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Abstract—The potential of using an 

electroencephalogram (EEG) to detect hypoglycemia in 
patients with type 1 diabetes (T1D) has been investigated 
in both time and frequency domains. Under 
hyperinsulinemic hypoglycemic clamp conditions, we 
have shown that the brain’s response to hypoglycemic 
episodes could be described by the centroid frequency 
and spectral gyration radius evaluated from spectral 
moments of EEG signals. The aim of this paper is to 
investigate the effect of hypoglycemia on spectral 
moments in EEG epochs of different durations and to 
propose the optimal time window for hypoglycemia 
detection without using clamp protocols. The incidence of 
hypoglycemic episodes at night time in five T1D 
adolescents was analyzed from selected data of ten days 
of observations in this study. We found that hypoglycemia 
is associated with significant changes (P<0.05) in spectral 
moments of EEG segments in different lengths. 
Specifically, the changes were more pronounced on the 
occipital lobe. We used effect size as a measure to 
determine the best EEG epoch duration for the detection 
of hypoglycemic episodes. Using Bayesian neural 
networks, this study showed that 30 second segments 
provide the best detection rate of hypoglycemia. In 
addition, Clarke’s error grid analysis confirms the 
correlation between hypoglycemia and EEG spectral 
moments of this optimal time window, with 86% of 
clinically acceptable estimated blood glucose values. 
These results confirm the potential of using EEG spectral 
moments to detect the occurrence of hypoglycemia. 
 

Index Terms—Electroencephalogram (EEG), 
hypoglycemia, optimal time window, spectral moment. 

I. INTRODUCTION 
YPOGLYCEMIA is defined as a low blood glucose level 
(usually less than 3.9 mmol/L). This condition is a 

dangerous complication of insulin and sulphonylureas in 
diabetes treatment. The average T1D patient suffers thousands 
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of episodes of symptomatic hypoglycemia over a lifetime of 
diabetes [1]. The fear of hypoglycemia affects the daily 
routines of both patients and their carers and contributes a 
significant factor in the failure of achieving satisfactory 
glycemic targets for the patients [2]. Hypoglycemia manifests 
both autonomic symptoms and neuroglycopenic symptoms. 
Whereas some autonomic symptoms are adrenergic 
(palpitations, anxiety, etc.), others are cholinergic (sweating, 
hunger, etc.). Neuroglycopenic symptoms include seizures, 
loss of consciousness, and can be life-threatening [3]. 

Severe hypoglycemia is defined as a hypoglycemic episode 
having blood glucose levels less than 2.8 mmol/L and/or 
requiring assistance from another person for treatment to 
recover [4]. The brain depends on a constant supply of glucose 
to maintain its function. Severe hypoglycemic episodes can 
cause acute brain malfunction that leads to neuroglycopenic 
symptoms. There are three high-risk sources of severe 
hypoglycemia: hypoglycemia unawareness, intensive insulin 
therapy, and being asleep [5]. In people with diabetes, the 
defense mechanisms may become attenuated and cannot 
correct hypoglycemia naturally, leading to hypoglycemia 
unawareness. People with hypoglycemia unawareness have 
reduced symptomatic responses. Their blood glucose levels, 
therefore, can fall to dangerously low values in the severe 
range. With intensive insulin therapy, although the risk of 
retinopathy, nephropathy, and neuropathy is effectively 
reduced, patients undergoing this therapy experience a 
threefold increase of severe hypoglycemic episodes [4]. 
Nocturnal hypoglycemia is particularly dangerous because 
sleep may obscure autonomic counterregulatory responses. 
More than half of severe hypoglycemic episodes occur at night 
time [6]. 

