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Abstract—Many clinical studies have revealed the high
biological similarities existing among different skin patho-
logical states. These similarities create difficulties in the
efficient diagnosis of skin cancer, and encourage to study
and design new intelligent clinical decision support sys-
tems. In this sense, gene expression analysis can help
find differentially expressed genes (DEGs) simultaneously
discerning multiple skin pathological states in a single
test. The integration of multiple heterogeneous transcrip-
tomic datasets requires different pipeline stages to be prop-
erly designed: from suitable batch merging and efficient
biomarker selection to automated classification assess-
ment. This article presents a novel approach addressing all
these technical issues, with the intention of providing new
sights about skin cancer diagnosis. Although new future
efforts will have to be made in the search for better biomark-
ers recognizing specific skin pathological states, our study
found a panel of 8 highly relevant multiclass DEGs for dis-
cerning up to 10 skin pathological states: 2 healthy skin
conditions a priori, 2 cataloged precancerous skin diseases
and 6 cancerous skin states. Their power of diagnosis over
new samples was widely tested by previously well-trained
classification models. Robust performance metrics such as
overall and mean multiclass F1-score outperformed recog-
nition rates of 94% and 80%, respectively. Clinicians should
give special attention to highlighted multiclass DEGs that
have high gene expression changes present among them,
and understand their biological relationship to different
skin pathological states.
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I. INTRODUCTION

SKIN cancer is a worrying complex disease taking on a
wide range of skin pathological states (SPSs). The complex

heterogeneity of its occurrence is determined by the abnormal
and out of control proliferation of specific cells (squamous,
basal, Merkel, melanocyte, keratinocyte, etc.) that lead to the
development of multiple skin cancerous pathologies. Among
them, non-melanoma skin cancer (NMSC) related pathologies
are the most frequent in order of incidences, pathologies in this
group are led by basal cell carcinoma (BCC), squamous cell
carcinoma (SCC) and Merkel cell carcinoma (MCC) [1]. With
regard to melanoma skin cancer (MSC), the main pathologies
are primary melanoma (PRIMEL) and metastatic melanoma
(METMEL), where METMEL has a higher mortality rate [2].
Recent epidemiological studies show a concerning global trend,
the incidence and occurrence of both MSC and NMSC cases
have already become the most common types of cancer in white
populations [3]. This is supported by the statistical analysis of
MSC rates on cohorts from United States whites, United King-
dom, Norway and Sweden which increased up to 3% annually
during the last 3 decades [4]. With respect to NMSC cases, its
incidence is around 20 times higher than MSC cases [5] despite
being widely understudied. As a result of the fateful combination
of both factors (incidence and occurrence), an extensive global
alarm is being increased. Therefore, the possibility of suffering
from any skin cancer type could be led by two main drivers.
The first driver is the tumor evolution of other skin diseases
previously considered precancerous states such as psoriasis (PS)
[6], [7] or actinic keratosis (AK) [8]; the second driver is the
tumor degeneration and mutation from healthy states such as
normal skin (NSK) and nevus (NEV).

The narrow biological relationship among several SPSs may
complicate the successful diagnosis of skin cancer. Certain
researches have pointed out the difficulty in discerning among
specific SPSs from the clinical, histological and molecular points
of view: AK vs SCC [9], AK and SCC vs PRIMEL [10], SCC
vs BCC and MSC [11], primary MCC (PMCC) vs metastatic
MCC (MMCC) [12], etc. Different editions of the American
Joint Committee on Cancer (AJCC) have gradually introduced
the most outstanding clinical parameters for their diagnosis
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(tumor mitotic rate, TNM classification, Breslow thickness,
Clark levels, etc.). Consequently, the AJCC Cancer Staging
Manual has been considered the gold standard by clinicians
when making their diagnoses [13]. However, the way to diagnose
this cancerous disease continues to be limited and each AJCC
edition implies controversies and corrections on which are the
best criteria to efficiently diagnose each SPS. Conversely, other
studies insist on the possibility of differentiating them from
the identification of gene expression patterns such as AK vs
SCC [14]. Although previous studies show DEGs can discern
among different pathologies, the biological complexity of the
skin cancer may put its validity into question.

