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Accurate Deep Learning-Based Sleep Staging in
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Abstract—The identification of sleep stages is essential
in the diagnostics of sleep disorders, among which
obstructive sleep apnea (OSA) is one of the most
prevalent. However, manual scoring of sleep stages is
time-consuming, subjective, and costly. To overcome this
shortcoming, we aimed to develop an accurate deep learn-
ing approach for automatic classification of sleep stages
and to study the effect of OSA severity on the classification
accuracy. Overnight polysomnographic recordings from
a public dataset of healthy individuals (Sleep-EDF, n =
153) and from a clinical dataset (n = 891) of patients with
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suspected OSA were used to develop a combined convolu-
tional and long short-term memory neural network. On the
public dataset, the model achieved sleep staging accuracy
of 83.7% (κ = 0.77) with a single frontal EEG channel and
83.9% (κ = 0.78) when supplemented with EOG. For the
clinical dataset, the model achieved accuracies of 82.9%
(κ = 0.77) and 83.8% (κ = 0.78) with a single EEG channel
and two channels (EEG+EOG), respectively. The sleep
staging accuracy decreased with increasing OSA severity.
The single-channel accuracy ranged from 84.5% (κ = 0.79)
for individuals without OSA diagnosis to 76.5% (κ = 0.68)
for patients with severe OSA. In conclusion, deep learning
enables automatic sleep staging for suspected OSA
patients with high accuracy and expectedly, the accuracy
decreased with increasing OSA severity. Furthermore, the
accuracies achieved in the public dataset were superior to
previously published state-of-the-art methods. Adding an
EOG channel did not significantly increase the accuracy.
The automatic, single-channel-based sleep staging could
enable easy, accurate, and cost-efficient integration of EEG
recording into diagnostic ambulatory recordings.

Index Terms—Deep learning, Electroencephalography,
Obstructive sleep apnea, Recurrent neural network, Sleep
staging.

I. INTRODUCTION

IDENTIFICATION of sleep stages is crucial in diagnostics
of various sleep disorders. One of the most common sleep

disorders is obstructive sleep apnea (OSA) which has been
estimated to affect up to 38% of the general population [1].
In the diagnosis of OSA, sleep staging is conducted to assess
the sleep characteristics and to accurately determine the total
sleep time [2]. Accurate determination of total sleep time is of
paramount importance as it significantly affects the parameters
used to assess the severity of OSA.

According to the current sleep staging criteria [2], sleep is
classified into five different stages: wake, rapid eye movement
(REM) sleep and three stages of non-REM sleep (N1–N3). Clas-
sification into these stages is performed manually for 30-second
epochs of sleep using electroencephalography (EEG), elec-
trooculogram (EOG), and submental electromyogram (EMG)
signals measured during polysomnography (PSG). Currently, at
least 13 electrodes, with the positions determined by the Interna-
tional 10-20 System, are required for the measurement protocol
[2]. Thus, the overall measurement protocol and the sleep staging
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process is time-consuming, laborsome, and requires experienced
professionals [3].

Despite the major effort and expenses that go into manual
sleep staging, there are still shortcomings. Mainly, the agree-
ment of two different scores is generally unsatisfactory [4]–[9].
The inter-rater reliability (IRR), measured with Cohen’s kappa,
between two scorers using the current sleep scoring criteria
is commonly around 0.78 [4]. However, between international
sleep centers, the reliability can be as low as 0.58 to 0.63 [5],
[6], particularly due to poor scoring of N1 sleep [7], [8]. It has
been shown that the agreement of N1 is approximately only 0.46
between sleep laboratories within Europe [4] and as low as 0.19
to 0.31 between international centers [5], [6]. Furthermore, the
overall reliability of manual sleep staging may further decrease
if an individual is experiencing medical conditions, for example,
with OSA patients the reliability is worse than that of healthy in-
dividuals [8], [9]. Automatic scoring methods could potentially
improve the consistency of sleep staging between different hos-
pitals and healthcare systems. Furthermore, automatic methods
capable of accurate sleep staging with a minimal number of
measured signals could simplify the measurement protocol and
reduce the related costs.