It has been established that in clamp studies, there is a 
relationship between hypoglycemia and EEG recordings of the 
brain. In these studies, hypoglycemia was induced by a 
variation of insulin doses to allow blood glucose levels to 
follow a specific clamp profile. During hypoglycemic 
episodes, theta activity increased, and alpha activity decreased 
[7, 8]. When patients experienced hypoglycemia, EEG power 
spectra estimated from P4-O2 shifted from fast alpha 
frequencies to lower frequencies in theta and delta bands [9]. 
Centroid frequencies of the alpha and theta bands on the 
occipital lobe (O1 and O2) changed significantly when 
adolescents with T1D experienced hypoglycemic episodes at 
night time [10-13]. The significant changes in alpha centroids 
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of C3-P3 electrodes were found in adult patients during 
hypoglycemia [14]. Besides the standard spectral features, 
EEG coherence and complexity were reported as potential 
features for detecting hypoglycemia. The influence between 
O1 and C4 measured by partial directed coherence decreased 
significantly in 19 T1D patients during hypoglycemia [15]. 
There was also a significant reduction in P3-C3, O1-A1A2, 
and O2-A1A2 complexity when T1D patients experienced a 
hypoglycemic state [16-18]. 

Without clamp protocols, changes in electrocardiogram 
(ECG) and EEG signals have also been observed during 
hypoglycemia. Associated with hypoglycemic episodes, the 
corrected QT interval of ECG signals increased significantly 
[19, 20]. The power of EEG signals was used to investigate 
the association between hypoglycemia and brain waves. There 
was coherence between interstitial blood glucose fluctuations 
and EEG power in all frequency bands of six channels (F3, F4, 
C3, C4, O1, and O2) [21]. In a study on 9 adolescents with 
T1D, changes in EEG power in different areas of the brain had 
no significant correlation with interstitial glucose 
concentration in the hypoglycemic range [22]. 

Recently, we have proposed the use of EEG spectral 
moments for the detection of nocturnal hypoglycemia [23]. 
From the data of eight patients in the hyperinsulinemic 
hypoglycemic clamp study, the proposed features showed a 
better benchmark compared to standard features. The potential 
of using EEG as a biomarker for hypoglycemia episodes is 
still in need. In contrast to autonomic symptoms, 
hypoglycemia associated EEG changes are not blunted during 
low blood glucose episodes in patients with hypoglycemia 
unawareness [24]. In addition, EEG signals provide a direct 
correlation with the fluctuation of plasma blood glucose. 

Different from our previous study [23], we analyze changes 
in EEG spectral moments of the central and occipital areas 
during hypoglycemia in the current study, without using the 
clamp protocol. We hypothesize that these changes would be 
similar to what we found in the clamp conditions. Using 
interpolation, we match the number of hypoglycemic episodes 
to that of non-hypoglycemic episodes. We investigate the 
effect of hypoglycemia on spectral moments in EEG epochs of 
different durations. In this work, Cohen’s d effect size is used 
to compare the difference of EEG spectral moments between 
hypoglycemic and non-hypoglycemic conditions for various 
segment lengths of EEG signals. The calculated effect size 
will be used to select the optimal time window for nocturnal 
hypoglycemia detection. The classification results of 
hypoglycemic episodes from different segment lengths are 
then used to validate this selection. We also assess the clinical 
accuracy of using EEG spectral moments for detecting 
hypoglycemia from the optimal time window size. The 
estimated blood glucose levels are compared to the 
actual/interpolated blood glucose levels on Clarke’s error grid. 

The rest of this paper is structured as follows. Section II 
presents the study protocol of hypoglycemia, interpolation of 
glucose data, and extraction of spectral moments. This section 
also covers the determination of the optimal EEG segment 
length. In Section III, we report the results of this study. This 
is followed by Section IV, which gives a discussion on the 
obtained results. Finally, the entire work is concluded in 
Section V. 

II. METHODOLOGY 

A. Study Protocol 
This study was conducted on five adolescents with type 1 

diabetes at Princess Margaret Hospital for Children (Perth 
Children’s Hospital) in Perth, WA, Australia. Informed 
consent was obtained from all participants or their 
representatives. The participants were studied in the sleep 
laboratory. EEG signals were acquired continuously using the 
Compumedics EEG system. Participants’ blood glucose levels 
were monitored by glucose analysis using YSI 2300 STAT 
sampling. To reduce the number of blood samples taken and 
minimize disruption to participants’ sleep, a continuous 
glucose monitoring (CGM) device, Dexcom G4, was also used 
in this work. 