The opportunity to efficiently improve the discernment among
multiple SPSs related to cancer from biological data involves
taking into account a set of requirements. Firstly, different
technological alternatives which allow gene expression to be
quantified have to be inspected. Although microarray technology
has been vastly used, RNA-seq technology is ultimately replac-
ing it thanks to its various advantages described in the literature
[15]. Nonetheless, the absence of open access datasets from
experiments using the newest technologies suggests microarray
analysis could still be considered. In addition to its low cost,
it may not have been properly exploited yet by considering the
combination of diverse skin cancer datasets containing samples
of different SPSs. This fact gives the chance to reinforce the
statistical robustness of the study as well as to obtain DEGs
from a wider range of SPSs. This observation introduces the
following challenge: how to adequately integrating data from
both technologies in order to increase as much as possible
the number of samples for each identified SPS of the study.
Previous studies have underlined the good agreement among
them in terms of similarity, complementarity and compatibility
[16], [17]. In view of these advantages together with the proven
consistency of applying multi-platform integration among both
microarray platforms and technologies at gene expression level
[18]–[22], this integrative approach is encouraged to continue
carrying it out. However, the researchers have traditionally kept
in mind the mandatory correction of eventual batch effects with
the purpose of achieving an effective integration of multiple
experiments over different microarray platforms [23], mainly
coming from two manufacturers: Affymetrix [24] and Illumina
[25]. By additionally taking into account experiments conducted
on RNA-seq technology, the hypothetical influence of this factor
may be modified in an unpredictable way. The treatment and
the attempt of correction should never be disregarded; however,
there is no certainty that a complete elimination of these effects
will take place [26]. Among the multiple batch effect correc-
tion algorithms, ComBat [27] has proven to show the highest
effectiveness when integrating microarrays [28] and, recently,
has been validated in the integration of RNA-seq datasets from
different sources: GTEx and TCGA projects [29]. In the case
of favorably dealing with all these limitations, a new experi-
mental challenge takes place: how to discern multiple SPSs by
using changes in gene expression. Although hierarchical clus-
tering highly helps in graphically showing such changes [30],
methodological approaches based on multiclass classification
are postulated as an innovative alternative when assessing the

validity of DEGs for simultaneously diagnosing multiple SPSs
[31]. Finally, the use of feature selection algorithms must be
explored with the objective of selecting only informative DEGs,
that in many cases can dramatically reduce the search space.

Under the fulfillment of the previous requirements, the inte-
gration of microarray and RNA-seq technologies at gene expres-
sion level [32] opens new possibilities for skin cancer analysis.
In particular, this advance could improve the understanding of
the hypothetical biological relationships and differences among
SPSs that may be discerned in a simple simultaneous analysis.
Clinicians could directly benefit from its validity in multiple
ways. Firstly, the suspicions about the patient tumor evolution
from healthy skin states to cancerous states, even through pre-
cancerous skin diseases, could be eventually assessed by pre-
senting certain genetic susceptibility to change [33]. A patient-
oriented medical service could be derived from the above by
knowing the genetic signs. Consequently, unnecessary medica-
tions or medical treatments such as radiation therapies, excision
surgeries or medications supply could be prevented [34]. Cer-
tainly, clinical diagnosis could be supported by an intelligent
diagnosis tool that offers another complementary point of view
[35], [36].

Although our novel methodological approach is thought to be
applied on any multiclass problem, this work shows its validity
by addressing the improvement of skin cancer diagnosis, thus
taking into account all the requirements previously discussed
and offering the benefits motivated above. The integration of
different skin cancer datasets from microarray and RNA-seq
technologies based on gene expression analysis has not been
widely explored by the scientific community. First of all, an
exhaustive sample search of multiple SPSs was carried out from
public data repositories. Next, 22 microarray and 5 RNA-seq
series containing 1090 samples in total were collected. However,
after applying a strict quality control phase, only 968 samples
passed and were subjected to the preprocessing phase: 666
samples from Affymetrix and Illumina microarray platforms and
302 samples from Illumina RNA-seq platforms. Subsequently,
the sample integration considered only those genes sharing a
common annotation for all the series selected for this study.
After merging multiple batches and applying batch effect cor-
rection on them, the challenge was to efficiently find valid genes
simultaneously discerning up to 10 SPSs: from a priori healthy
states (NSK and NEV) to cutaneous carcinomas (BCC, ISCC,
PMCC and MMCC) or melanomas (PRIMEL and METMEL),
including skin diseases with a higher risk of tumor degeneration
that have already been cataloged as precancerous states (AK
and PS). From the assessment of a highly heterogeneous mul-
ticlass dataset of 968 samples and almost 7700 genes, a DEGs
subset was identified by applying a novel one-vs-one (OVO)
multiclass gene selection algorithm. This was achieved by means
of consciously tuning critical and highly selective parameters.
Specifically, log2 fold change (LFC) and maximum number of
selected DEGs (NMAX) among each pair of SPSs were consid-
ered. By relying on a widely used feature selection algorithm and
assessing different subgroups of multiclass candidate DEGs, an
ANOVA statistical test [37] assessed the influence of these crit-
ical parameters together with the use of different classification
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Fig. 1. Overall flowchart of the designed gene expression analysis pipeline. Two main bioinformatic tasks are addressed based on gene expression
analysis: transcriptomics technologies integration and machine learning techniques application.

models and performance metrics. Finally, the biological relation-
ship of these DEGs with skin cancer was determined by examin-
ing their functional properties and inspecting specific literature.

II. METHODS

A flowchart of our approach is presented here (Fig. 1). Each
of the experimental steps of this proposed pipeline will be
subsequently addressed in the following subsections. For re-
producibility purposes, this methodological approach can be
run step-by-step by using different functionalities published
under the KnowSeq R/Bioc package [38] together with several
R scripts which have been included in the next repository:
https://github.com/jmggugr/skca-transcriptomics-integration/

A. Transcriptomics Technologies Integration

In order to obtain the integration of skin cancer datasets
coming from different platforms and technologies, three steps
have to be carried out (see left part in Fig. 1).