A number of automatic sleep staging methods have been
previously published [10]–[31]. Traditionally, automated meth-
ods have relied on pre-defined rules, carefully selected features
extracted from the signals, and classification algorithms [22]–
[26]. Recently, a few machine-learning-based solutions utilizing
deep learning and artificial neural networks have been presented
[10]–[12], [14], [16]–[21], [27]–[31]. For these solutions, the
classification rules or features of each sleep stage were not
explicitly defined. However, previous studies have generally
relied on heavy preprocessing by either transforming the sig-
nals into 2D images representing the spectral information [19],
[27]–[30] or by reducing the signals into a limited number of
predefined features [10], [30], [31]. Furthermore, deep learning
models developed on research datasets of healthy individuals
have generally suffered from a loss of accuracy when general-
izing into populations with sleep disorders such as OSA [28].
In addition, a few machine learning-based automation attempts
have demonstrated promising outcomes on sleep staging with
a single EEG channel [10], [11], [13]–[16], [18]–[21]. While
some of these have utilized deep learning [10], [11], [14], [16],
[18], [19], [21], they have mostly relied on publicly available
research datasets with a limited number of healthy individuals.
Large clinical and well-balanced datasets have rarely been used,
and the effect of sleep disorders on automatic sleep staging has
not been thoroughly investigated.

We aimed to develop an accurate deep learning-based auto-
matic method for the classification of sleep stages in patients
with suspected OSA. We further aimed to achieve this by uti-
lizing the raw signals without conducting heavy preprocessing.
Furthermore, we aimed to study the effect of OSA severity on
the performance of automatic sleep staging. We hypothesize
that deep learning methods enable accurate sleep staging based
on a single EEG channel for patients with suspected OSA and
that the sleep staging accuracy decreases with increasing OSA
severity.

II. METHODS

A. Datasets

1) Sleep-EDF: We first utilized a public dataset, Physionet
Sleep-EDF [32], [33], to allow comparison of the proposed deep
learning-based approach with previous state-of-the-art methods.
We utilized the version 2 of the expanded Sleep-EDF dataset
released in March 2018. The dataset comprises 153 PSGs of
37 males and 41 females from a study investigating the effects
of age on sleep in a healthy population (Sleep Cassette). We
utilized the Fpz-Cz EEG signal for a single-channel input and
combined it with a single horizontal EOG signal for two-channel
input. Both signals were sampled with a 100 Hz frequency. No
preprocessing was implemented on the signals. EMG recording
was left out of this study due to its lower sampling frequency.

The sleep stages were originally scored according to the
Rechtschaffen and Kales manual [34] into following stages:
wake, N1, N2, N3, N4, REM, M (movement), and ‘?’ (not
scored). We combined the stages N3 and N4 into a single sleep
stage to comply with the AASM guidelines [2]. Furthermore,
the stages M and ‘?’ were excluded from the study. The PSG
recordings included long periods of wake in the beginning and
end of the recording. Similarly to previous studies [11], [18], we
only included 30 minutes of the wake before and after the sleep
to obtain more realistic results and to enable comparison.

With the Sleep-EDF dataset, we conducted 10-fold cross-
validation to assess the performance of the network, meaning
that with each fold, 90% of the population was used for training
and 10% as an independent test set. Furthermore, 10% of the
training set was further used as the validation set during each
fold. This was done to avoid overfitting during training, to choose
an optimal model, and to keep the test set separate during
each fold. 10-fold cross-validation was chosen over a single
split to training, validation, and test set due to relatively small
dataset and to enable comparison with the previous studies [11],
[17]–[21].

