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Abstract— Objective: Bi-Frequency Symmetry Difference 

(BFSD)-EIT can detect, localize and identify unilateral 
perturbations in symmetric scenes. Here, we test the viability and 
robustness of BFSD-EIT in stroke diagnosis. Methods: A realistic 
4-layer Finite Element Method (FEM) head model with and 
without bleed and clot lesions is developed. Performance is 
assessed with test parameters including: measurement noise, 
electrode placement errors, contact impedance errors, deviations 
in assumed tissue conductivity, deviations in assumed anatomy, 
and a frequency-dependent background. A final test is performed 
using ischemic patient data. Results are assessed using images and 
quantitative metrics. Results: BFSD-EIT may be feasible for 
stroke diagnosis if a signal-to-noise ratio (SNR) of ≥60dB is 
achievable. Sensitivity to errors in electrode positioning is seen 
with a tolerance of only ±5mm, but a tolerance of up to ±30mm is 
possible if symmetry is maintained between symmetrically 
opposite partner electrodes. The technique is robust to errors in 
contact impedance and assumed tissue conductivity up to at least 
±50%. Asymmetric internal anatomy affects performance but may 
be tolerable for tissues with frequency-dependent conductivity. 
Errors in assumed external geometry marginally affect 
performance. A frequency-dependent background does not affect 
performance with carefully chosen frequency points or use of 
multiple frequency points across a band. The Global Left-Hand 
Side (LHS) & Right-Hand Side (RHS) Mean Intensity metric is 
particularly robust to errors. Conclusion: BFSD-EIT is a 
promising technique for stroke diagnosis, provided parameters 
are within the tolerated ranges. Significance: BFSD-EIT may 
prove an important step forward in imaging of static scenes such 
as stroke. 
 

Index Terms— electrical impedance tomography, 
reconstruction algorithm, stroke imaging 

I. INTRODUCTION 
APID and definitive stroke diagnosis is a vital clinical need. 
Specifically, a diagnosis must identify the underlying 

cause of the stroke, i.e., hemorrhagic lesion (bleed) or ischemic 
lesion (clot), prior to the initiation of tailored treatment [1], [2]. 
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Currently diagnosis is by gold standard imaging modalities 
such as CT or MRI [3]. These technologies offer unparalleled 
sensitivity and specificity, with MRI for example offering near 
100% sensitivity and specificity for hemorrhage [4] and circa 
90% for ischemia in the acute stage [5]. However, the 
modalities suffer from issues related to cost and access: only 4-
10% of stroke patients receive critical treatments like 
thrombolysis due to delay in access to imaging [6]. 
Technologies are needed that can accelerate the diagnosis of 
stroke in order to expediate treatment and improve outcomes. 

Electrical Impedance Tomography (EIT) may represent such 
a technology. EIT is an imaging technology with many 
proposed biomedical applications. In EIT, electrodes are placed 
at the boundary of the domain of interest with alternating 
current injected, and voltage measured between pairs of 
electrodes according to a predefined protocol. The current used 
is at an innocuous safe level, limited by the IEC 60601-1 
standard to amplitudes of the order of µA at frequencies up to 1 
kHz, rising to a 10 mA limit for frequencies over 100 kHz [7], 
[8]. The resulting measurement frame can be used to 
reconstruct an image of the interior of the domain in terms of 
the electrical conductivity of the constituent tissues [8]. EIT 
represents a low-cost, portable, hazard free technology that may 
be capable of providing a diagnosis at the point of first patient 
contact and facilitate the initiation of time critical treatment. 
EIT may also support triaging stroke patients and expediate 
patients on the appropriate pathway.  

There are challenges facing the translational of EIT into a 
device for such a clinical application. EIT is highly sensitive to 
a variety of errors (for example modelling errors in electrodes 
and boundary shape) with resulting contamination of the 
reconstructed image with artefacts [9]–[12]. As a result, time-
difference EIT (tdEIT), where the use of a baseline 
measurement cancels out many time-constant errors, is the most 
commonly used modality [11]. However, tdEIT is not 
applicable when there is no change in the region of interest over 
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time (i.e. no baseline measurement is available), as is the case 
in many biomedical applications.  

In such static cases, alternative modalities of EIT are needed, 
such as absolute EIT (aEIT) and frequency-difference EIT 
(fdEIT). Imaging using aEIT is possible but highly sensitive to 
errors which other modalities mitigate to an extent by 
differencing frames [11], [13], [14]. In fdEIT measurements are 
taken at two or more frequencies with differencing, and error 
suppression is viable if there is a frequency-dependent change 
in the conductivity of the tissues [14]. However, fdEIT is 
generally more challenging than tdEIT [12]. Simple frequency-
difference methods using linear reconstruction work well in the 
case of homogenous frequency-independent backgrounds (with 
a frequency-dependent perturbation) [15]. Weighted frequency-
difference algorithms are capable of anomaly detection in 
simple inhomogeneous backgrounds, but performance degrades 
with more complex backgrounds, particularly when the 
background conductivity changes by more than 20% [15], [16]. 

Such ‘static imaging’ scenarios include stroke. Further, 
stroke diagnosis using EIT may face additional challenges. For 
example, the current reaching the brain from the electrodes on 
the scalp is severely attenuated by the highly resistive skull 
which limits the passage of current, as well as a layer of highly 
conductive cerebrospinal fluid (CSF) which acts to shunt 
current away [8]. The result is a low amplitude measured 
voltage due to the limited amount of current flowing through 
the brain. In [17], an EIT algorithm based on symmetry was 
presented where hemispheres were compared. While 
promising, the work of [17] used 2D numerical and phantom 
models of a perfectly symmetrical head, required knowledge of 
which side of the head was normal, and required duplication of 
isolated half measurement frames from each hemisphere to 
artificially complete a full measurement frame. A novel fdEIT 
algorithm by Malone et al. was described in [13] which used 
nonlinear methods and spectral constraints to achieve image 
reconstruction. When applied to the stroke problem in 
numerical studies, this spectrally constrained fdEIT algorithm 
was found to be highly sensitive to errors in electrode position 
(errors as low as 0.5 mm resulted in failure to detect lesions), 
reasonably robust to erroneous assumptions of tissue 
conductivity spectra (addressed in [12]) and highly robust to 
errors in contact impedance of electrodes. However, the model 
used did not include the CSF layer and was sensitive to artefacts 
due to errors in skull shapes [18]. Further, the algorithm was 
computationally expensive taking 5-6 hours for image 
reconstruction. Bleed detection was also found to be more 
challenging than clot detection, likely due to the relatively small 
change in contrast between the bleed and background across the 
range considered  [18].  
 In order to advance the application of EIT to static lesion 
detection, we recently introduced the novel Bi-Frequency 
Symmetry Difference EIT (BFSD-EIT) algorithm [19]. This 
algorithm can be applied in situations featuring a plane of 
symmetry and where a perturbation causes a change in the 
(a)symmetry of the scene. Detection of changes in symmetry at 
two frequency points (f points) combined with a priori 
information of the expected tissues in the domain and the 

frequency-dependent conductivities of these tissues can be used 
to detect, localize and identify lesions using reconstructed EIT 
images and key metrics [19]. Unlike [17], BFSD-EIT compares 
the entire head and the mirror image of the entire head, requires 
no knowledge of which side is normal, was developed on 
anatomically accurate 3D models with a degree of inherent 
normal asymmetry, and does not require duplication of parts of 
measurement frames. In this work, we study the feasibility of 
BFSD-EIT when applied to the stroke diagnostic problem. 
Specifically, we quantify the robustness and limitations of the 
algorithm to a range of errors. A series of numerical studies are 
conducted on a realistic, 4-layer head model, that feature 
different limiting scenarios and modelling errors. The situations 
addressed include the effects of: 
• Measurement Frame Noise; 
• Electrode Positioning Errors; 
• Contact Impedance Errors of Electrodes; 
• Assumed Conductivity Errors of the Tissues (including at a 
voxel level and whole tissue level); 
• Errors in Assumed Anatomy of the Head (including skull, 
brain and scalp boundary); 
• A Frequency-Dependent Background. 
 