1) Raw Data Acquisition: One of the first steps involves
carrying out an in-depth information search about skin cancerous
pathologies and, subsequently, finding out the current availabil-
ity of datasets. For example, AK and PS have been previously
cataloged as precancerous skin diseases. Also, a wide range of
SPSs related to cancer have been specified: from carcinomas
(BCC, SCC or MCC) to melanomas (PRIMEL and METMEL),
to even lymphomas or sarcomas. Next, the identification of
transcriptomics webdata resources required to inspect the avail-
ability of the above SPSs together with healthy states (such as
NSK or NEV) in public repositories such as NCBI GEO [39] and
ArrayExpress [40] web platforms. Initially, samples on which
drugs were applied, viruses were evaluated or were not directly
extracted from tissue by means of punch biopsies or sliced
sections were discarded. Moreover, only those SPSs for which
a sufficiently representative number of samples were found and
considered in order to increase the possibilities of characterizing
their manifestation [41]. Under these considerations, Bowen’s
disease samples (also known as SCC in situ) were not finally
considered (only two datasets containing data samples from
this SPS were found, summing up to only 12 samples which

TABLE I
TAXONOMIC CLASSIFICATION OF SKIN PATHOLOGICAL STATES FOR THE

968 COLLECTED RNA SAMPLES

SPS = Skin pathological state, NSK = Normal skin, NEV = Nevus, BCC = Basal cell
carcinoma, ISCC = Invasive squamous cell carcinoma, PMCC = Primary Merkel cell
carcinoma, MMCC=Metastatic Merkel cell carcinoma, PRIMEL=Primary melanoma,
METMEL = Metastatic melanoma, AK = Actinic keratosis, PS = Psoriasis.

was considered too low for the study). Finally, no representative
number of lymphoma and sarcoma samples was found, so they
were not considered in this study.

Since different microarray technologies and platforms were
dealt with, several R packages from Bioconductor web platform
[42] were used to acquire the RNA samples: GEOquery [43],
affy [44] and oligo [45] for Affymetrix platforms and lumi [46]
for Illumina platforms. In the case of RNA-seq series, SRA and
FASTQ files containing raw information were directly down-
loaded in a programmatic manner before being preprocessed.
Only those series whose samples were aligned to the GRCh37
reference genome, were considered for this study due to its
greater current public availability. Specifically, the extensive
RNA sample collection from 27 series used in this work led
to the analysis of up to 10 SPSs (Table I).

Each of the series can be identified under accession ID, which
shows most of them being submitted from United States and
other countries where their population is predominantly white:
Deutschland, Netherlands, Great Britain and Australia (Table II).

2) Preprocessing: This phase checks the quality of the sam-
ples under a detailed quality analysis process in order to remove
potentially wrong samples. The quality of every microarray

https://github.com/jmggugr/skca-transcriptomics-integration/
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TABLE II
SERIES INFORMATION SELECTED FOR THIS STUDY FROM NCBI GEO AND ARRAYEXPRESS WEB PLATFORMS

Samples purity for each skin pathological state was critically required and inspected. Manufacturer, technology and total number of samples/outliers are included.

series was assessed using up to 6 quality tests: distance among
samples, principal component analysis (PCA), Kolmogorov-
Smirnov test based on the Ka parameter, density distribution
plots, standard deviation of the samples intensities and Hoeffd-
ing’s D-statistic (normally executed with D < 0.15). These tests
are available from the arrayQualityMetrics R package [47]. In
order to discard all low quality samples (outliers), all of these
tests were applied many times for each series. With respect to
RNA-seq series, 5 samples were excluded by avoiding sample
duplication. The total number of excluded samples from each
series is specified in the last column of Table II.

Subsequently, each of the sequencing technologies requires
a wide range of intra-array processing steps which have to be
carefully performed when both are going to be finally integrated
at gene expression level. Because of being processed from dif-
ferent platforms, a normalization procedure has to be applied on
each microarray series. The Robust Multi-array Average (RMA)
algorithm [48] was applied in this work by modularly performing
background correction, normalization and summarization on
the microarray data. The rma function from affy and oligo R
packages was used for Affymetrix microarrays and the lumiEx-
presso from lumi R package was used for Illumina microarrays.
Gene annotation of each series was provided by the annotate
R package, which helps in mapping from the manufacturer
chip identifiers to standardized symbols by using a wide range
of annotation packages from the Bioconductor website. With
respect to RNA-seq series processing, the proposed pipeline
by Anders et al. [49] was partially followed, only changing
certain tools. Once a large number of FASTQ and SRA files

are available, several tools such as sra-toolkit [50], hisat2 [51],
bowtie2 [52], samtools [53] and htseq [54] were used to get
read count files containing the located genes in each sample.
Before obtaining these files, gene annotation was retrieved by
means of biomaRt R package [55], a data-mining tool which
allows connecting to the Ensembl database [56]. After all these
steps, other R packages such as cqn [57] helped in correcting
and normalizing GC content bias, and NOISeq [58] was used to
calculate the gene expression values.

