Trial home-2. The reason for
testing with two different antennas in the 2nd trial home was
to investigate if an increased antenna gain helps in maintaining
the same level of accuracy with reduced number of Raspberry-
Pi receivers. RSSIDB and MFVDB contain training samples
for a total of 40 micro-activities and walking routes in Trial
home-1 and a total of 36 routes and micro-activities for Trial
home-2.

B. Performance Assessment Of Recognition Of Micro-
Activities in Trial home-1

Fig. 3. Average RMSE measure for recognition of micro-activities
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Fig. 4. Performance assessment of individual micro-activities

a) Error Calculation: Test samples for cross-validation
were collected for a sub-section of routes/positions measured
multiple times over different days within the trial home. The
Root Mean Square Error (RMSE) was used as the perfor-
mance measure for determining the standard deviation of the
predicted locus of the micro-activities against the position co-
ordinates of the ground truth. Fig. 3 illustrates the performance
comparison of average RMSE computed for ten different test
datasets for 16 micro-activities using three approaches - BLE
aided MM using DTW with step detector (BLE-MMDTW),
BLE-MMDTW (without step detector) and MM using DTW
(MMDTW). The proposed algorithm using the hybrid BLE-
MMDTW method that includes the step counter had the least
RMSE measure in each of the ten test cases with an overall
average RMSE of 0.55m. The average RMSE for the BLE-
MMDTW (without step detector) and the MMDTW methods
were 1.09m and 1.13m, respectively. RMSE was chosen as the
evaluation metric over classification accuracy in this scenario
as we were interested in measuring the degree of closeness of
the false positive results with the ground truth. For instance,
the classification results using ten different test datasets for
micro-activities: Sleeping on bed, Sitting on Couch – centre,
Sitting in the dining area – left side and Near microwave
shown in Fig. 4 indicate that the activities predicted as false
positives are very close to the ground truth and the predicted
outcome in each case was associated with the actual micro-
activity taking place. In Fig. 4, the micro-activity Sitting on
Couch – centre was classified six times as Sitting on Couch –
right side, twice as Dining to Couch and one each for Sitting
on Couch – left side and Sitting on Couch – centre when tested
at ten different instances. However, the predicted outcome in
each case refers to Couch as the main landmark where the
activity is carried out. Similarly for the sleeping activity, the
classification labels Sleeping on bed and Sitting on bed – left
side maybe different, but the locus of both these activities
are almost identical (Refer Fig. 4). The same can be said for
the predicted outcome of other micro-activities. It must be
noted that the false positive results occur as multiple positions
and routes are considered for classification in this study (40
positions and routes). Sub-meter accuracy results demonstrate
the merit of the approach especially given the high number
of different micro-activities that are classified (16 activities
excluding routes).This form of location context information

is crucial for supporting complex ADL recognition when the
number of physical sensors deployed in the smart home is
small. In other words, it is possible for us to maintain a mini-
mal sensing environment and recognize low-level activities by
using just the wearable as the lone sensor data.

b) Zone Based Classification Accuracy Of Micro-
Activities: In order to check the room level accuracy of
the detected micro-activities, Trial home-1 was divided into

Fig. 5. Confusion matrix for Zone-based recognition of Micro-Activities

(a) BLE-MMDTW Method

(b) MMDTW Method

Fig. 6. Recognition confusion matrix for walking routes
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Fig. 7. Performance comparison of walking routes using Fréchet Distance
in Trial home-1

five zones namely: Lounge, Bedroom, Bathroom, Kitchen and
Hallway. Based on the earlier cross-validation results using
the ten test datasets, the 16 micro-activities were classified
into their respective zones in the trial home. The confusion
matrix for zone-based recognition of micro-activities using
the proposed BLE-MMDTW method is shown in Fig. 5. A
classification accuracy of 91.87% was achieved, indicating that
the zone of occurrence of the micro-activities was recognized
correctly in most cases inside a confined living space. The clas-
sification accuracy in this study was obtained by calculating
the percentage ratio of correct predictions to total predictions
made. However, the classification accuracy drops to 51.25%
when the beacon data was eliminated and the MM approach
was carried out independently.