These error situations  comprise some of the most common and 
important errors and challenges of EIT [10], [11], [14], [18]. 
The result of these tests indicates where the BFSD-EIT 
technique may be used, modifications that can be implemented 
to improve the outputs, parameter ranges that must be 
respected, and limitations of the algorithm when applied to 
stroke diagnosis. As a final test, BFSD-EIT is applied for the 
first time to data from a human ischemic stroke in order to 
assess performance in a real-world scenario. 

The layout of the paper is as follows. In Section II the 4-layer 
numerical model is described, as well as an overview of the 
BFSD-EIT algorithm, and the key quantitative metrics used to 
assess performance. In Section III, the various test scenarios 
and results are reported, with these discussed in Section IV. The 
paper concludes with Section V, which also briefly compares 
the results of this work to the state-of-the-art in EIT for stroke 
diagnosis [13], [18]. 

II. MATERIALS AND METHODS 
This section details the numerical models used as well as the 
methods for data generation using EIT, before presenting a 
summary of the BFSD-EIT algorithm, and the quantitative 
metrics applied to the reconstructions to then assess 
performance. 

A. Numerical Model and Data Generation 
This section describes the ideal (‘correct’) model without 

errors. The results described for this model are used to compare 
the performance of the algorithm applied to models with added 
errors (‘deviation’ models). Further, the model and methods 
described in this section are the basis of the deviation models. 
 The 4-layer numerical head model described in [19] was the 
basis for this study. The model was created from CT and MRI 
images of an adult patient, with anatomically accurate brain, 
CSF, skull and scalp layers incorporated. These four layers 
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represent the most important anatomical layers for EIT applied 
to the head and are included in most state-of-the-art models [8], 
[20]. Importantly as the human head is not itself perfectly 
symmetric about the sagittal plane, the model used is also not 
perfectly symmetric. This asymmetry is quantified in [19], with 
for example the skull layer having a 90.1% degree of symmetry 
while the brain has 98.3%. Although the BFSD-EIT algorithm 
is based on the principle of symmetry a degree of tolerance to 
normal asymmetry must be present. This model was used to 
simulate EIT forward and inverse problems using the finite 
element method in order to generate data [14].  

A finite element method (FEM) model comprised of 4 million 
tetrahedrons was used as a fine mesh, forward solved to 
generate measurement frames with electrodes in one of two 
mirror image orientations (denoted A-Orientation and B-
Orientation and described in more detail in the following 
subsection) (Fig. 1). A second coarse FEM mesh of 250,000 
tetrahedrons used for image reconstruction in order to ensure 
independent models for both the forward and inverse 
(reconstruction) problems [21]. In total, 32 electrodes of 
diameter 10 mm and contact impedance 1 kW were modelled 
on the scalp [18], with symmetrical positioning across (or on) 
the sagittal plane. Refinement of a FEM near electrodes is 
recommended in general for EIT [22], but was not done in this 
study to facilitate a variety of errors models with minimal 

alterations to the underlying mesh. Further, in all cases, 
comparison was made to results generated from the ideal model 
(also without mesh refinement).  

The current injection protocol was designed to maximize the 
distance between electrode pairs. This protocol was used to 
generate measurement frames on the appropriate fine mesh 
using a parallel EIT forward solver (PEITS) [18], [19], [23]. 
The peak-to-peak current amplitude used was dependent on the 
frequency according to that allowed by IEC 60601-1 [7], with 
measurements taken at different frequencies (using different 
current amplitudes) objectively compared using appropriate 
gain adjustments.  

The conductivity values of the tissues were derived from 
literature values [16], [24], and are provided in Fig. 1. For the 
test situations described in subsequent sections, the frequency 
(f) point of 25 Hz is used (unless noted). At this frequency, the 
conductivity of the tissues are 0.23 S/m, 0.05 S/m, 0.1 S/m, 2 
S/m, 0.7 S/m and 0.05 S/m for scalp, skull, brain, CSF, bleed 
and clot respectively [16], [24], [25]. Further, three test cases 
are considered: that of no perturbation present (‘N’), a 10 ml 
spherical bleed (‘B’) in a left mediolateral location and a 50 ml 
clot (‘C’) in a right posterolateral position (Fig. 1). A wide 
spectrum of lesion sizes is possible in stroke, with for example, 
the intracerebral hemorrhage volume in acute stoke reported in 
[26] as ranging from 1 – 101.5 ml (median 10.1 ml) and average 
infarction volume in acute stroke reported in [27] as 39.5 ± 84.9 
ml. 

B. Overview of BFSD-EIT Algorithm 
The BFSD-EIT algorithm is described in detail in [19]. 

Briefly, the algorithm comprises of two steps: 
(i)  Detection of Deviation from Normal Symmetry:  
The array of 32 electrodes on the scalp form symmetric 

electrode pairs. A measurement frame is taken in an “A-
orientation” with a second frame taken in a mirror image “B-
orientation”. The B-orientation is made up of electrodes each of 
which is the symmetrical partner of the corresponding electrode 
in A-orientation. The injection protocol is the same in both 
orientations. EIT measurement frames are generated in both 
orientations at a pre-selected frequency point (f1) with a 
difference image produced which can be used to detect 
deviations (or no deviation) in symmetry between the two 
orientations. This process allows lesion detection but not 
disambiguation (identification as bleed or clot) due to the 
presence of a confounding anti-lesion. 

(ii)  Disambiguation of Lesion Type:  
The disambiguation step in BFSD-EIT is based on analysis of 

the results from a second carefully chosen f point (f2) where the 
conductivity (and more precisely contrast) between lesion and 
background change in different patterns for the two lesion types 
from f1. The difference of change in contrast pattern between 
the lesions and brain that allows disambiguation.  
 A 0th order Tikhonov reconstruction onto the coarse mesh 
(corresponding to A-Orientation) using the input of the 
difference vector (FrameB – FrameA) results in a reconstructed 
image. Each voxel is assigned an intensity value proportional to 
the magnitude of the difference between the frames at that 

 

 
Fig. 1. Top: The fine FEM viewed from the top (this FEM has electrodes in 
A-Orientation). The sagittal plane is shown as an orange line. The positions of 
the two model lesions, a 10 ml spherical bleed (‘B’) and 50 ml spherical clot 
(‘C’) are shown. In a given case only one (or neither) of the lesions are present. 
Bottom: The conductivity spectra of the tissues of the modelled tissues from 
25 Hz – 25 kHz (adapted from [16], [24]). 
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location, with positive intensity values if the measurements 
from B-Orientation are more conductive than from A-
Orientation at that location (negative in the opposite case). 
Difference vectors from the deviation models are similarly 
reconstructed onto this same coarse mesh derived from the ideal 
A-Orientation model.  
 BFSD-EIT hence compares results from two f points. In [19], 
the f points of 25 Hz and 100 Hz were used with the 25 Hz point 
offering a high contrast in conductivity between clot and brain, 
as well as between bleed and brain. However, in this work the 
results at only a single f point are used to assess the feasibility 
of the algorithm (as accurate results from each f point is usually 
required for success). The high contrast between tissues at this 
frequency motivates the use of the 25 Hz point as the point of 
interest in this study. The limitations and robustness of the 
algorithm at one step to errors is representative of the 
robustness at both. 