3) Gene Expression Integration: After preprocessing each
of the microarray and RNA-seq series individually, additional
requirements have to be considered before inter-array normal-
ization and integration [59]. First of all, each of the expression
values of the genes transcribing the same gene identifier have
to be summarized in a single value. In order to be consistent in
assessing the impact of each gene selected in our analysis, all
transcripts were gathered by applying the mean of them to each
series separately. This parameter was selected after performing a
comparative study versus median as it was done in our previous
work [31], showing no statistically significant differences in
classification performance. Next, several simultaneous steps
were carried out on the 27 series (Fig. 2). 28 batches were
established because different samples from GSE42677 series
were processed by two different platforms.

Firstly, logarithmic transformation was performed on 2 se-
ries (GSE2503 and GSE3189) in order to adjust the scale
of the gene expression values, establishing base 2 for all the
batches (Fig. 2A). Next, 16-bit depth homogenization was
applied (Fig. 2B) after previously analyzing the maximum
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Fig. 2. Series processing procedure for gene expression integra-
tion: (A) logarithmic transformation, (B) 16-bit depth homogenization,
(C) complete cases selection along the batches, (D) batch effect cor-
rection with ComBat and (E) inter-array normalization with normalize-
BetweenArrays.

value of gene expression for each series in function of the
platform, establishing different consensus values in the bit
depth: 20-bit depth for Human Genome U133A Array plat-
form (GSE2503, GSE3189, GSE6710 and GSE46517), 16-
bit depth for Human Genome U133 Plus 2.0 Array platform
(GSE7553, GSE13355, GSE14905, GSE15605, GSE30999,
GSE32924, GSE39612, GSE42677, GSE45216, GSE50451,
GSE53223 and GSE82105), 16-bit depth for Human Genome
U133A 2.0 Array platform (GSE32407, GSE42109, GSE42677

and GSE52471), 12-bit depth for Human Exon 1.0 ST Array
platform (GSE36150), 16-bit depth for HumanAll platform
(GSE32628 and GSE53462), 22-bit depth for Genome Analyzer
platform (GSE54456), 20-bit depth for Genome Analyzer IIx
platform (GSE67785), 24-bit depth for HiSeq 2000 platform
(GSE84293 and E-MTAB-5678) and 22-bit depth for HiSeq
2500 platform (GSE98394). Thereafter, by having previously
established a common gene annotation for all the considered
series, only common genes from all the samples coming from
the series / batches were identified and selected. At this point,
batch effect correction shoud be considered because hypothet-
ical batch effects could be appearing among all 28 batches
considered (Fig. 2C). In order to deal with this issue, ComBat
method [27] from sva R package [60] was considered, correcting
and establishing a consistent sample distribution along all the
samples from all batches (Fig. 2D). Finally, an inter-array nor-
malization was applied by means of normalizeBetweenArrays
function from limma R package [61]. This achieves consistency
among all the samples put together and forces an identical empir-
ical distribution on each of them based on quantile normalization
(Fig. 2E). Before any new sample is properly assessed by this
procedure, all these transformations are completely necessary
and have to be applied in the same way. At the end of this
procedure, the whole integrated dataset formed by p common
genes and all n quality samples selected among N classes is
achieved (matrix A in Fig. 1).

B. Machine Learning and Soft Computing

Bioinformatics researches and recent biological problems
have been successfully benefited from the use of machine learn-
ing and soft computing techniques [62] in a wide range of topics
such as expression profiling identification, feature selection and
classification [63], protein sequences [64] and DNA sequences
[65]. As the number of biological experiments and applications
using high-throughput technologies continues to increase, this
type of techniques for knowledge discovery will find new appli-
cations [66], [67].

1) OVO Multiclass DEG Selection: Traditionally, the gene
selection from expression profiles analysis deals with the curse
of dimensionality problem (np-hard), as it pits few n samples
against thousands of p genes [68]. This issue becomes even more
challenging when increasing the number of SPSs (in our work,
N) (see nomenclature in Fig. 1).