2) Clinical Dataset: The clinical dataset utilized in this study
consists of 933 consecutive diagnostic overnight polysomno-
graphies (PSG) of patients with clinical suspicion of OSA. Out
of these, 891 individuals had successful recordings of all the
required signals together with complete sleep stage scorings
and were thus included in this study. The PSGs were conducted
at the Princess Alexandra Hospital, Brisbane, Australia during
2015–2017 and recorded with the Compumedics Grael acquisi-
tion system (Compumedics, Abbotsford, Australia). The sleep
stages were initially scored manually by multiple experienced
scorers who participate regularly in intra- and inter-laboratory
scoring concordance activities. Scoring was conducted based on
the AASM rules [2] and the prevailing clinical practice of the
Princess Alexandra Hospital. Ethical permissions for the data
collection and processing were obtained from The Institutional
Human Research Ethics Committee of the Princess Alexandra
Hospital (HREC/16/QPAH/021 and LNR/2019/QMS/54313).

From the recorded PSGs, EEG (derivation F4-M1) was used
for single-channel input and it was complemented with EOG
(derivation E1-M2) for two-channel input. EMG was not in-
cluded to enable comparison with the public dataset. The signals
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TABLE I
DEMOGRAPHIC INFORMATION OF THE CLINICAL DATASET (n = 891)

N1, N2, N3, and REM mean the percentage of the sleep stage and NREM the percentage
of non-REM sleep from total sleep time. Sleep efficiency means the percentage of sleep
from total recording time.

were recorded with 1024 Hz sampling frequency and were
downsampled to 64 Hz to reduce the computational load. No
additional preprocessing was applied. The frontal EEG channel
was selected due to its simple measurement setup. The dataset
was split into three individual sets: a training set, a validation
set, and a test set. The training set comprised 717 whole night
recordings (80%), and the validation and test sets comprised 87
recordings (10%) each.

Out of the 891 studied individuals, 493 were males and
398 females. The patients were mostly middle-aged and obese.
According to the current severity classification of OSA, based on
apnea-hypopnea index (AHI) [35], 152 individuals had no OSA
(5 < AHI), 278 suffered from mild OSA (5 ≤ AHI < 15), 208
from moderate OSA (15 ≤ AHI < 30), and 254 had severe OSA
(AHI ≥ 30). Furthermore, 142 individuals were smokers, 197
suffered from diabetes, 368 had hypertension, 96 had cardiac
arrhythmia, 22 had cardiac failure, and 41 had suffered a stroke.
Table I shows the medians and interquartile ranges for sleep
parameters and demographic information.

3) OSA Severity: The effect of OSA severity on the per-
formance of the automatic sleep staging model was assessed
by training and evaluating the model separately on each OSA
severity group (no OSA, mild, moderate, and severe OSA)
of the clinical dataset described above. In this phase, only a
single frontal EEG channel (F4-M1) was used, and as with the
Sleep-EDF dataset, the performance was evaluated using 10-
fold cross-validation. The 10-fold cross-validation was chosen
due to reduced size of the dataset compared to the complete
clinical dataset, and to get more comprehensive and comparable
results over all the severity groups. Table II presents the number
of 30-second epochs of each sleep stage in all the utilized
datasets.

B. Neural Network Architecture

The estimation of the sleep stages (wake, N1, N2, N3, and
REM) was conducted with a combined convolutional network

(CNN) and recurrent neural network (RNN) trained in an end-
to-end manner. The CNN aspect of the network was used to
learn the characteristic features typical of each sleep stage,
while the RNN considered the temporal distribution of the
sleep stages overnight. The combined CNN and RNN structure
was in essence similar to the architecture presented earlier by
Supratak et al. [11]. However, sleep staging was conducted
as a sequence-to-sequence classification problem, previously
proposed by Phan et al. [29]. The network architecture was
identical for the two-channel input and the single-channel input;
the only difference was in the input dimension. The network
was implemented in Python 3.6 using Keras API 2.2.4 with
TensorFlow (version 1.13) backend. The training was conducted
on a server with 32-core AMD Ryzen Threadripper 2990WX,
128 GB RAM and NVIDIA GeForce RTX 2080.