EEG electrodes were attached on the scalp according to the 
international 10/20 system, with the setting of impedance less 
than 5 kΩ on arrival. During the study, changes in electrode 
impedances were recorded. The acquisition of EEG data was 
performed with the participants at rest in bed and during sleep. 
Signals from the frontal (F3 and F4), central (C3 and C4), 
parietal (P3 and P4), and occipital (O1 and O2) regions were 
acquired at a sampling rate of 512 Hz. The EEG amplifier was 
configured with a 0.15 to 30 Hz band-pass filter and a 16-bit 
analog to digital converter. Two electrocardiogram electrodes 
were also attached as a part of monitoring. 

All participants had their CGM sensor insertion one to three 
days before the study day at the clinic. Two sets of 
observations were conducted for each participant. On one visit 
of the study, a cannula was inserted in a superficial vein for 
venous blood sampling. The participants had their usual dinner 
at least 2 hours prior to bed, and had their usual insulin dose 
given at meal time. While sensor glucose readings were 
recorded at each 5 minutes interval, the blood sampling period 
using YSI varied between 5 to 30 minutes, depending on the 
rate of fall when hypoglycemia is predicted. The same 
procedure was conducted for another visit, except the 
overnight insulin dose was intensified by 20% to increase the 
likelihood of hypoglycemia. The endpoint of the study is when 
two consecutive venous samples are having glucose levels of 
less than 2.8 mmol/L, or participants wake up requesting 
hypoglycemic treatment. 

B. Interpolation of Blood Glucose Levels 
In this study, the blood sampling frequency was minimized 

to reduce disturbance to the participants. As a result, we 
achieved a limited number of YSI glycemic samples for the 
study. In addition, the number of hypoglycemic episodes was 
unmatched by that of non-hypoglycemic episodes. Therefore, 
we used interpolation to approximate the intermediate blood 
glucose levels. The original YSI blood glucose profile of each 
patient was resampled using linear piecewise interpolation. 
Data between YSI sampling points were represented by a 
linear trace. This technique of interpolation was proved to 
provide acceptable intermediate values of blood glucose [25]. 

The interpolated profiles were then compared to the CGM 
profiles to ensure the selected interpolated values are 
appropriate for use. Fig. 1 shows blood glucose levels of two 
representative patients estimated by the CGM, the YSI, and 
selected from the interpolation algorithm. For each patient, the 
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selected interpolated values were added to the original YSI 
profile in the way that the number of glycemic episodes under 
hypoglycemia and non-hypoglycemia became matched. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

C. EEG Segmentation and Feature Extraction 
EEG signals from the central and occipital areas were 

chosen for analysis in this study since these areas were proven 
to be highly responsive to hypoglycemic episodes [7, 11]. 
EEG epochs were then extracted at the selected blood 
resampling points. Choosing a proper window size for the 
segmentation plays a vital role in analyzing EEG signals, 
especially for the application of hypoglycemia detection.  In 
this work, EEG epochs of different durations from 5 seconds 
to 90 seconds were investigated. These epochs were labeled as 
hypoglycemia (corresponding to a blood glucose level of less 
than 3.9 mmol/L) and non-hypoglycemia. 

The EEG epochs were transformed into the frequency 
domain using Welch’s power spectral density estimation. The 
analysis was carried out on four frequency bands: delta (0.25-
3.75 Hz), theta (4-7.75 Hz), alpha (8-12.75 Hz), and beta (13-
29.75 Hz). Features based spectral moments [23] were then 
calculated for each band, as shown in Table I. 

Spectral moments provide quantitative information about 
the shape of a spectral curve in a specific frequency band. In 
particular, the zero-order moment of a band is the total power 
in that band. The ratio of the first and zero order spectral 
moments is named centroid frequency, which is the center of 
gravity of the power spectrum. The spectral gyration radius is 
the root mean square of the second order moment divided by 
the total power. This feature measures the spread of power 
with respect to the coordinate origin. The use of the second-
order moment helps to distinguish two spectral curves that 
have the same center of gravity but are different in shape. 

In this study, we also computed the spectral gyration radius 

of mobility and complexity of EEG signals. The mobility and 
complexity are derived from the first and second derivatives, 
respectively, of the signals. Using the property of the Fourier 
transform, the spectral gyration radius measures of the 
mobility and complexity were obtained from the second, 
fourth, and sixth order moments without performing 
calculations in the time domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The combination of centroid frequency and spectral 

gyration radius measures forms an EEG pattern for 
hypoglycemia associated EEG analysis. In this work, we used 
t-tests to point out the differences between EEG spectral 
moments during hypoglycemia and those during non-
hypoglycemia. The significance levels of change in spectral 
features extracted from different segment lengths were then 
compared to investigate the effect of segmentation on 
hypoglycemia-induced EEG. Features having P-values of less 
than 0.05 are considered to be statistically significant. 