For the purpose of addressing such challenge, this work
presents a novel, simple and intuitive one-vs-one (OVO) mul-
ticlass DEGs selection approach based on the assessment of
all possible pair comparisons of SPSs. This work defines the
comparison of two SPSs as class pair comparison (CPC). The
criterion for selecting DEGs for each CPC is a high LFC, which
means higher discernment power at the gene expression level.
The DEGs selection process ensures this criterion is satisfied by
tuning the two parameters LFC and NMAX. On the one hand,
LFC establishes a minimum threshold value for genes to be
considered as DEGs throughout all CPCs. On the other hand,
NMAX indicates the maximum number of DEGs selected for
each CPC. An additional threshold can be established using
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p-value (PV). However, a constant value of 0.001 was set in
the experimental setup of this work. By extending to a problem
of N SPSs, the total number of CPCs amounts to (N2 − N)/2. In
particular, this work simultaneously analyzes 10 SPSs, which
gives 45 CPCs. The expected maximum number of DEGs,
globally for all the CPCs, would sum up to NMAX ∗ (N2 − N)/2.
This novel multiclass OVO approach can be seen as a step
forward with respect to the classical gene selection process,
which is exclusively controlled by PV and LFC. The lack of
capacity of the selected DEGs to discern among specific CPCs
or different SPS subsets can be easily avoided by tuning the
new proposed NMAX parameter. The union of all the DEG sets
after considering each CPC needs to take into consideration the
identification of repeated DEGs. These can occur as some genes
may present a strong difference of gene expression for several
CPCs. Nevertheless, such DEGs coincidences would help in
reducing even further (up to p∗) the final candidate multiclass
DEGs (where p∗ ≤ NMAX∗(N2 − N)/2 << p).

In order to strengthen the selection of DEGs, a number of
experiments (M = 10 in this work) were performed, splitting in
each of them the whole integrated dataset into two datasets:
90% for training and validation, and the remaining 10% for
testing, in a cross-validation manner. Similar representativeness
of each SPS was ensured within each of the dataset folds. The
feature selection and parameter tuning processes were initially
applied on the training dataset for each of these M experiments,
thus returning different DEGs sets for each LFC and NMAX
combination. With the aim of improving the reliability and the
interpretability of the subsequent results, only those p∗ com-
mon genes matching all the M experiments for each parameter
combination were selected. This choice discards spurious DEGs
only emerging in specific executions and prevents subsequent
classification biases. Before evaluating the different p∗ common
gene set (finally naming p∗ to this set) within each of the
M experiments, an additional assessment of their informative
power was performed by means of the minimum-Redundancy
Maximum-Relevance (mRMR) feature selection algorithm [63].
This algorithm returns a ranking according to the criterion of
placing first those DEGs with the most relevant and the lowest
redundant information among themselves with respect to the
class variable. Then, from this ranking, proper assessment,
described in the next subsection, allowed selecting a total of
p∗∗ genes from the previous set of p∗ genes.

In summary, twofold DEG selections were carried out: firstly,
reducing the computational complexity from p thousands of
genes to the p∗ most reliable candidate DEGs of the disease;
secondly, exclusively selecting those p∗∗ DEGs with higher
informative capability for the intelligent diagnosis (see right part
in Fig. 1).

2) Automated Classification Assessment: Three classifica-
tion techniques assessed the informative power of different
DEGs subsets from the ranking returned by mRMR: Support
Vector Machines (SVM) [69], K-Nearest Neighbour (KNN) [70]
and Naive Bayes (NB) [71]. K-fold cross validation technique
(K-fold CV, where K = 10) [72] was used on the training
set of each M experiment with the purpose of providing a
realistic performance of the DEGs on new unseen data. Optimal

hyperparameters were calculated for these methodologies: σ
(kernel width) and γ for SVM, and k for KNN. The 10-fold
CV classification assessment was repeated 10 times by ran-
domly shuffling the dataset. The advantages of this process are
twofold: first, this is statistically robust because of asymptotic
convergence to a reliable estimation of the classifier performance
[73]; and second, this prevents from achieving overfitting when
assessing training and testing data. Finally, three metrics were
used in order to measure the recognition rate by combining each
classifier in association with different DEGs set sizes: accuracy
(ACC), overall F1-score (OF1) and mean multiclass F1-score
(MF1). These are calculated by using Equation (1), (2) and
(3), respectively. Each of these metrics can be expressed as a
function of certain parameters (precision (P) and recall (R)) or
different rates (Tp, Tn, Fp and Fn) which can be identified from
a confusion matrix of N classes:

ACC =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

OF1 =
2 ∗ P ∗R
P + R

=
2 ∗ Tp

2 ∗ Tp + Fp + Fn
(2)

MF1 =

∑N
i=1 F

class
1 (i)

N
(3)

The metrics related to F1-score [74] were considered partic-
ularly suited and robust for the multiclass study tackled, as they
provide a better measurement of the recognition rate of each of
the classes under unbalanced data. With regard to dealing with
it, data balancing techniques such as SMOTE [75] were con-
sidered. However, no significant performance improvement was
achieved, leading to be discarded and avoiding the introduction
of additional complexity and artificial data.

Next, in order to assess the influence of the multiple factors
considered for identifying multiclass DEGs, an ANOVA statis-
tical test was performed over the entire dataset. Although factors
such as assessed dataset type (TYPE), analyzed K-fold cross val-
idation (KFOLD) or M experiment performed (EXPERIMENT)
were also evaluated by this test, 4 factors were specifically
highlighted because of their further relevance in the subsequent
analysis. On the one hand, LFC and NMAX parameters were
subjected to evaluation by tuning the proposed algorithm. On
the other hand, the hypothetical differences of applying different
classifiers in combination with a number of DEGs set sizes (Gen-
Max) were also inspected by means of this test. By checking the
validity of each factor (LFC, NMAX, classifier and GenMax),
the different performance metrics (ACC, OF1 and MF1) were
measured for both training and test sets.