The CNN comprised six 1D convolutions each followed by
batch normalization and a rectified linear unit (ReLU) activation,
two max-pooling layers, and a global average pooling layer
(Fig. 1). The max-pooling layers were situated after the first two
1D convolutions and after the two following 1D convolutions.
The global average pooling layer followed the last two 1D
convolutions. The kernel size of the first 1D convolution was 21
and the stride size was 5. The second 1D convolution had a kernel
size of 21 and stride size of 1. The number of convolutional filters
equaled the sampling frequency (64 Hz for the clinical dataset,
100 Hz for Sleep-EDF) of the used dataset in the first two 1D
convolutions. The remaining four 1D convolutions had a kernel
size of 5 with a stride size of 1. The number of convolutional
filters was two times the sampling frequency for the third and
fourth 1D convolution and four times the frequency for the fifth
and sixth 1D convolution.

The complete network comprised a time distributed layer of
the complete CNN structure, a gaussian dropout layer and a
bidirectional long short-term memory (LSTM) layer followed
by time distributed dense layer with softmax activation (Fig. 1).
The number of units in the bidirectional LSTM was 4 times
the sampling frequency. The LSTM utilized a tanh activation
function and a dropout rate of 0.3. In the recurrent step, a
hard sigmoid activation and a dropout rate of 0.5 were used.
The last layer of the network comprised a dense layer with
softmax activation producing the output sequence of sleep stage
probabilities.

The model was trained with sequences of hundred 30-second
epochs. An overlap of 75% was used when forming the se-
quences in the training set to increase its size fourfold. No
overlap was used in the validation set or the test set. The model
was trained with categorical cross-entropy as the loss function
and an Adam optimizer with warm restarts [36] using a learning
rate range of 0.001 to 0.00001. This learning rate range was
optimized with a learning rate finder [37]. The model was
validated with the validation set after each training cycle i.e.,
after the entire training set was passed through the network.
The model was trained for a maximum of 200 training cycles
or until the value of the loss function in the validation set no
longer decreased during 20 consecutive training cycles The per-
formance of the model was then assessed using in an independent
test set.
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TABLE II
THE NUMBER OF 30-SECOND EPOCHS OF EACH SLEEP STAGE IN THE SLEEP-EDF DATASET, CLINICAL DATASET, AND AMONG THE GROUPS WITH

DIFFERENT OSA SEVERITY

Fig. 1. The architecture of the combined convolutional neural network
(CNN) and recurrent neural network (RNN). The parameters of the
1D convolutions (Conv1D) are given as (number of filters, kernel size,
stride size) and as (pool size, stride size) for the max-pooling. Fs is
the sampling frequency. For the long short-term memory (LSTM) and
dense layer (Softmax) the number of units is given. The rate is given
for the dropouts. The dropout layers were only active during training.
Sequences of hundred 30-second epochs of the utilized signals were
used as an input, and the model produced a sequence of softmax values
representing the probabilities of each sleep stage for each epoch.

C. Interpretation of the Results

The accuracies were calculated in an epoch-by-epoch manner.
Moreover, the inter-rater agreement between manual and auto-
matic sleep staging was evaluated using Cohen’s kappa coeffi-

cient (κ) [38] and the sensitivity and specificity of differentiating
sleep from wake sleep were calculated.

III. RESULTS

A. Sleep-EDF

During the 10-fold cross-validation, the model achieved
89.8% training accuracy, 83.0% validation accuracy, and 83.9%
testing accuracy with the two-channel input comprising single
EEG and EOG channels. These accuracies corresponded to
kappa values of 0.86, 0.77, and 0.78 in the training, validation,
and test sets, respectively. Based on the guidelines by Landis and
Koch [39], the kappa values indicate almost perfect agreement
between manual and automatic sleep staging in the training set,
and substantial agreement in the validation and test sets. In the
test set, sleep was identified with 96.2% sensitivity and 93.7%
specificity. For the individual sleep stages, the accuracy was
93.7% for wake, 87.3% for N2, 78.0% for N3, and 85.4% for
REM in the test sets, Fig. 2A. The lowest concordance was seen
with N1 (45.1%).