D. Optimal EEG Segment Length 
Statistical results have been used to choose the optimal 

thresholds, electrodes, or window sizes in a lot of EEG based 
studies [26-28]. The power of a statistical test depends on the 
number of samples in the study, the effect size, and the 
significance criterion [29]. 

Effect size is a measure of separability between groups of 
observations. This parameter explains the practical 
significance of statistical results. In this study, Cohen’s d 
effect size was used to compare the effect of different segment 
lengths of EEG signals. Firstly, the effect size of significant 
spectral features was calculated as follows: 
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where iX  is the mean value, 2
iσ is the variance, and in is the 

number of samples in each group (hypoglycemia vs. non-
hypoglycemia, 1, 2i = ). 

 
Fig. 1. Blood glucose profiles of two representative patients: a) 
and b), estimated by the Dexcom G4 device (CGM), the Yellow 

Springs Instrument device (YSI). IBGL denotes selected 
interpolated blood glucose levels. 

TABLE I 
SPECTRAL MOMENTS BASED FEATURE EXTRACTION 

 
Feature Description Explanation 

CF 1

0

m
m

 
The center of gravity of an EEG power 
spectrum. 

G0 
2

0

m
m

 The spectral gyration radius of EEG signals. 

G1 
4

2

m
m

 The spectral gyration radius of EEG mobility. 

G2 
6

4

m
m

 
The spectral gyration radius of EEG 
complexity. 
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The effect size of each segment length was then computed 
by averaging of the effect sizes obtained from the four 
frequency bands. The segment length with the largest effect 
size would be considered as an optimal window for detecting 
hypoglycemic episodes. 

To validate the optimal window from the effect size 
calculation, we compared the classification results of glycemic 
episodes from each segment length. In this work, Bayesian 
neural networks were exploited to classify glycemic episodes 
[23, 30]. 

III. RESULTS 
 
 

 

 

On each visit with a 20% extra insulin dose, all five 
participants had hypoglycemia. Without this extra dose, only 
one patient experienced hypoglycemic episodes. There is a 
total of 21 hypoglycemic and 35 non-hypoglycemic YSI blood 
sampling measures in the actual glucose profiles of 5 patients. 
For each patient, the YSI blood glucose profile was resampled 
at 5 minute intervals using interpolation when required. We 
used Dexcom estimated blood glucose values as a reference to 
choose interpolated blood sampling points for matching 
profiles. The final data set in this study is composed of 36 
hypoglycemic episodes and 36 non-hypoglycemic episodes. 
As shown in Table II, the matched profiles were created with 
minimal changes compared to the original profiles. 

EEG segments in different lengths from 5 seconds to 90 
seconds were extracted at the selected blood resampling points 
in the matched profiles. Spectral features were then computed 
for each segment. We found no significant changes in channel 
C3. Changes in channel C4 were only significant at the 
spectral gyration radius extracted from 60 second segments. In 
contrast to the central area, the most significant changes were 
observed on the occipital lobe. The level of significance of 
differences in the spectral features between hypoglycemia and 
non-hypoglycemia on this lobe is shown in Fig. 2. Changes in 
O2 spectral moments of the delta band were significant with 
the segment lengths from 15 seconds to 60 seconds except for 
40 second segments. For the theta band, the centroid 
frequency and spectral gyration radius extracted from 30 
second to 45 second segments changed significantly. It is 
worth noticing that all the spectral features of the alpha band 
from channel O2 were found to be significant in 30 second 
segments and in segments from 40 seconds to 60 seconds. For 
the beta band, the results show no significant changes during 
hypoglycemia. 

The effect sizes of different EEG segment lengths are 
shown in Fig. 3. Three segment lengths provided the effect 
sizes of greater than 0.38: 30 second, 35 second, and 45 
second segments. Although the highest effect size came from 
35 second segments, there was little distinction between the 
effect size of 30 second and 35 second segments. The figure 
also reveals that the effect sizes computed from the other 
segments are less than 0.28. Notably, the sizes of differences 
between hypoglycemia and non-hypoglycemia obtained from 
5 second and 10 second segments were zero because there 
were no significant changes in these segment lengths. 