Finally, a functional enrichment analysis was performed by
means of DAVID 6.8 [76] in order to functionally annotate
and interrelate the obtained DEGs using Gene Ontology (GO)
terms [77].

III. RESULTS AND DISCUSSION

By taking into account the integration at gene expression level
from 22 microarrays and 5 RNA-seq series containing multiple
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TABLE III
ANOVA STATISTICAL TEST FOR MF1 PERFORMANCE METRIC

Type III sums of squares was chosen and the contribution of each factor was measured
having removed the effects of all other factors. P-values tested the statistical significance of
each of the factors. Since 6 P-values are less than 0.05, these have a statistically significant
effect on MF1 at the 95.0% confidence level (in bold). F-Ratios are based on residual mean
square error.

SPSs related to cancer, the opportunity to determine the skin
cancer gene signature of up to N = 10 SPSs, formed by highly
reliable multiclass DEGs, has been addressed in this work. The
experimental analysis of this study has been conducted under the
proposal of a novel OVO multiclass DEGs selection algorithm,
which has been thoroughly tested by means of a complete
and powerful ANOVA statistical test. The interpretation of the
results obtained from this analysis has been used to select
suitable parameter settings. By tuning our proposed algorithm,
this study was focused on assessing the informative power of
the p∗ identified multiclass DEGs. After selecting p∗∗ multiclass
DEGs from the previous one, their biological relationship to
skin cancer was finally determined. This discussion has been
guided on presenting all the results derived from the procedure
above.

A. Impact of Tuning Algorithm Parameters

The statistical significance of each considered and highlighted
factor (NMAX, LFC, GenMax, Classifier) was confirmed by
means of the ANOVA statistical test, showing the influence
of each of them on the classification performance (Table III).
The most significant differences were exclusively explained
by checking the scale depth when using MF1 (Fig. 3). While
the lowest NMAX parameter value reflected one of the highest
classification performances and discarded the consideration of
a wide range of DEGs for each of the 45 CPCs, the impact of
tuning LFC helped to elucidate the disadvantage of selecting
high threshold values because the MF1 value dropped by more
than 3%. Classification models results ranged from 80% to 82%,
establishing these performances around 10 genes (see Classifier
and GenMax factors in Fig. 3). Similar statistical results and
distribution for each factor were achieved for ACC and OF1
as well, and these can be facilitated under petition. Next, in
order to present the utility of the proposed algorithm in this
work, a choice of parameters was required. The decision was
motivated under the criterion of restrictively selecting DEGs
while preserving the information of all considered SPSs for this
study. For this purpose, NMAX = 1 was established as it pre-
sented one of the highest recognition rate for each performance

Fig. 3. ANOVA statistical test results for MF1 in function of different
factors: Type, Experiment, NMAX, LFC, Classifier and GenMax. All
these factors were determined as significant statistically.

metric assessed (as clearly showed and supported by the results
of ANOVA statistical test), leading to drastically reducing the
computational complexity to a maximum of (N2 − N)/2 = 45
highly discerning DEGs. This choice prevents of arbitrarily tun-
ing LFC and relying decision power on it in search of a sufficient
threshold for discerning among multiple SPSs. Furthermore,
this decision may avoid the removal of DEGs to discern those
hardly distinguishable CPCs when applying highly restrictive
LFC values. Hereafter, these setting parameters were used to
identify the candidate multiclass DEGs and present a potential
gene signature of skin cancer.

B. Selection of Informative DEGs

Although up to 45 genes could have potentially been returned
by our proposed algorithm under the selected configuration,
exclusively p∗ = 10 candidate multiclass DEGs appeared as
common genes from the intersection of DEGs for each of the
M = 10 experiments performed, as many of these genes were
highly discriminating among several CPCs. However, in order
to reduce the repertoire of candidate DEGs set for intelligent
diagnosis, the informative capability of different subgroups of
up to p∗ DEGs ordered by means of mRMR, was subjected
to an automated classification assessment. This algorithm then
established the following DEGs ranking: MLANA, LTF, MMP1,
ADAMTS3, LY6D, SCGB2A2, KRT14, PI3, PMEL and S100A7.
As a result, the classification results are presented when increas-
ing the size of DEGs set following the previously established
ranking, showing asymptotic convergence for the different per-
formance assessments (Fig. 4). Differences among classifiers are
not appreciated given the high discernment quality provided by
the selected DEGs. By reducing the complexity of the study, the
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Fig. 4. Evolution of the recognition rate for training and test datasets.
Three classification models (SVM, KNN, and NB) were assessed by
means of several performance metrics (ACC, OF1, and MF1) when
considering different subgroups of DEGs ranked by mRMR algorithm.

subsequent experimental analysis was limited to considering the
first p∗∗ = 8 DEGs given that the further average improvement
of MF1 per gene is lower than 0.6%. The results associated with
this size of DEGs set even improved those showed by GenMax
parameter for ANOVA test, outperforming recognition rates of
94% OF1 and 80% MF1 when considering any classifier.