C. Performance Assessment Of Recognition Of Walking
Routes in Trial home-1

Apart from the detection of micro-activities and their zone
of occurrence, the proposed algorithm also tracks the walking
trajectories of the target user. This helps to monitor the move-
ment of the user between different rooms of the house. Ten
different test datasets for 12 walking routes were collected for
evaluating the classification efficiency of the proposed model.
We present the confusion matrices for route classification using
the BLE-MMDTW and MMDTW method in Fig. 6(a) &
Fig. 6(b), respectively. The proposed BLE-MMDTW model
provides a reasonable classification accuracy of 85% and out-
performs the MMDTW method that provides a classification
accuracy of 76.67%. However, the MMDTW method performs
well for route classification when compared to classification
of micro-activities since the observed trajectories have a more
unique magnetic signature for trajectories when compared to

(a) BLE-MMDTW Method

(b) MMDTW Method

Fig. 8. Recognition confusion matrix for zone-based classification of
walking routes

stationary points. In the case of trajectories, we used Fréchet
distance as the performance metric to measure the similarity
between the ground truth and the predicted outcome [28]. It
takes into account the location and ordering of the distance co-
ordinates along a trajectory, which makes it a suitable distance
metric when comparing 2 different walking routes of different
lengths. The Fréchet distance measure can be mathematically
represented by Eq (8).

dF (P,Q) = min
α[0,1]→[0,N ]
β[0,1]→[0,M]

{ max
t∈[0,1]

d(P(α(t)),Q(β(t))} (8)

where P and Q are the actual and predicted trajectories of
lengths N and M , respectively and d is the distance function.
The co-ordinates α(t) in P and β(t) in Q range over continuous
and increasing functions with α(0) = 0, α(1) = N , β(0) =
0 and β(1) = M . The Fréchet distance measures for the
selected routes using the BLE-MMDTW (with step-detector)
and MMDTW methods are shown in Fig. 7.

For zone-based classification, the BLE-MMDTW and
MMDTW methods provide a classification accuracy of
88.33% and 85%, respectively. Their respective confusion ma-
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(a) Sitting on Centre of
Couch

(b) Sitting on Left of Couch (c) Sitting on Right of Couch (d) Using the Shower (e) Using the Bathroom Sink

Fig. 9. Performance comparison of RMSE of individual micro-activities in Trial home-2

trices for the associated intra-zone and inter-zone classification
of routes are shown in Fig. 8(a) & Fig. 8(b).

D. Selection of Time Window Length for Segmentation of
Incoming Data in Trial home-1

A sliding window approach was used for segmentation of
incoming wearable sensor data for near real-time prediction
of micro-activities and walking routes in Trial home-1. Based
on the sampling rate and the length of the trajectories to
be measured, a suitable time window, Tw length needs to
be selected such that the segmented data contains sufficient
information to output a micro-activity or trajectory. In order
to test the system responsivity, the classification accuracy of
routes for three different time windows of length Tw1 = 8s
, Tw2 = 12s and Tw3 = 15s were computed. When Tw1 and
Tw2 are the chosen parameters, a classification accuracy of
66.67% and 77.67% were obtained, respectively. We chose
Tw3 = 15s for which a maximum classification accuracy of
85% is achieved.

E. Performance Assessment in Trial home-2 with Reduced
Receivers

A different comparative analysis was conducted in Trial
home-2 to study the impact of reducing the number of re-
ceivers and the effect of higher receiver antenna gain on the
final outcome using the proposed algorithm. As described ear-
lier, we chose to deploy five Raspberry-Pi receivers equipped
with external antennas (5dBi and 1dBi) in the slightly larger
second trial home to test the robustness of the hybrid approach
with lesser number of receivers. As part of this study, we
selected five micro-activities and five routes for which four
test sample data of each of them are collected on different
days spread over a week.

a) Experimental Results for Micro-activities: RMSE is
used as the metric to assess the accuracy of the predicted
micro-activities. The five micro-activities selected for analysis

were: 1) Sitting on Centre of Couch, 2) Sitting on Left of
Couch, 3) Sitting on Right of Couch, 4) Using the Shower, 5)
Using the Bathroom Sink. Fig. 9 illustrates the RMSE for these
micro-activities when the experimental study was conducted
separately with receivers fitted with 5dBi and 1dBi antennas
respectively. The results indicate that the RMSE of predicted
activities is a lot smaller when the receivers are fitted with
5dBi antennas than with 1dBi antennas. This is because an
increase in antenna gain improves the range of the Raspberry-
Pi receivers such that they can detect the beacon from a greater
distance [27]. Hence sufficient accuracy is still maintained
with reduced number of receivers when equipped with high
gain antennas. However, accuracy is compromised with low-
gain antennas due to reduced coverage as only five receivers
are used in Trial home-2 compared to eight in Trial home-
1. In cases where high gain antennas are used, the predicted
outcome is precise in most cases for activities {1,2,4,5} and in
other instances provides sub-meter level precision. Similar to
Trial home-1, the locus of the predicted activity for different
sitting positions on the couch (Activities {1-3}) using 5dBi
antennas for all test samples was found to be the Couch.
We can therefore avoid the use of a pressure sensor and rely
solely on the positioning results to find out if the person has
been spending some time on the couch. Opting for low gain
antennas can also prove useful if the requirement is only to
predict the room or zone where the activity is taking place.
The average error is around a meter when low gain antennas
are used.