 
 

Fig. 2. Significant levels of different EEG segment lengths in the delta, theta, alpha, and beta bands of the occipital lobe. The levels of 
significance are marked with symbols (an asterisk * means P<0.05). No significant changes were found in the beta band during 

hypoglycemia. 

TABLE II 
BLOOD GLUCOSE CHARACTERISTICS OF FIVE PARTICIPANTS (MMOL/L) 

 
Condition Original profiles Matched profiles 

Hypoglycemia 2.97±0.48 2.97±0.48 
Non-Hypoglycemia 6.94±2.67 6.87±2.66 
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Fig. 3. Effect size for EEG spectral moments of different segment 

lengths. Three segment lengths provided the effect sizes of 
greater than 0.38: 30 second, 35 second, and 45 second 

segments. 

 
Fig. 5. Changes in spectral moments of the delta, theta, alpha, and beta bands on the occipital lobe. Boxplots represent the values of spectral 

features computed from 30 second EEG segments during hypoglycemia (red) and non-hypoglycemia (blue). The level of significance is 
presented by asterisks (* means P<0.05). 

 
Fig. 4. Results of sensitivity of different EEG segment lengths. The 

30 second segment provided the best sensitivity. 
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The results of the effect size calculation suggest that 30 
second or 35 second EEG segments should provide the best 
detection rate for an EEG based hypoglycemia detection 
system. To validate this, we compared the classification 
results of glycemic episodes from all observed segment 
lengths. Bayesian neural networks were used as classifiers for 
this purpose. 

From four frequency bands of the four channels, the feature 
extraction algorithm results in 64-element input vectors for the 
networks. Tangent functions were used for the network hidden 
layer, and sigmoid functions were employed to activate the 
network output layer. From the resampled blood glucose 
profiles, the data set corresponding to each segment length of 
five patients is composed of 36 hypoglycemic vectors and 36 
non-hypoglycemic vectors. 50% of the data were used as the 
training set, and the other 50% were used as the test set. The 
training and testing phases were repeated in 20 repetitions for 
each segment length using the algorithm described in our 
previous study [23]. In the training stage, specificity was kept 
at 50% to maximize the value of sensitivity and to find the 
cut-off value for the output of the classifier. The results of the 
sensitivity of the test set obtained from different lengths of 
EEG segments are presented in Fig. 4. This figure shows that 
30 second EEG segments provide the best average sensitivity 
of 72.50±9.10%. For 35 second segments, the average 
sensitivity stops at 71.11±10.90%. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In comparison with the results of the effect size 
computation, classification results showed that the optimal 
length of EEG segments for hypoglycemia detection using 
spectral moments is 30 seconds. Fig. 5 presents changes in 
spectral moments of EEG signals on the occipital lobe using 
this segment length. Data in this figure reveal that during 
hypoglycemic episodes, the delta centroid and spectral 
gyration radius increased significantly on channel O2. For the 
theta band, the centroid frequency went upward significantly 
on channel O1. By contrast, all spectral features of the alpha 
band decreased significantly at O2. The figure shows a 
reduction in the values of all beta spectral features, but no 
significance was found for this band. 

We designed a Bayesian neural network to estimate blood 
glucose levels using the extracted EEG features of 30 second 
segments. The one-node output of this network was activated 
by a linear function. The training and testing schemes were set 
to maximize the sensitivity, as described in [31]. Using the 
hypoglycemic threshold of 3.9 mmol/L, the optimal neural 
network resulted in a sensitivity of 72% and a specificity of 
50% for the test set. The clinical accuracy of the estimated 
blood glucose values was assessed by Clarke’s analysis. The 
results of this error grid analysis are shown in Fig. 6 and Table 
III. The grid was created using resampled blood glucose levels 
and estimated values. The table shows that 86% of estimated 
blood glucose levels are clinically acceptable. In particular, 
there are 20 points (55%) in zone A and 11 points (31%) in 
zone B. However, 14% of the estimated values are potentially 
not acceptable. 
 