Afterwards, with the purpose of knowing the overall dis-
cernment capabilities of the 8 multiclass candidate DEGs, the
number of SPSs and CPC cases being covered by each one of
them and the information of the highest |LFC| for any CPC was
summarized (Table IV).

C. Recognition of SPSs

Despite establishing parameter settings which help in expos-
ing DEGs to discern from each CPC, difficulties in distinguish-
ing among certain SPSs still can not be avoided. Most CPCs
can be properly discerned from any of the 8 DEGs, presenting
significant LFC values (Fig. 5). However, there is a small set of
CPCs which are harder to distinguish when examining changes
at gene expression level such as ISCC vs AK (LFC < 2) or
PMCC vs MMCC (LFC < 1). This occurs when trying to offer
a reliable diagnosis among a lot of SPSs which are close at the
biological level.

By extensively checking how a new unseen sample could
be classified, the different classification models assessed the 8
highlighted DEGs set (Fig. 6). The recognition rates confirm
the real challenge of properly discerning the CPC cases pre-
viously highlighted, although presenting accuracy differences
among models when classifying certain SPSs (for example,
ISCC achieves 72% for NB, 76% for KNN and 77% for SVM).
On the one hand, 3 SPSs achieved high recognition rates for
SVM classification model: NSK (97%), BCC (∼100%) and PS

TABLE IV
STATISTICAL SUMMARY OF THE FIRST 8 MULTICLASS DEGS RETURNED

BY MRMR ALGORITHM

Average and standard deviation values for LFC parameter (|μLFC ± σLFC |) as well
as minimum and maximum values for PV parameter ([PVMIN, PVMAX]) were also
included when the additional statistical restriction for our approach (PV ≤ 0.001) was
fulfilled. The number of SPSs and CPC cases being covered for each DEG together
with associated statistical parameters are included. Only 1 CPC was not covered by
presenting any DEG with significant statistical values: PMCC vs MMCC. SPS = skin
pathological state, CPC = class pair comparison, PV = P-Value, PMCC = primary
Merkel cell carcinoma, MMCC = metastatic Merkel cell carcinoma.

Fig. 5. Distribution map of the 8 multiclass DEGs set. Highest |LFC|
value for each CPC by considering NMAX = 1 and applying mRMR algo-
rithm. Circle size and color are correlated with |LFC| value and multiclass
DEG with highest |LFC|, respectively. CPC, class pair comparison.

(∼98%). On the other hand, recognition rates dropped for the 7
remaining SPSs mainly due to the confusion with another SPS
as previous studies had already advanced [9]–[12]: NEV (∼83%
and confused with NSK above 4%), ISCC (77% and confused
with AK above 20%), PMCC (∼58% and confused with MMCC
above 37%), MMCC (45% and confused with PMCC above
54%), PRIMEL (91% and confused with METMEL above 2%),
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Fig. 6. Different classification models were assessed: (A) SVM, (B) KNN and (C) NB. For each designed model, the 8 highlighted multiclass
DEGs set were selected and assessed by 10-fold CV for discerning 10 SPSs. SVM = Support Vector Machines, KNN = K-Nearest Neighbors,
NB = Naive Bayes, CV = Cross-Validation, SPS = Skin pathological state.

Fig. 7. Expression level of the 8 multiclass DEGs set. Highlighted DEGs by our approach are ordered from left to right and from top to bottom by
the ranking returned by mRMR. SPS = Skin pathological state.

METMEL (90% and confused with PRIMEL above 7%) and AK
(∼65% and confused with ISCC above 31%). This fact remarks
the difficulty of achieving reliable DEGs between precancerous
and invasive states as they present molecular similarities. By
considering the fusion of certain CPCs (for example, MCC
formed by PMCC and MMCC, MSC formed by PRIMEL and
METMEL or combining ISCC and AK), the recognition rates
would have considerably increased the percentage up to 87–99%
for these skin super-states in a more generalized study.

D. Determination of Potential Target Genes

One of the main justifications for separating specific SPSs
is by using relevant biomarkers of their occurrence from gene
expression analysis. In this case, our approach highlighted the
informative capacity of these 8 candidate multiclass DEGs for
an overall diagnosis of suffering from skin cancer (Fig. 7).

In view of these results, certain multiclass DEGs such as
MLANA, MMP1, LY6D or PI3 appeared down-expressed for
both SPSs and, among others, may discern better PMCC and
MMCC with respect to other SPSs (Fig. 5). All these genes
have previously proven to be of great importance for expres-
sion pattern characterization and skin cancer diagnosis: from
inhibition in SCC (MLANA), positive dysregulation in BCC
and AK (MMP1) to correlated overexpression in SCC and PS
(PI3) [78]–[80]. Therefore, a preventive clinical analysis of these
genes could help to avoid erroneous therapies by examining their
hypothetical involvement in other SPSs addressed by this study.