b) Experimental Results for Walking Routes: The walk-
ing routes selected for analysis in Trial home-2 were 1)
Bathroom to Kitchen Fridge, 2) Kitchen Fridge to Bathroom,
3) Kitchen Fridge to Sink, 4) Couch to Front Door, 5) Couch
No.2 to Front Door. A comparative analysis was performed
for walking routes when the receivers were fitted with 5dBi
and 1dBi antennas, respectively. Similar to Trial home-1, we
used Fréchet distance as the performance metric to measure the
similarity between the actual and predicted results. The Fréchet
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(a) Bathroom to
KitchenFridge

(b) KitchenFridge to
Bathroom

(c) Kitchen Fridge to Sink (d) Couch to Front Door (e) Couch No.2 to Front Door

Fig. 10. Performance comparison of walking routes using Fréchet Distance in Trial home-2

distance results of the selected five routes are illustrated in Fig.
10. The predicted outcome for routes 1 and 2 were precise
when using 5dBi antennas for each of the four test datasets
as seen in Fig. 10(a) and Fig. 10(b). Overall, the Fréchet
distance between the target route and the predicted route when
using high gain 5dBi antennas is considerably lesser when
compared to using low gain 1dBi antennas for all the five
routes indicating high similarity between the predicted route
and the actual route. In comparision, the Fréchet distances
while using 1dBi antennas are slightly on the higher side as
the overall coverage by the receivers is reduced across various
rooms in the flat. Thus, it can be deduced that increasing the
receiver antenna gain raises the likelihood of improvement and
helps reduce the number of Raspberry-Pis deployed in the test
environment while maintaining sufficient accuracy.

F. Case Study Evaluation
A case study evaluation was conducted in the two test apart-

ments to evaluate the performance of the proposed method
employing the BLE-MMDTW approach against the solo use of
MFV fingerprinting. This was determined when the user was
moving inside the apartment performing a series of random
activities that reflect regular human day-to-day behavior. The
test results of Trial home-1 and Trial home-2 (using 5dBi
antennas) are highlighted in Fig. 11 and Fig. 12, respectively.
The positions or routes specified in both the figures are
the results of each method, which are in the order of the
activities performed by the user. The resulting output from
the case studies prove that the predicted routes and positions
obtained by the proposed method are much closer to the
actual results as compared to using only MFV sequences
for location estimation. Furthermore, the results indicate that
the independent use of the MFV fingerprinting method is
ineffective and therefore contributes to a high mismatch rate.

VII. DISCUSSION

The need to design a reliable context based location aware
system for an increasingly dynamic and complex domestic

environment is crucial as they form the basis for a number of
remote home healthcare applications. Sequence-based inputs
require specialized classifier algorithms as they are different
from other supervised learning problems. The accuracy of
the proposed algorithm is not compared against well-known
machine learning classifiers in this paper as most of these
classifiers are not suitable for sequence classification problems.
Recurrent Neural Networks (RNN) using Long Short-Term
Memory (LSTM) networks are one of the few state-of-the-art
techniques known for sequence classification. However, the
size of the radio map required for training LSTM networks
needs to be large to achieve good prediction accuracy. Hence,
a novel sequence based algorithm that requires less training
data has been developed. Table II shows a comparison of
our proposed system against recent works that have used
location estimation techniques as a supporting or standalone
system for activity monitoring. Most of these systems are
designed only to achieve room-level accuracy [13][18][19].
Other works that consider a higher number of activities, suffer
in accuracy due to the complexity involved in a multi-activity
classification problem (10 or more classes) [15][20]. Location
estimation techniques are used in combination with other
sensing methods in both these works. In this study, we have
used indoor positioning techniques as a standalone system to
provide more fine-grained positioning rather than room-level
accuracy and to classify multiple activities. Furthermore, our
study also considers the user trajectory, which is crucial for
continuous monitoring applications. Despite the complexity
involved, we have managed to achieve reasonable accuracy
for both stationary positions and walking routes.