IV. DISCUSSION 
Previous publications have established that there are 

significant correlations between hypoglycemia and EEG 
signals [13, 15, 17, 32]. However, these studies were 
conducted under hyperinsulinemic hypoglycemic clamp 
conditions. Hypoglycemia associated EEG changes have to 
date been poorly investigated in the setting of non-clamp 
conditions. The first aim of the current work was to investigate 
the effect of hypoglycemia on spectral moments in EEG 
epochs of different durations in five T1D patients. Fourteen 
epoch durations were used for the observation. The second 
aim of this work was to propose the optimal time window for 
the detection of hypoglycemia. 

Linearly interpolated blood glucose levels were proved to 
enhance results for glycemic control performance [25]. In our 
study, the use of interpolation helped to increase the number 
of glycemic samples. In particular, we exploited linear 
interpolation to resample YSI blood glucose profiles. The 
matched profiles were created from the actual YSI profiles and 
the selected interpolated values. Compared to the excessive 
use of interpolated blood glucose values in our previous study 
[33], the intermediate blood values in the current study were 
chosen with a reference from CGM measures to ensure there 
are appropriate values resulting in the matched profiles. 

Since EEG signals are non-stationary, the selection of the 
epoch duration may affect the assessment of how 
hypoglycemia induces the electrical activity of neurons in the 
brain. In our previous study [23], we extracted spectral 

TABLE III 
DISTRIBUTION OF POINTS ON THE ERROR GRID 

 
Zone Number of points Percentage (%) 

A 20 55 
B 11 31 
C 0 0 
D 5 14 
E 0 0 

 

 
Fig. 6. Clarke’s error grid analysis for evaluating the correlation 

between estimated blood glucose values and actual/interpolated 
blood glucose levels. 
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moments from 20 second EEG segments for analyses. 
Different EEG segment lengths were used in other 
hypoglycemia-related studies, such as 2 seconds [22], 4 
seconds [17], 5 seconds [34], and 10 seconds [14]. To the best 
of our knowledge, there has been no quantification of which 
length of EEG segments provides the best performance for a 
hypoglycemia detection system. From the balanced profiles, 
hypoglycemia associated EEG changes were investigated 
using different segment lengths of EEG signals in the present 
study. Significant changes in EEG spectral features were 
observed during the occurrence of hypoglycemia. This study 
shows that 30 second segments can provide the best detection 
rate for a hypoglycemia detection system using EEG spectral 
moments. With the finding of the optimal length, our study, 
therefore, has proposed an optimal detection rate defined 
within 30 seconds of YSI measured/interpolated blood glucose 
values. This time delay is reasonable, compared to CGM 
devices. For instance, the detection rate of the Dexcom G6 is 
defined within 15 minutes of YSI measures [35]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also analyzed changes in EEG signals’ complexity 

using the Higuchi fractal dimension [36]. The Higuchi 
measure of fractal dimension has been used to detect EEG 
changes induced by hypoglycemia [17]. This algorithm has the 
computational cost of O(n), which is the same as the 
calculation of spectral moments [23]. In the present study, the 
fractal dimension was computed for EEG epochs in different 
durations (5 seconds to 90 seconds) with the setting of kmax=6 
[17, 37]. During the occurrence of hypoglycemia, a decrease 
in the Higuchi fractal dimension of channel O2 was found 
statistically significant (P<0.05) in segments from 30 seconds 
to 60 seconds. It is noticeable that the values extracted from 
the other channels (C3, C4, and O1) had no significant 
changes. The correlation between O2 fractal dimension and 
blood glucose levels is presented in Fig. 7. Data in this figure 

shows that the fractal dimension extracted from 30 second 
segments provides the highest correlation (r=0.24, P<0.05) to 
blood glucose levels. Furthermore, the effect size for the 
Higuchi fractal dimension from channel O2 was also largest 
(0.52) at the epoch duration of 30 seconds. These findings 
confirm the potential of this segment length of EEG signals in 
discriminating glycemic conditions in T1D patients. 