C. Definition of Quantitative Metrics 
The reconstructions for the three tests cases (illustrated in Fig. 
2) are used to derive several quantitative metrics that can be 
used to support stroke diagnosis. The first key metric is the 
Global LHS & RHS Mean Intensity (GMI). 
• GMI: The average intensity over all the voxels on each side 

(LHS and RHS) of the sagittal plane. The sign is represented 
as blue (negative) or red (positive) in the following figures 
while the magnitude is calculated to the log10. This metric 
alone was shown to detect, identify and localize a lesion (if 
present) in previous work [19]. 

 
Next, thresholding of the highest and lowest 5% of voxels by 

intensity (empirically chosen value) identifies contiguous 
voxels as candidate lesions. The largest remaining regions of 
interest (ROIs), one of both high and low intensity voxel sets, 
are then better isolated by further thresholding with only those 
voxels within the standard deviation of the mean intensity for 
each ROI kept and used to define ROIH, ROIL. This range of 
intensities are presented as the reconstructed images (Fig. 2). 
These ROIs are then filtered to remove ROIs within 10 mm of 
the mesh surface (assumed to be exterior to the brain or surface 
artefacts) and of volume < 5 ml (assumed to be below a reliable 
threshold volume for detection) [19]. Any remaining ROIs are 
then used to calculate the following metrics: 
 
• ROI Mean Intensity (RMI): The mean intensity values of 

ROIH and ROIL with sign and magnitude represented in the 
same manner as the GMI. The values should follow the same 
pattern in terms of sign and relative magnitude to that of the 
GMI. In [19], it was suggested that the GMI may be more 
robust than RMI and in this work the RMI is similar (or less 
robust) to GMI in all cases and hence only the GMI is shown. 

• Difference in Centroid Location (DCL): The difference in 
centroid location of ROIH and ROIL if one is reflected across 
the sagittal plane. Ideally DCL = 0 cm. 

• Image Noise (IN): A measure of the number of thresholded 
voxels contained in the ROI compared to those in the entire 
thresholded image, averaged for the high (H) and low 

intensity (L) voxel sets. Ideally IN = 0, with range 0 – 1. The 
IN is given by: 

  𝐼𝑁 = 	1 − 0.5(
+(,-./01)3456
+(,-./01)6

+	
+(,-./01)3458
+(,-./01)8

).    (1) 

• Morphology Deviance (MD): The degree of overlap between 
ROIH and ROIL if one ROI is reflected across the sagittal 
plane. Ideally MD = 0 (when perfect overlap occurs). The 
range of MD is 0 – 1. 
 

Where applicable, each test situation is iterated 10 times, each 
time with random variation of the error parameter within a 
chosen range (discussed in more detail in Section III). The mean 
and standard deviation of each of the above metrics are reported 
across the iterations. For iterated test situations, the Detection 
Rate is calculated: 
• ROI Detection Rate (RDR): The percentage of times from the 

10 iterations that ROIs are detected. Ideally the RDR is 0% 
for the N cases (no lesion present) and 100% for the B and C 
cases (where a lesion is present). 

 
The GMI, RMI, DCL, IN and MD results for the ideal model 

cases are used to compare with subsequent deviation models 
with modelling errors. For brevity, deviation model metric 
results, and not reconstructed images, are reported in the 
following sections.  

III. TEST SCENARIOS AND RESULTS 
 In this section the results of the ideal model test situations are 
reported followed by the results of the various deviation 
models. In total, 3 simulations were conducted for the ideal 
model tests with 265 simulations for the deviation models. A 
final test is also performed using human data. 

A. Ideal Model Results 
The reconstructed images and quantitative metrics from the 

ideal model for a simulation at a f point of 25 Hz are shown in 
Fig. 2. The reconstructed image for the N case is largely 
composed of artefacts at or near the mesh surface, while the 
images for the B and C cases show a significant reduction in 
these artefacts with the detected ROIs (due to the presence of a 
lesion) dominating the image. The GMI metric values have 
theoretically “equal but opposite” values regardless of the case. 
The N case give near zero values for GMI (LHS 0.33; RHS 
0.38), indicating that both sides are symmetrically balanced and 
hence no lesion is present (or cannot be detected). The presence 
of a lesion deviates the GMI value away from zero with the 
magnitude a function of the size of the lesion, the lesion 
position, and the contrast between the lesion and brain. Case B 
(LHS 1.19; RHS 1.19) gives a higher GMI score compared to 
C (LHS 1.03; RHS 1.04) despite the smaller volume due to the 
closer proximity of B to the exterior and the greater contrast 
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between blood and brain compared to clot and brain. Both 
lesions cause a mean negative intensity on the LHS and a mean 
positive intensity on the RHS demonstrating the need for 
disambiguation (as described in [19]).  

For calculation of all metrics other than GMI, the ROI 
detection process is applied. In the N case, no lesion is present 
and no ROIs are identified, as expected. For both B and C, ROIs 
are successfully detected. In these cases, the RMI score gives 
the mean intensity of each of ROIH and ROIL with the pattern 
of values similar to the GMI (larger if larger lesion, nearer the 
exterior, larger contrast compared to brain). The DCL metric is 
< 3 mm for both cases indicating a high degree of overlap 
between the ROIs. The IN and MD values for the ideal cases 
(all < 0.2) can be used to compare to deviation models. 

B. Measurement Frame Noise 
In this test scenario, the measurement frames for each case at 

the f point of 25 Hz in each orientation were contaminated with 
additive Gaussian white noise at levels of 80 dB, 60 dB and 40 
dB signal-to-noise ratio (SNR) before reconstruction. 
Illustrative quantitative metrics are shown in Fig. 3 for the 80 
dB and 60 dB tests, with the RDR results shown for all noise 
levels. 

The GMI results at 80 dB are comparable to the ideal results 
(i.e., SNR = ∞) from Fig. 2.  However, the MD and DCL now 
increases for both cases B and C.  At 60 dB, further degradation 
in performance is seen with deviations in GMI from the ideal, 

increases in the size of the standard deviations (reported as error 
bars), large IN, MD, DCL metrics and detection of ROIs in the 
N case as well as failure to detect ROIs in the B and C cases 
(particularly evidenced by the 10% RDR for C). At 40 dB, 
excessive noise results in a common failure to detect lesions. 

C. Electrode Positioning Errors 
Two scenarios of erroneous electrode positioning are analyzed, 
where errors are present in the forward model relative to the 
inverse model and either: (1) symmetry is not maintained 
between symmetric electrode pairs; (2) symmetry is maintained 
between symmetric electrodes pairs. In both scenarios the goal 
was to find, and surpass, the point where the integrity of the 
results is maintained. 
 