With the single EEG channel, the obtained accuracies were
89.2%, 82.8%, and 83.7% in training, validation, and test sets,
respectively. These correspond to kappa values of 0.85, 0.77,
0.77, respectively, indicating almost perfect or substantial agree-
ment. In the test set, sleep was identified with 96.0% sensitivity
and 93.4% specificity. Wake was identified with 93.4%, N1
with 43.4%, N2 with 87.3%, N3 with 78.7%, and REM with
85.4% accuracy (Fig. 2B). The obtained accuracies and kappa
values with single and two-channel input, alongside previous
state-of-the-art results, are presented in Table III.

B. Clinical Dataset

In the clinical dataset with the F4-M1 EEG and E1-M2
EOG channels, the model achieved 85.5% training accuracy
and 83.8% validation accuracy. In the independent test set, the
accuracy was 83.8%. These accuracies corresponded to Cohen’s
kappa values of 0.80, 0.78, and 0.78, respectively, indicating
substantial agreement. Furthermore, the sensitivity of identify-
ing sleep was 95.9% with 89.4% specificity in the test set. For
individual sleep stages, the accuracy was 89.4% for wake, 87.2%
for N2, 79.8% for N3 and 91.4% for REM in the test set (Fig. 3A).
The lowest concordance between manual and automatic sleep
staging was obtained in N1 with an accuracy of 46.9%.

With the single frontal EEG channel, the accuracies were
86.3%, 83.4%, and 82.9% in the training, validation and test
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Fig. 2. Normalized confusion matrices of the classification accuracies from Sleep-EDF with (A) two-channel input (Fpz-Cz EEG and horizontal
EOG) and (B) single EEG channel (Fpz-Cz) input.

Fig. 3. Normalized confusion matrices of the classification accuracies from the clinical dataset with (A) two-channel input (F4-M1 EEG and E1-M2
EOG) and (B) single EEG channel (F4-M1) input.

sets, respectively. These accuracies corresponded to kappa
values of 0.82, 0.78, and 0.77. In the test set, the sensitivity for
identifying sleep was 95.6% with 89.8% specificity. The N1
sleep stage was the most challenging to identify (classification
accuracy of 46.0%). In contrast, wake was identified with
89.8% accuracy, N2 with 86.5%, N3 with 75.4%, and REM
with 90.8% accuracy (Fig. 3B).

C. OSA Severity

When comparing the OSA severity groups, the accuracies
and kappa values were lowest for patients with severe OSA
(Table IV). The accuracy increased with decreasing OSA sever-
ity and were the highest for individuals without OSA. Similar
behavior was perceived in the individual sleep stages, with the

exception of N1 sleep which was most accurately classified for
severe OSA patients (Fig. 4).

IV. DISCUSSION

In this study, we developed a deep learning-based method for
automatic classification of sleep stages from raw EEG and EOG
signals using both a large clinical dataset (n = 891) comprising
patients with suspected OSA and a publicly available dataset of
healthy individuals (n = 153). Sleep staging was implemented
using both two-channel input and single-channel input. Fur-
thermore, we also studied the effect of OSA severity on the
performance of automatic sleep staging. Overall, the automatic
sleep staging method achieved high accuracies: 83.9% (κ =
0.78) and 83.6% (κ= 0.77) with single and two-channel inputs,
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Fig. 4. Normalized confusion matrices of the classification accuracies with a single EEG channel (F4-M1) in individuals (A) with no OSA, (B) with
mild OSA, (C) with moderate OSA, and (D) with severe OSA.

respectively, in the public dataset, and almost correspondingly
82.9% (κ = 0.78) and 83.8% (κ = 0.77) in the clinical dataset.
The accuracy of the sleep staging decreased with increasing OSA
severity with the accuracy being the highest for individuals with-
out OSA and lowest with individuals having severe OSA. Based
on the obtained results, deep learning could enable accurate sleep
staging with a single easily measurable frontal EEG channel
with practically the same accuracy as with the additional EOG
channel. Overall, the reliability of these automatic sleep staging
approaches was comparable with the reliability of manual sleep
scoring [4]–[9].