The results from Section VI demonstrate that the hybrid
BLE-MMDTW method with the inclusion of step detector in-
formation outperforms the individual use of MMDTW method
in all the test case scenarios for micro-activities and walking
routes. The findings are more conclusive since they were
assessed in a home environment with strong NLOS conditions.
Overall, the performance assessment and the case study results
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(a) Actual Walking Route

(b) Predicted Walking Route (Using Beacon RSSI + MFV Fingerprinting
Method)

(c) Predicted Walking Route (Using only MFV Fingerprinting Method)

Fig. 11. Case Study Illustration when user performs the following
activities in Trial home-1 [Stands near the Stove - Moves to Dining Table

from Stove - Sits in left side of the Dining area - Moves to the Couch - Sits
on the right side of the Couch – Moves towards the Main Door]

corroborate the hypothesis that the fusion of BLE and MFV
fingerprinting with added information from inertial sensors
complement each other to accomplish low-level recognition
of multiple activities and user trajectory prediction in a smart
home environment. Furthermore, the decision to evaluate 1dBi
and 5dBi interchangeable external antennas in Trial home-2
was to determine the level of localization accuracy with fewer
receivers using the proposed algorithm. Experimental results
indicate that adequate accuracy can still be maintained with
a reduced infrastructure, by deploying receivers with higher
gain antennas. Besides, the data collection approach used in
this study along with radio map construction for sequence-
based inputs and trajectory measurements can be extended
to other location estimation technologies (Eg: LiDAR, Radar,
mmWave). Our future research direction will concentrate on
extending the proposed methodology for implementation in

(a) Actual Walking Route

(b) Predicted Walking Route (Using Beacon RSSI + MFV Fingerprinting
Method)

(c) Predicted Walking Route (Using only MFV Fingerprinting Method)

Fig. 12. Case Study Illustration when user performs the following activities
in Trial home-2 [Moves from the Couch towards the front door – Walks

towards the bedroom door – Moves to the kitchen fridge from the bedroom
door – Turns and moves towards the sink – Stands near the Kettle and Sink]

different types of home and testing with individuals who
belong to different age groups making use of the same
training database. Work will also be done in testing the overall
performance efficiency for recognition of complex activities
using low-level context obtained using the proposed method
in this paper.

VIII. CONCLUSION

In this work, a novel algorithm has been developed for
low-level micro-activity recognition and prediction of walking
routes using wearable sensing. The implementation employs
an inverse beacon fingerprinting scheme coupled with inertial
sensors to narrow down the magnetic field vector match-
ing space. The suggested approach helps in overcoming the
shortcomings of beacon signal stability and mismatch issues
in magnetic field fingerprinting. An overall improvement in
prediction accuracy is made possible by amalgamating the
results of both techniques. Furthermore, a context-oriented,
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TABLE II
COMPARISON OF ACTIVITY MONITORING SYSTEMS USING LOCATION ESTIMATION TECHNIQUES

Reference Connection 
Type Method Employed Devices Used Cost  Trajectory 

Prediction Avg. Accuracy & Range No. of Classes 

[13] Wi-Fi Fingerprinting Smartphone Low No 89% ; Room-level accuracy 8 activity classes

[20] Bluetooth; 
ZigBee Random Forest classifier Power meters; current 

transformers; Ultrasonic sensor  Medium No 79.39% 10 class high-level 
activities

[18] BLE Smoothing, machine learning  
algorithms with  fingerprinting

Wearable beacon; fixed 
raspberry-pis Low No  Precision: 84.2%; F-measure: 

80.9%; Room-level accuracy 6 ADL classes

[19] BLE Fingerprinting Fixed beacons; smartphone Low No 93% (room estimation; 83% (frailty 
classification); Room-level accuracy

3 class frailty 
classification

[15] BLE Recursive Bayesian approach binary sensors, capacitive smart 
floor; smart watch with beacon High No 68% 24 high-level  ADL's 

Proposed 
Method BLE

Sequence Matching; DTW 
Algorithm using WiFi & MFV 

Fingerprinting with stepdetection

Wearabe (beacon, accelerometer, 
gyroscope, magnetometer); 

Raspberry-Pi receivers
Low Yes

Micro-activity: RMSE = 0.55m;  
91.87% (zone) ; Routes  = 85%; 

88.33% (zone) 

16 micro-activities; 
12 routes (Total: 40 

positions/routes)

trajectory-based radio map model for location estimation is
adopted in this study to provide a realistic scenario for testing
that is better suited in setting up an activity recognition
system at home. The empirical results demonstrate that the
proposed method has high potential in providing centimeter-
level positioning accuracy for micro-activities and a reasonable
classification accuracy over 80% can be achieved for walking
routes. The method proposed in this paper provides an accurate
and cost-effective solution for monitoring applications within a
home environment as it delivers sufficient prediction accuracy
on its own without the use of object-based sensing methods.
Furthermore, complex ADL recognition is feasible when the
suggested method is combined with posture recognition meth-
ods or used in ambient sensing environments, instrumented
with only the essential sensors required for monitoring.
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