1) Electrode Positioning Errors with Symmetry Lost 

The electrode centers are positioned randomly within a given 
radius of the ideal center position. No attempt is made to keep 
electrode pairs symmetric. The tested deviations in electrode 
positions were assigned with error radii of 1 mm, 2 mm, 5 mm, 
10 mm, and 20 mm. The error radius for a model is the 
maximum distance an electrode can be positioned from the 
correct position on the mesh surface. Table I lists the distance 
error of the 32 electrodes in each model (averaged over the 10 
repetitions) from the ideal position (and between electrode 
pairs). The quantitative metrics resulting from these test cases 
are provided in Fig. 4(a). The results indicate reliable 
performance (i.e. similar to the results achieved with the ideal 
model) for error radii of up to ± 5 mm if considering the GMI, 
but up to only ± 1 mm for the other metrics, with no ROIs 
reliably detected beyond this error radius (note the steep drop 
off in RDR for cases B and C). 
 
2) Electrode Positioning Errors with Symmetry Maintained 

 
 

 
Fig. 2. Top: Reconstructed images of the ideal model for the three cases at an 
f point of 25 Hz: No lesion present (N); 10 ml spherical bleed in a left 
mediolateral location (B) and a 50 ml clot in a right posterolateral position (C). 
The N case shows noisy artefacts towards the exterior of the FEM whereas 
when a lesion is present the ROIs corresponding to the perturbation are the 
dominant feature. Bottom: Quantitative metrics corresponding to the 
reconstructed images. GMI: The blue bars represent a negative intensity value 
and the red bars a positive intensity value on either the LHS (negative x-axis) 
or RHS (positive x-axis). RMI: If no ROI is detected in a given case at a given 
frequency point, then no metric value is listed, the bars represent the RMI for 
the ROIH (red bar) and ROIL (blue bar) on either the LHS (negative x-axis) or 
RHS (positive x-axis). IN, MD and DCL: Are reported if ROIs are detected. 
The RDR for each case is reported on the x-axis of the IN, MD, DCL plot. 
  

 
 

Fig. 3. Quantitative Metrics for models where noise of 80 dB, 60 dB and 40 
dB SNR is added to the measurement frames prior to reconstruction for cases 
N (no lesion present); B (bleed); C (clot). GMI: The blue bars represent a 
negative intensity value and the red bars a positive intensity value on either 
the LHS (negative x-axis) or RHS (positive x-axis). IN, MD and DCL: Are 
reported if ROIs are detected. The RDR for each case is reported at each noise 
level. For the 40 dB models, the RDR is shown, but the excessive noise hinders 
the ability to detect ROIs. 
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In this series of test scenarios, the electrodes centers are 
positioned randomly within a given radius away from the ideal 
position. However, unlike in the previous section, now 
electrode pairs are kept symmetric with respect to each other 
across the sagittal plane (i.e. if reflected across the sagittal plane 
the electrodes map onto their partner exactly). The deviations 
tested were error radii of 2 mm, 5 mm, 10 mm, 20 mm, 30 mm, 
40 mm and 50 mm. Hence electrodes are positioned at or within 
these error radii from the ideal position on the mesh surface. 
Table I lists the distance error of the 32 electrodes in each model 
from the ideal position (and between symmetric electrode 
pairs); the corresponding quantitative metrics are presented in 
Fig. 4(b).  

The results indicate integrity of the BFSD-EIT algorithm is 
maintained up to the ± 20 mm error radius if considering the 
GMI (i.e. are largely similar to the ideal model, but for the other 
metrics only up to ± 5 mm, with no or erroneous ROIs detected 
beyond this error radius. Both results are improvements over 
the situation where symmetry is not maintained, suggesting that 
the BFSD-EIT algorithm can tolerate larger errors in expected 
electrode location if electrode pairs are kept symmetrical across 
the sagittal plane. Maintaining such a symmetry should be 
feasible to this degree in a clinical case, for example using an 
EEG cap for electrode placement [18]. 

D. Contact Impedance Errors of Electrodes 
In this section, the impact of an inaccurate electrode contact 
impedance is investigated. In the ideal model, the electrode 
contact impedance is 1 kW.  

Here, the impedance on each electrode is randomly set 
between 800 – 1200 W (1 kW ± 0-20%) for a first test, and then 
within 500 – 1500 W (1 kW ± 0-50%) in a second test. Further, 
each of these tests is conducted in two different ways, either 
with: (1) symmetry not maintained between electrode pairs (all 
electrodes have random contact impedances within the range); 

(2) symmetry maintained (electrode pairs have the same 
erroneous impedance). Fig. 5 shows the resulting quantitative 
metrics for all of these scenarios. As can be observed from the 
figure, the results show that the lesion detection is effectively 
equivalent to that of the ideal scenario, for both impedance error 
levels, and regardless of whether symmetry is maintained or 
not.  

E. Assumed Conductivity Errors of the Tissues 
This section explores the impact of error on the assumed 

conductivities of the tissues.  In the ideal model, the 
conductivities of the tissues are assigned as 0.23 S/m, 0.05 S/m, 
0.1 S/m, 2 S/m, 0.7 S/m and 0.05 S/m for scalp, skull, brain, 
CSF, bleed and clot, respectively, at the f point of 25 Hz. Here, 
errors of ± 5%, ± 20% and ± 50% are added to each of these 
conductivity values in separate deviation models. These 
deviation models incorporate these errors on either: (1) a voxel 

 

  
            (a)                           (b) 
Fig. 4. Quantitative Metrics for erroneous electrode position models with symmetry lost (a), and symmetry maintained (b), between electrode pairs for cases N (no 
lesion present); B (bleed); C (clot). GMI: The blue bars represent a negative intensity value and the red bars a positive intensity value on either the LHS (negative x-
axis) or RHS (positive x-axis. IN, MD and DCL: Are calculated if ROIs are detected and are shown for the situations. The RDR for each case is reported at each 
electrode deviation. 

TABLE I 
MEAN ± STANDARD DEVIATION OF THE DISTANCE ERRORS OF THE 32 

ELECTRODES (SYMMETRY LOST OR SYMMETRY MAINTAINED) 
Error 
Radius 
(mm) 

Mean (mm) ± Standard 
Deviation (mm) 
Of Electrode Positions 
with respect to the 
Correct Positions 

Mean (mm) ± Standard 
Deviation (mm) 
Of Distances between Symmetric 
Electrode Pairs (i.e. if reflected 
across the sagittal plane) 

Symmetry Lost 
± 1 0.47 ± 0.34 0.64 ± 0.45 
± 2 1.34 ± 0.21 1.52 ± 0.65 

± 5 3.31 ± 0.34 3.88 ± 1.59 
± 10 6.39 ± 0.78 7.84 ± 3.15 
± 20 13.19 ± 1.41 15.64 ± 6.51 
   
Symmetry Maintained 
± 2 1.21 ± 0.24 0 ± 0 
± 5 3.21 ± 0.52 0 ± 0 
± 10 6.33 ± 1.05 0 ± 0 
± 20 13.39 ± 2.19 0 ± 0 
± 30 19.03 ± 3.77 0 ± 0 
± 40 24.39 ± 3.36 0 ± 0 
± 50 31.32 ± 5.29 0 ± 0 
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level, or (2) a whole tissue level.  
There is evidence in the literature that the conductivity of the 

tissues of the head may be largely symmetric in the absence of 
pathology [28], [29]. However, the dielectric properties of 
tissues have a band of uncertainty around the reference values 
and may vary inter- and intra-patient [30]. Many factors such as 
natural heterogeneity in tissue, precise location, age, metabolic 
activity, pathology and the measurement method affect the 
measured conductivity of a tissue and result in a degree of 
variability in the assumed reference value [31], [32]. This 
uncertainty is even more pronounced at frequencies under 1 
MHz (the region of interest for EIT) with significant variability 
in the dielectric properties of tissues, for example ± 24% for fat 
and ± 35% for blood [30], [33]. The choice of error values up 
to ± 50% of the ideal value was motivated by these reported 
variability ranges from the literature. 