E. Biological Interpretation of the Multiclass DEGs

In order to understand the functional properties of the 8
highlighted DEGs, an enrichment analysis based on GO terms
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TABLE V
FUNCTIONAL ENRICHMENT ANALYSIS FOR THE 8 MULTICLASS DEGS USING GO TERMS

Fisher’s exact statistical test was performed to determine their significance (PV < 5E-2). GO = Gene Ontology, PV = P-Value, BP = biological process, CC = cellular component,
MF = molecular function.

was performed from DAVID Bionformatics Database [75]. The
three GO ontologies for biological processes (BP), cellular com-
ponents (CC) and molecular functions (MF) were considered for
our analysis. A total of 6 BPs, 6 CCs and 4 MFs were determined
to be significant throughout these genes (Table V). As shown,
MMP1, ADAMTS3 and LTF genes are highly related in terms of
their proteolysis process and endo- and metalloendo-peptidase
activity. According to the activity of proteolytic enzymes, this
occurrence has been associated with angiogenesis and tumor
progression of skin cancer [80], [81]. Subsequently, by exhaus-
tively inspecting specific literature, the biological relationship
of the 8 highlighted DEGs with skin cancer was consulted.
On the one hand, the most remarkable inquiries underlined the
dysregulation of up to 6 DEGs in MSC cases [83], [84] and
development risk [85] (except ADAMTS3 and PI3) and the
implication of up to 5 DEGs in PS development or inflammatory
processes [80], [86] (except MLANA, ADAMTS3 and KRT14).
On the other hand, the differentiating role of specific DEGs in
NMSC cases was highlighted: the overexpression of ADAMTS3
in BCC [87] or the hypothetical implication of KRT14 in the
malignant transformation of potential stem cells as origin of
MCC [88]. Based on all these precedent evidences and the results
shown (Fig. 7), the 8 multiclass DEGs highlighted by this ap-
proach should be particularly taken into account by being related
to tumorigenesis and pathogenesis of skin cancer. Concretely,
MLANA has been remarkably demonstrated to be upregulated
in NEV [83], inhibited in SCC [78] and differentiated between
MCC and PRIMEL by highlighting absence and overexpres-
sion by means of immunohistochemical analysis [89]. Further,
multiple genetic dysregulations of DEGs have been reported in
several studies: from the downregulation of LY6D, SCGB2A2
and KRT14 in METMEL with respect to PRIMEL [82] to the
dysregulation in SCC versus NSK by showing inhibition of
MLANA and SCGB2A2 or overexpression of MMP1 and PI3
[78], [90], [91]. Finally, the dysregulation of certain DEGs has
been interestingly reflected in both SCC and PS in a similar way:
from inhibition of SCGB2A2 together with overexpression of

MMP1 and PI3 [80] to slight and strong upregulation of LTF
in SCC and PS, respectively [80], [86]. Because of being a
chronic inflammatory skin disease, special attention should be
paid to the psoriasis evolution because the cancer development
also generates inflammatory reactions around surrounding tissue
[7]. From the preventive point of view, clinicians should remain
attentive to the high gene expression variability of these specific
DEGs by observing changes between NSK, PS and diverse SPSs
related to cancer (see gene expression changes for all these DEGs
in Fig. 7). In accordance with our results, this multiclass DEGs
subset could represent a genetic signature offering clues about
the overall state of the disease.

F. Limitations of the Approach

Although the validity of gene expression analysis has been
proven by an enormous amount of scientific publications, certain
limitations may be remarked when applying multiclass classi-
fication and transcriptomics resources integration. On the one
hand, the identification of relevant multiclass DEGs is restricted
to the establishment of proper thresholds for the discernment
among CPCs by using statistical conditions such as LFC or PV.
However, it is completely necessary to inspect the gene expres-
sion levels in order to avoid the selection of DEGs with similar
levels and avoid mistakes under classification assessment. This
concern disappears when final clinical diagnosis is doubtful
among exclusively two specific SPSs (for example, PMCC vs
MMCC, etc.), in which case gene expression analysis may find
highly discerning DEGs making them outstanding target genes
for therapeutic treatments. On the other hand, the consideration
of multiple heterogeneous sources of transcriptomics data may
lead to removal of relevant DEGs after their integration, due
to the specific platform requirements. This eventuality could be
widely assessed at the expense of discarding biological samples
as long as it does not affect the representativeness of the SPS
to be analyzed. Additionally, gene expression analysis could
benefit from the use of another biological points of view. Copy
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number variation could help to shed light on explaining gene
expression changes for each DEG within each SPS (see widening
and outliers associated with each multiclass DEG in Fig. 7).
The co-integration of both omic data from the same cohort
of patients could noticeably improve the downstream analysis.
Finally, the relevance of the highlighted DEGs could be more
widely determined by taking clinical data such as gender, race
or ethnicity together with their biological involvement to certain
pathways.
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