The developed deep learning model compared favorably to
previous studies based on the publicly available Sleep-EDF
dataset [32], [33]. Our method slightly surpassed the perfor-
mance of previously published methods (Table III). Previ-
ously, Mousavi et al. have utilized the updated Sleep-EDF
dataset with 153 recordings and included only 30 minutes of

TABLE III
PERFORMANCE COMPARISON

Only studies utilizing the sleep cassette dataset of the Sleep-EDF, conducting cross-
validation with an independent test set, and having truncated the excess wake periods
from the recordings are included.
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TABLE IV
PERFORMANCE OF THE DEEP LEARNING-BASED SLEEP STAGING IN OBSTRUCTIVE SLEEP APNEA SEVERITY GROUPS

wake before and after sleep achieving an accuracy of 80.03%
(κ = 0.73) with a single EEG channel [18]. In comparison, we
achieved a single-channel accuracy of 83.7% (κ = 0.77) with
the same dataset and identically truncated signals. Other studies
based on state-of-the-art methods have been conducted with the
smaller Sleep-EDF dataset with only 39 recordings [11], [17],
[19]–[21] and thus direct comparison is difficult. However, it
is noteworthy that Mousavi et al. compared the performance
of their sleep staging method in both the smaller and updated
datasets and achieved significantly higher accuracy (84.26%
vs. 80.03%) in the smaller dataset [18]. This indicates that
accurate sleep staging may be easier in the smaller dataset when
compared to the larger, updated dataset used in the present study.
Furthermore, direct comparison with previous studies is difficult
due to non-standardized use of the database. The recordings in
the database contain excessive wake periods before and after
sleep. Inclusion of the excess wake periods to the automatic
sleep staging can lead to overly optimistic results. Therefore,
we only compared our results to studies truncating the excess
amount of wake either by using only 30 minutes of wake before
and after sleep [11], [18] or by only using the sleep [19], [20],
[21]. Furthermore, the results cannot be compared to studies not
using an independent test set to assess the performance, as these
results could be distorted by overfitting.

The PSGs collected from suspected OSA patients have been
problematic for previous automatic sleep staging approaches and
even the reliability of manual scoring is known to be lower than
with healthy individuals [8], [9], [28]. This is most likely due to
a fragmented sleep structure and an increase in the amount of N1
sleep stage, which are typical for OSA patients [9]. In the present
study, the sleep staging accuracies decreased with increasing
OSA severity, with an accuracy of 84.5% for individuals without
OSA and 76.5% for patients with severe OSA. Wake and N1
sleep comprised a larger portion of the recording whereas N2,
N3, and REM comprised a smaller portion of the recording for
patients with severe OSA when compared to the other patient
groups (Table II). Especially N1 comprised a significantly larger
portion (15%) of the recordings in the severe OSA group com-
pared to the other groups (6–9%). This supports the idea that
fragmented sleep structure caused by OSA impairs the accuracy
and reliability of sleep staging. However, it is noteworthy that
the accuracy of scoring N1 was 47% for patients with severe
OSA (Fig. 4D) while it was only 28% for individuals without
OSA (Fig. 4A). This increase in accuracy is likely due to a larger
amount of N1 sleep epochs and transitions between wake and
N1 available during the training of the deep learning model.
Furthermore, it is possible that manually identifying the N1

sleep of an individual patient becomes more reliable when more
N1 sleep and especially more transitions between wake and N1
are available. This could improve the automatic scoring of N1
in addition to the accuracy increasing simply due to the larger
training material. However, the N1 accuracy remained the lowest
amongst all sleep stages and the accuracy of the other stages
decreased for severe OSA. Thus, the increase in N1 accuracy
was insufficient to compensate for the reduction in total accuracy
with increasing OSA severity.