 
1) Voxel Level Errors in Assumed Conductivity 

In this test scenario, each voxel, corresponding to a discrete 
tissue, has a conductivity value assigned as the ideal 
conductivity of the tissue ± an error which is up to 5, 20, or 
50%, depending on the model. Each tissue is thus made 
heterogeneous while the ideal model assumes them to all be 
homogenous. The results are effectively identical to the ideal 
model results even up to and including an error of ± 50% of the 
assumed tissue conductivity values (GMI results of ± 50% 
shown in Fig. 6). 
 
2) Whole Tissue Level Errors in Assumed Conductivity 

In this test scenario, each voxel, corresponding to a discrete 
tissue, has a conductivity value assigned as the ideal 

conductivity of the tissue ± an error which is up to 5, 20, or 
50%, depending on the model. Each tissue is thus made 
heterogeneous while the ideal model assumes them to all be 
homogenous. The results are effectively identical to the ideal 
model results even up to and including an error of ± 50% of the 
assumed tissue conductivity values (GMI results of ± 50% 
shown in Fig. 6). 

F. Errors in Assumed Anatomy of the Head 
BFSD-EIT must be robust to a degree of anatomical 

asymmetry across the sagittal plane as well as deviations in the 
geometries of the fine (forward solved) and coarse 
(reconstruction) FEM meshes. In this section, two scenarios of 
anatomical deviations are considered: (1) Excess skull or brain 
on one side of the head with respect to the other; (2) Deviations 
in the geometry of the scalp (i.e. the boundary) between the fine 
and coarse meshes. In both scenarios, fine meshes are created 
with the altered anatomy, with reconstruction onto the ideal 
coarse mesh. 

 
1) Unilateral Excess of Skull or Brain 

As described in [19], the ideal model is based on an actual 
human head and is thus not perfectly symmetrical. The overall 
global symmetry of the head across the sagittal plane is 
calculated as the average percentage of voxels from each side 
that, when reflected across the sagittal plane, overlap with the 
voxels of that tissue type on the other side. For the ideal model, 
the global symmetry ranges from 90.1% for skull tissue to 
98.3% for brain tissue. However, the ideal model does not have 
any gross asymmetry that may resemble a lesion.  
Previous works have quantified the typical degree of 
asymmetry found in the skull [34] and brain [35]. An 
asymmetry index (AI),  defined in [34] 

 as: 
𝐴𝐼 = :;<=>;<

:;<
	𝑥	100,         (2) 

where RHS and LHS are the distances of a series symmetrical 
points on the right-hand side (RHS) and left-hand side (LHS) to 
a point on the sagittal plane, can be used to quantify the level of 
symmetry. The AI varies depending on person, cohort and 
anatomical location, but values of 3-6% have been reported 

 
Fig. 5. Quantitative Metrics for erroneous electrode contact impedance models 
with (top 2 rows) No Symmetry: all electrodes have random contact 
impedances within the range ± 20% or ± 50%; and (bottom 2 rows) Symmetry: 
symmetrical partner electrodes have the same (but erroneous) contact 
impedance within the range ± 20% or ± 50%. Cases are N (no lesion present); 
B (bleed); C (clot). GMI: The blue bars represent a negative intensity value 
and the red bars a positive intensity value on either the LHS (negative x-axis) 
or RHS (positive x-axis. IN, MD and DCL: Are reported if ROIs are detected. 
The RDR for each case is reported on the x-axis of the IN, MD, DCL plot. The 
RDR  for each case is reported on the x-axis of the bottom-most IN, MD, DCL 
plot and was identical (and ideal) in all deviation models tested 

 

 
Fig. 6. Quantitative Metrics for models with errors in assumed conductivity of 
tissues. Each individual voxel corresponding to a given tissue (left) or the 
whole tissue (right) (scalp, skull, brain, CSF, bleed or clot) is assigned a 
conductivity corresponding to the ideal conductivity of that tissue ± up to a 
maximum of 50% error. Cases are N (no lesion present); B (bleed); C (clot). 
GMI: The blue bars represent a negative intensity value and the red bars a 
positive intensity value on either the LHS (negative x-axis) or RHS (positive 
x-axis).  
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[34].  
 For this study, an arbitrary location was selected on the left-
hand side of the skull (or brain) at the approximate midpoint of 
the boundary between the frontal and temporal bones (lobes) on 
the left lateral interior surface (or exterior surface for the brain). 
Centered at this point, spheres of radii 10 mm, 20 mm, and 50 
mm were projected out with any voxels designated as CSF 
within the radius reassigned as skull (or brain depending on the 
scenario) with all other layers left untouched. Hence, in one 
scenario the skull is increased in volume by varying amounts at 
one point with the brain unchanged while in the other scenario 
the opposite is the case. Removal of the full thickness of CSF 
at a given point resulted in an AI of approximately 6%. The 
increase in skull (or brain) tissue (with reciprocal decrease in 
CSF) for the different deviation models are shown in Table II, 
with the quantitative results (only the GMI metric for brevity) 
shown in Fig. 7.  

The results indicate that the BFSD-EIT technique is very 
sensitive to deviations in anatomy. The replacement of CSF on 
the LHS by either skull or brain effectively places a low 
conductivity target at that location with even the smallest radius 
sphere (resulting in < 1 cm3 tissue imbalance on the LHS) 
compromising results compared to the ideal model. If ROIs are 
detected, they correspond to the excess skull or brain, meaning 
that no lesion is detectable.  

It is noted, however, that the GMI for a given lesion case is 
the arithmetic sum of the GMI for the erroneous N case and the 
GMI for the ideal lesion case. This finding may give the 
algorithm a degree of robustness to anatomical deviations, as 
will be discussed in more detail in section IV, E. 
 
2)  Altered Boundary- Shrunk and Dilated Scalp 

Two fine meshes were developed where the scalp layer was 

shrunk or dilated to 97% and 105% respectively of the original 
volume. The electrode positions were then translated onto the 
new boundaries. No other layers were affected. The 97% value 
represented a shrinking factor that maintained a layer of scalp 
over the skull (any further reduction in volume resulted in skull 
layer being exposed to the exterior). The 105% value was 
chosen as a complementary dilation factor. The work of [36] 
demonstrated that the external geometry of the head varies 
between people with various models predicting head 
circumference based on height and weight and an inter-model 
variance of about 10%. Hence assuming a “best guess” generic 
head mesh based on a patient’s height and weight would be 
available for reconstruction purposes, a 97% - 105% variance 
in volume should be achievable. The results from these models, 
shown in Fig. 8, are comparable to the results from the ideal 
model.  