The trend of changes in theta and alpha bands during the 
occurrence of hypoglycemia in the current study are consistent 
with the previous clamp studies [10, 11, 13, 23, 24]. When 
blood glucose levels went lower than 3.9 mmol/L, alpha 
centroids decreased, and theta centroids increased, both 
significantly. Fig. 2 shows that during hypoglycemia, 
significant changes in the theta band are at O1, whereas it is 
O2 for the alpha band. To achieve a robust conclusion about 
the relationship between frequency bands and probe positions, 
a larger number of T1D patients is required.  In the present 
study, although the beta band showed a reduction in its 
centroid, no significance was found. 

It can be questioned whether sleep patterns would interfere 
with hypoglycemic patterns. There have been few studies 
investigating this concern. Hypoglycemia was detected in all 
sleep stages except for the REM sleep in a clamp study of 10 
adult participants [32]. In another clamp study on prepubertal 
children [38], changes in the delta band were found significant 
during hypoglycemia at sleep stages N1, N2, and N3. 
However, the brain also produced more delta waves during the 
stage of deep sleep [39]. Therefore, delta features should not 
be used as an independent measure to detect hypoglycemia. 

Our study is the first study using the effect size to select a 
proper EEG segment length for hypoglycemia detection. 
There are three levels in the benchmark of the effect size: 
small (d=0.2), medium (d=0.5), and large (d=0.8) [40]. 
However, it is suggested that these values should not be 
interpreted rigidly [41]. Using a threshold of 0.2, the use of the 
effect size for electrode and feature selection resulted in 
competitive accuracy for emotion recognition using EEG 
signals [27]. In our study, five lengths of EEG segments (from 
25 seconds to 60 seconds) had effect sizes of greater than 0.2. 
Among these, 35 second segments provided the largest effect 
size. In spite of having the second-largest effect size of 0.39, 
30 second segments produced the best sensitivity. 

As reported in [17, 42] and from the use of Higuchi fractal 
dimension in this study, during hypoglycemia, the EEG signal 
is more regular and less complex than that during euglycemia. 
In the frequency domain, a significant reduction of the alpha 
centroid was observed when patients experienced 
hypoglycemic states. This slowing of alpha waves during 
hypoglycemia corresponds to a decrease in vigilance [43, 44]. 
In addition, hypoglycemia-associated EEG changes are not 
affected by an antecedent episode of hypoglycemia in both 
hypoglycemia aware and unaware T1D patients [14]. This is 
an important neurological interpretation, as it would indicate 
the robustness of detecting hypoglycemic states using EEG 
changes in T1D patients. 

There are limitations to the current study. Firstly, the 
number of participants is still limited. Secondly, we have not 
observed the long-term stability of hypoglycemia associated 
EEG spectral moments. We were not able to engage the young 
patients for several occasions over a long period of time due to 

 
Fig. 7. Correlation between the Higuchi fractal dimension (HFD) 
and blood glucose levels in EEG segments of different lengths 

from channel O2. 30 second segments provide the highest 
correlation of 0.24. 
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the complications associated with hypoglycemia episodes. 
Thirdly, although participants’ blood glucose levels were not 
clamped to follow a target profile, their usual overnight insulin 
doses were intensified by 20%. This approach increases the 
incidence of hypoglycemia in T1D patients during the studies 
but may not reflect clinical hypoglycemia in their daily life. 
Finally, around 22% of blood glucose levels in the final data 
were taken from intermediate values using the linear 
interpolation algorithm. 

V. CONCLUSION 
The study on five T1D patients in this paper shows that the 

occurrence of hypoglycemia induced significant changes in 
spectral moments of EEG signals in different segment lengths. 
The occipital area was more responsive to hypoglycemia 
compared to the central area. Using Cohen’s d effect size, the 
present study reveals that the best EEG segment length, which 
provides the most significant difference between 
hypoglycemia and non-hypoglycemia, is 30 seconds. 
Statistical analyses were validated by classification results 
using Bayesian neural networks. The observation on the 
optimal segment length showed that hypoglycemia resulted in 
an increase of theta spectral moments (P<0.05) and a 
reduction in alpha spectral moments (P<0.05). A decrease in 
beta spectral moments was also observed. However, no 
significance was found from this band. 

In this study, only EEG channels from the central and 
occipital regions were investigated. The results from these 
channels provide optimism for a design of real-time wearable 
devices in which the limited number of electrodes is required 
for easy implementation in daily use. Future developments of 
the current work will be related to the optimization of the 
present algorithm in a broader pool of participants. 
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