Implementation of automatic sleep staging system in a clinical
setting could provide significant benefits over the prevailing
practice. Currently, the manual sleep staging lacks sufficient
inter-rater reliability, as perceived from numerous studies [4]–
[9]. It could be argued that since our deep learning-based sleep
staging method was trained with manual scorings, it’s accuracy
cannot surpass human scorers. However, the developed auto-
matic method may produce a consensus over multiple scorers
and thus minimize the variability. The developed automatic sleep
staging method did not learn only from a single scorer as the clin-
ical PSGs were scored by multiple sleep technicians potentially
differing in their scoring preferences and traditions. Thus, the
optimal solution is not to mimic a single scorer but rather classify
the stages as similarly as possible to the majority of the scorers.
Furthermore, after training, the automatic method always scores
the sleep stages similarly regardless of the situation. This can be
a major advantage over a manual scorer, as the automatic scoring
does not depend on factors such as human error, vigilance level,
or the current scoring environment.

In addition to high variability, manual sleep staging is highly
time-consuming and requires trained specialists for a rather
repetitive task. The sleep staging of a single patient could be
performed in less than a second with the proposed automatic
sleep staging method, whereas the manual scoring can take up
to hours even for experienced scorers. Although the automatic
sleep staging method is reliable for suspected OSA patients, the
reliability of sleep stage classification of individuals with other
sleep disorders remains to be studied.

Accurate sleep staging with a single EEG channel may present
opportunities for further development and application of vari-
ous ambulatory EEG and PSG acquisition systems [40], [41].
Currently, conducting PSG is expensive and requires trained
specialists. Thus, cheaper ambulatory recordings have been
developed and shown to be accurate for the diagnosis of OSA
[3]. Ambulatory recordings are even the preferred diagnostic
method in some healthcare systems [42], [43]. However, the
major disadvantage of ambulatory recordings is often the lack
of EEG recording, preventing identification of sleep stages and
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resulting in crude approximations of the total sleep time from
other signals. Thus, ambulatory EEG recording based on a single
frontal channel could enhance the accuracy of the ambula-
tory recordings whilst ensuring simplicity and cost-efficiency.
However, further studies are warranted to assess and verify
the performance of the developed sleep staging method when
applied together with an ambulatory recording device.

The most significant limitation of the developed deep
learning-based sleep staging method is the scoring of N1
sleep stage. With both the two-channel and single-channel ap-
proaches, the agreement with the manual scoring of stage N1 was
the lowest of all sleep stages with a variation of 28–47% between
the public and clinical datasets and depending on the severity of
OSA. However, N1 is the most difficult sleep stage to identify
even for experienced manual scorers [7], [8]. The agreement
in N1 we achieved with the automatic sleep staging method
is, however, comparable to the inter-rater agreement between
manual scorers, which is between 0.19 and 0.46 [4]–[6]. Thus,
the limited accuracy of scoring N1 sleep stage may not be due
to the developed sleep staging method, but rather in the scoring
definitions of N1 resulting in disagreement between experienced
manual scorers.

V. CONCLUSION

The proposed deep learning-based automatic method enables
reliable, fast, and accurate sleep staging for suspected OSA
patients. The accuracy of the sleep staging decreases with in-
creasing OSA severity but with the utilized large clinical dataset,
the sleep staging can be conducted for patients suffering from
OSA with almost comparable accuracy to individuals without
OSA. Practically, automatic sleep staging can be performed
as accurately using either a combination of single EEG and
EOG signals or using a single frontal EEG channel. The single-
channel approach could enable a cost-efficient, simple, and
accurate sleep staging in OSA diagnostics.
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