The magnitude of the GMI are greater for the 97% model and 
less for the 105% model compared to ideal due to the reduction 
and dilation in scalp volume rendering the perturbations 
“bigger” and “smaller” compared to the whole head compared 
to ideal. The IN, MD and DCL metrics are all larger in value 
(but comparable) to ideal. The RDR is perfect in all cases (0% 

 
Fig. 7. Quantitative Metrics for models with excess skull (top row) or brain 
(bottom row) on the LHS compared to the RHS. In each model, the CSF 
encompassed by a sphere of radius 10 mm, 20 mm or 50 mm centred at a point 
on the LHS of the skull (or brain) is re-assigned as skull (or brain). Cases are 
N (no lesion present); B (bleed); C (clot). GMI: The blue bars represent a 
negative intensity value and the red bars a positive intensity value on either 
the LHS (negative x-axis) or RHS (positive x-axis). 
 

TABLE II 
VOLUME OF THE INCREASE IN SKULL OR BRAIN LAYER (WITH RECIPROCAL 

DECREASE IN CSF LAYER) ON THE LHS WITH VARYING SPHERE RADII. 

Sphere 
Radius  Volume Increase of Skull  Volume Increase of Brain  

mm cm3 % of Total Voxels cm3 % of Total Voxels 
0 0  0 0  0  
10 0.86 0.06 0.84 0.06 
20 3.70  0.17 3.56  0.17  
50 24.67 1.14 24.35 1.12 
 

 

 
Fig. 8. Quantitative Metrics for models where the scalp layer is shrunk to 97% 
of the original volume (top row) and dilated to 105% of the original volume 
(bottom row). Cases are N (no lesion present); B (bleed); C (clot). GMI: The 
blue bars represent a negative intensity value and the red bars a positive 
intensity value on either the LHS (negative x-axis) or RHS (positive x-axis 
axis). IN, MD and DCL: Are reported if ROIs are detected. The RDR for each 
case is reported on the x-axis of the IN, MD, DCL plot. 
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for N, 100% for B,C). Therefore, this result suggests that the 
BFSD-EIT algorithm can tolerate small variances in 
(symmetric) head circumferences. 

G. A Frequency-Dependent Background 
The disambiguation step of BFSD-EIT is dependent on a 

difference in the pattern of conductivity contrast between the 
bleed or clot and brain at the two different f points.  At a f1 of 
25 Hz the conductivities of brain, clot and bleed are 0.1 S/m, 
0.05 S/m and 0.7 S/m respectively. Re-application of the 
algorithm at a f2 of 100 Hz where these respective tissue 
conductivities are 0.1 S/m, 0.09 S/m and 0.7 S/m, will result in 
theoretically identical metrics for a bleed (as the contrast does 
not change) while for a clot the decrease in contrast will result 
in metrics more like a normal case [19]. Hence disambiguation 
is achieved, aided by the assumed frequency-independent brain 
background.  

This section investigates whether disambiguation is possible 
if the conductivity of brain also changes from f1 to f2, and the 
change in contrast patterns are similar for lesion types. To 
investigate this, the GMI for the three cases (i.e., normal, bleed 
present, and clot present) was computed for a f1 of 25 Hz and 
then a f2 of 25 kHz where the conductivity of brain, bleed and 
clot are 0.13 S/m, 0.7 S/m and 0.11 S/m as shown in Fig. 1. 
Crucially the brain conductivity has changed, and the contrast 
for both clot and bleed with respect to brain is less at f2 
compared to f1. The results are shown in Fig. 9. For both lesion 
cases, the GMI metric decreases in magnitude from f1 to f2 as 
both lesion types have decreased in contrast with respect to 
brain. Although the scale of decrease is more for clot than bleed, 
the fact that both decrease confounds disambiguation. 

In order to achieve disambiguation, therefore, the selection 
of f points can be improved. For example, f1 of 25 Hz and f2 of 
100 Hz, as suggested in [19], could be chosen due to the 
differing patterns in contrast change for bleed and clot with 
respect to brain.   

However, a more robust technique would be a multi-
frequency approach where the overall contrast pattern over a 
series of points can be used to identify the lesion type. In Fig. 
10, the GMI patterns for the three cases over 4 frequency points 
from 25 Hz to 100 Hz is plotted (the band of most significant 
conductivity change). The results show that the GMI on both 
sides are equal but opposite at a given f point and importantly 
the pattern for a given case mirror the contrast between lesion 
and background across the band. The GMI of case N is near 
zero and approximately constant, for B the GMI is large in 

magnitude with a slow decrease across the band as the 
conductivity of brain slowly increases to reduce the contrast 
between the brain and the bleed, and case C shows a significant 
reduction in magnitude of GMI from 25-100 Hz mirroring the 
reduction in contrast between clot and brain across that 
frequency range. 

H. Application to Human Data 
As a final test, the BFSD-EIT algorithm was applied to 

human data collected from stroke patients as part of a clinical 
trial with the Hyper Acute Stroke Unit (HASU) at University 
College London Hospital (UCLH) [37]. The SNR of the data 
was approximately 48 dB. A patient was selected with a right-
sided ischemic lesion occupying 13.7% of the brain volume 
(‘P26’ in the dataset). The measurement frames collected from 
this patient were reconstructed onto a coarse mesh derived from 
neuroimaging from the patient (mesh ‘A’), and also onto two 
other meshes derived from two other randomly selected patients 
‘P9’ and ‘P11’ (meshes ‘Y’ and ‘Z’ respectively). This 
approach was performed to compare the effect of patient 
specific and non-patient specific meshes on the result. Further, 
as the measurement frames are from a human patient, the 
‘forward model’ is of a real human head inclusive of complete 
anatomy and inherent asymmetries. The results are shown in 
Fig. 11, as the GMI at four points in the 5 Hz – 100 Hz band 
(corresponding to the f points used in [37]). Noise free 
simulated measurement frames generated using fine FEM 
models of the lesion and head from patient P26 were 
reconstructed onto mesh A and used to represent the ‘ideal’ 
result, shown as trace C on Fig. 11.  

The results for reconstruction using the patient data and the 
patient specific mesh A is the nearest to the ideal of trace C, 
with a high magnitude GMI at the lower end of the band 
reducing over the band to 100 Hz. Further, for trace A the sign 
of the GMI matches at all points (positive on the RHS, and 
negative on the LHS) that of trace C. When reconstruction is 
performed onto the non-specific meshes, the result deviate from 
the ideal result. For the reconstruction onto mesh Y, the GMI 
sign of trace Y match trace C but the reduction in magnitude of 
GMI across the band is less. For the reconstruction onto mesh 
Z, the rate of reduction of magnitude is similar to trace A but 
the GMI sign is opposite (i.e. the clot is detected on the wrong 

Fig. 9.  GMI metric results for the 3 cases at f1 of 25 Hz and then a f2 of 25 kHz, 
demonstrating the effect of a frequency-dependent background. 
  

 
Fig. 10.  GMI metric results (LHS and RHS) for the 3 cases (N, B, C) across the 
25 Hz – 100 Hz band. 
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side). The trend in GMI reduction associated with a clot across 
the band hence appears in both patient specific and non-patient 
specific meshes, with better results in the patient specific case.  

IV. DISCUSSION 

A. Measurement Frame Noise 
Algorithm performance is unsurprisingly better at higher 

SNR levels. The results suggest a SNR of 80 dB or higher is 
required for accurate lesion detection, while application of 
BFSD-EIT for stroke detection is still feasible down to an SNR 
limit of about 60 dB. Beyond this SNR level, degradation of 
results means lesion detection is not reliable, but is possible as 
seen with the results from the human patient where 
measurement frames at 48 dB were used albeit with a large 
lesion with the results comparable to the equivalent simulated 
lesion as shown in Fig. 11.  While some EIT applications may 
be feasible at lower SNR levels, use of EIT applied to more 
demanding neural applications that may involve smaller 
changes and issues such as the skull and CSF dampening 
signals generally require systems capable of 80 dB and higher 
[38]–[41]. It should be noted that the nominal rating of a system 
is usually higher than that achieved with patients. For example, 
the human data was recorded using the Scousetom system with 
a SNR rating of 77.5 dB [39]. Hence as well as improvements 
in hardware, tackling of other noise sources such as wires, 
electrodes, and connections will be needed in order to improve 
the quality of data recorded from patients. 

B. Electrode Positioning Errors 
EIT is sensitive to errors in electrode positioning [14], with 

inaccurate electrode positions a major cause of artefacts due to 
the ill-posed nature of the reconstruction problem [11]. BFSD-
EIT assumes symmetric placement of electrode pairs. 
Moreover, these placement positions are assumed to be in 
agreement with the ideal model. These assumptions led to the 
investigation of the effect of two related potential error sources 

in BFSD-EIT. 
 
1) Electrode Positioning Errors with Symmetry Lost 

In this case, electrode pairs are not symmetric with respect to 
each other and are not correctly positioned relative to the ideal 
model. A severe effect on algorithm performance is seen in this 
situation with BFSD-EIT tolerant to errors in electrode 
positioning within only a ± 1 mm radius of the positions 
expected by the ideal model. Unreliable ROI detection with a 
steep decline in RDR from ideal is seen at radii beyond ± 1 mm. 
The GMI metric is more robust (reliable up to about ± 5 mm 
error radius). 

 
2) Electrode Positioning Errors with Symmetry Maintained 

In this case, symmetry between electrode pairs is maintained 
despite incorrect positioning with respect to the ideal model. 
The results are found to be improved relative to the case in 
which electrode pairs are not ideally symmetric. The robustness 
of the GMI is evident with reliable results of up ± 30 mm error 
radius, while acceptable results up to only ± 5 mm is achievable 
for the other metrics (with no or erroneous ROIs detected 
beyond this).  
 While the ± 30 mm limit is encouraging, it is only applicable 
if symmetry between electrode pairs is maintained. Without this 
condition being achieved the ± 5 mm value is a limitation, 
however this tolerance is still an order of magnitude of that 
achieved in [18]. Nevertheless, techniques to improve electrode 
placement accuracy are essential in order to further improve the 
robustness of the algorithm. The electrode positioning used is 
largely based on the EEG 10-20 system, and as such EEG caps 
may be used in the first instance to aid electrode positioning 
with a specific hat for BFSD-EIT a possible improvement [19]. 
Other aids include the use of image guidance technology [42], 
automated algorithms to calculate EEG positions [43], and 
devices to generate quick, precise 3D models of patients’ heads 
for use in EEG electrode placement [44]. Hence, electrode 
positioning while a challenge for EIT may be one that is 
surmountable.  

C. Contact Impedance Errors of Electrodes 
Changes in the electrode contact impedance have little or no 

effect on the BFSD-EIT algorithm performance. Notably, the 
contact impedance ranges chosen (± 20% and ± 50 % of the 
ideal value) correspond to suboptimal and unacceptable 
variances in impedance as described by [18]. Therefore, 
realistically, variations in contact impedance will be below 
these ranges and are thus unlikely to impact the algorithm 
outcomes. As further explained in [18], changes in the 
impedance of the electrode have little effect on the current flow 
pattern within the head as the conductivity of the electrode is 
large (even with the modelled errors) compared to that of the 
tissues of the head.  

D. Assumed Conductivity Errors of the Tissues 
The uncertainty and variability in conductivity values of 

tissues, especially in the EIT range [30], [33] means that the 
algorithm must be robust to errors in this parameter both at the 

 
Fig. 11.  GMI metric results (LHS and RHS) for human ischaemic stroke 
patient across the 5 Hz – 100 Hz band. Reconstruction is performed onto a 
patient specific mesh (A), and two patient non-specific meshes (Y and Z). The 
results from using simulated data onto the patient specific mesh is also shown 
(C). 
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voxel and whole tissue levels. 
At the voxel level, assigning each voxel a value of the ideal 

conductivity value for the respective tissue with an error of up 
to ± 0 – 50% had little or no effect on the result compared to 
ideal. This result is attributed to the reconstruction onto a coarse 
mesh which has approximately 1/16 the number of voxels 
compared to the fine mesh. This ‘averages out’ the 
heterogeneous nature of the tissue voxels in the erroneous 
models.  
 At the whole tissue level, assigning each tissue a value of the 
ideal conductivity value for the respective tissue with an error 
of up to ± 0 – 20% had little effect on the result compared to 
ideal. The reason for this result is the differencing of 
measurement frames from symmetrically opposite orientations 
resulting in error suppression and the contrast (proportional to 
the difference) between the tissues largely being maintained 
despite errors in assumed conductivity. Lesion detection is still 
achieved but the GMI results for the two different lesions are 
similar for an error of ± 0 - 50%. As lesion detection is the goal 
of the algorithm at a single f point (identification of lesion type 
requiring the disambiguation step as described in [19]), this 
convergence of values for both cases is not of concern as the 
pattern of contrast change will differ for the two lesions 
between f points allowing disambiguation. 
 Overall, at both voxel and tissue levels, these results are 
significant. As the true conductivity of a tissue is uncertain, the 
fidelity of the algorithm even with variability in tissue 
conductivity of up to 50% is strongly encouraging. 

E. Errors in Assumed Anatomy of the Head 
Two scenarios were examined with geometries different to 

that of the coarse reconstruction FEM mesh: (1) unilateral 
excess of skull or brain, and (2) altered boundary of the head. 

 
1) Unilateral Excess of Skull or Brain 

In the first scenario, which examines the unilateral excess of 
tissues, the effect of reassigning the CSF as skull or brain on the 
left side is effectively the thickening of the skull (or brain) with 
a reciprocal thinning of the CSF. At the chosen f point, this 
modification effectively places a low conductivity target on the 
LHS compared to the RHS as the conductivity of skull (0.05 
S/m) or brain (0.1 S/m) is less than that of CSF (2 S/m). The 
presence of this low conductivity LHS target compared to the 
CSF in the symmetric RHS location is seen in the GMI with 
high intensity on the LHS, low intensity on the RHS (equal but 
opposite) with the magnitude of the values increasing as the 
volume of skull (or brain) tissue increases. The results are near 
identical for both sets of models, however the magnitude of the 
values from the skull models are slightly larger than those of 
the brain models as the contrast between skull (0.05 S/m) and 
CSF (2 S/m) is larger than that between brain (0.1 S/m) and CSF 
(2 S/m).  

In terms of the metrics based on ROIs, the isolation of the 
largest candidate ROIs results in the excessive skull (or brain) 
‘lesion’ being detected instead of the bleed or clot in all cases. 
In the smallest 10 mm radius model, the lesion is removed by 
the filtering (too near to the exterior) resulting in no ROI 

detection. When ROIs are detected the result is (near) identical 
metrics for all cases in the excess skull (or brain) models. The 
size of a ROI is a function of the volume of the lesion but also 
the contrast between the tissues on either side. The contrast 
between skull (or brain) and CSF results in larger ROIs than 
those produced for the 50 ml clot or 10 ml bleed (which are both 
contrasted with brain).  

These results indicate that BFSD-EIT is extremely sensitive 
to asymmetry in normal anatomy with an excess skull or brain 
tissue of < 1 cm3 on one side capable of masking the presence 
of true lesions. The excess tissue confounds the ROI analysis). 
However, the GMI results indicate that asymmetric anatomy 
may be tolerated by BFSD-EIT if results are gathered at 
multiple frequencies the arithmetic sum property used. At a 
second f point where the conductivity of the tissues is different, 
analysis of the results would identify the presence of a lesion 
based on the known changes in tissue conductivities between 
the f points selected. For example, at 100 Hz the decreased 
contrast between brain (0.1 S/m) and clot (0.09 S/m) will result 
in a noticeable difference in the GMI result for case C at 100 
Hz (closer to the N result) compared to 25 Hz where the 
enhanced contrast of clot compared to brain deviates the GMI 
result away from the N result more. If the conductivities do not 
change then disambiguation would not be possible. In the 
models used, neither skull, bleed nor CSF change in 
conductivity over the range considered [16], [24] meaning 
disambiguation of bleed from normal in the presence of 
asymmetric excess skull would be challenging. 

 
2) Altered Boundary- Shrunk and Dilated Scalp 
 It is unlikely that a patient-specific mesh would be available 
in acute stroke cases. However, it would be possible to have a 
“generic best guess” mesh for reconstruction that approximated 
the external head geometry based on non-invasive measurables 
such as, for example, circumference and nasion-inion distance. 
The shrunk (97% of original volume) and dilated (105% of 
original volume) scalp models gave strong results comparable 
to ideal. Of note, the GMI results were greater in magnitude for 
the 97% model as less scalp results in a larger effective presence 
of the lesions. The GMI values were smaller in magnitude for 
the 105% models for the opposite reason. In [45], it was argued 
that although images reconstructed onto a correct mesh are of 
superior quality those from using a generic mesh, using the 
correct mesh did not improve stroke detection rates and thus a 
generic mesh may be sufficient. For stroke, lesion detection and 
lesion-type identification are crucial whereas image quality 
may not be as vital. As such, a generic best guess mesh may be 
sufficient for the feasibility of BFSD-EIT in this application.  
 The alterations in boundary studied are a uniform decrease of 
increase of the geometry of the original boundary. Non-uniform 
changes in the boundary would result in the challenges 
discussed in the previous section (unilateral excess of skull or 
brain) as well as resulting in changes in the symmetry electrode 
positioning. 

F. A Frequency-Dependent Background 
A frequency-dependent background has the ability to 
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confound lesion detection if the pattern of contrast change 
between the possible lesion types (bleed or clot) and 
background is the same from f1 to f2. However, if care is taken 
in the selection of f points then this potential problem can be 
avoided. In [19], the f points of 25 Hz and 100 Hz are used as 
there is a significant decrease in contrast between clot and brain 
at f1 compared to f2, while there is effectively no change in 
contrast between bleed and brain at the same two f points. An 
alternative, and more robust method may be to assess the 
pattern of contrast change at multiple f points across a band, we 
intend to explore this in future work. 

G. Application to Human Data 
The BFSD-EIT algorithm was applied to human data for the 

first time in this study. The dataset from the UCLH represents 
the most comprehensive EIT stroke data currently available but 
also suffers from limitations including an SNR of 48 dB, and 
uncertainty over error sources such as electrode positioning 
[37]. Despite this, the use of human data represents 
measurement frames from a true forward model as opposed to 
the controlled environment of numerical models used in other 
parts of the study. As found in Section III-H, the trend in GMI 
associated with a clot appears in both patient specific and non-
patient specific meshes. These important results point to the 
strong promise of BFSD-EIT in stroke diagnosis. The results 
must however be treated with caution as the data was taken 
from a patient with a large ischemic lesion, and while the results 
from using non-patient specific meshes were promising, best 
results were achieved for the mesh modelled on the anatomy of 
the patient which may not be available in acute scenarios [45]. 
The results give an indication that BFSD-EIT may be feasible 
in true clinical scenarios with the GMI results for the ischemic 
lesion generally following the expected ideal pattern for a clot, 
but not yet of adequate diagnostic value with further studies 
with more patients and algorithm development needed. 

H. Technical Remarks 
The computer platform used in this study was a machine with 

a quad-core Intel Core i7-6700K, 48 GB RAM running Ubuntu 
16.04, without a GPU. The main software used in model design, 
reconstruction and analysis was MATLAB coupled with the 
resources listed in the Appendix and Bash scripts to facilitate 
automation. The result was ease of versatility in design of 
deviation models, automation of forward solving and 
automation of reconstruction and analysis allowing a wide 
range of models be investigated and iterations be performed.  

Forward solving and reconstruction of a given case took 
approximately 15 minutes and 5 minutes, respectively, with 
better performance expected if a GPU had been available. We 
believe this setup, and in particular the novel EIT resources 
listed in the Appendix, to be a valuable platform to aid in 
comprehensive and thorough studies involving EIT. 

V. CONCLUSION 
 The BFSD-EIT algorithm provides some robustness to 
modelling errors by using a differencing approach (akin to the 
robustness seen in tdEIT). This study has applied the BFSD-

EIT algorithm to stroke diagnosis in a variety of realistic 
numerical simulations. Scenarios designed to test the 
robustness and limitations of the algorithm have been 
examined. We conclude: 
• The SNR of the measurement system should be at least 60 dB. 
• Electrode positioning errors severely effect on performance. 

However, tolerance of up to ± 30 mm from the expected 
position is seen if symmetry is maintained between partner 
electrodes. 

• Contact impedance errors of electrodes (up to ± 50% of the 
assumed impedance) have little effect on performance. 

• Assumed conductivity errors in tissues (up to ± 50% of the 
reference value) have little effect on performance whether at 
a voxel or whole tissue level. 

• Errors in assumed anatomy affect the performance of the 
algorithm. Asymmetrical anatomy across the sagittal plane 
can be detected as false positive lesions and mask true lesions. 
The GMI metric may be used to overcome this limitation, if 
the tissues have a frequency-dependent change in 
conductivity. Errors in the assumed boundary of the head with 
a 10% variance only slightly decreases performance. 

• A frequency-dependent background can confound 
disambiguation if f points are not carefully chosen. A multi-
frequency approach may be a more robust way to deal with 
frequency-dependent background with assessment of the 
overall contrast pattern across a band. 

• A final absolute limitation of BFSD-EIT is an inability to 
detect lesions that lie perfectly across the plane of symmetry 
due to the basis of the algorithm being detection of differences 
in symmetry if present [19]. 
 

These scenarios encompass common and important challenges 
of EIT. When compared to the state-of-the-art algorithm 
involving EIT applied to stroke problem, the fdEIT algorithm 
[18], BFSD-EIT compares favorably. BFSD-EIT shares the 
same challenges with regards anatomical variation, but shows 
superior tolerance to electrode positioning errors (errors of 0.5 
mm in [18] resulted in failure to detect lesions), while also 
sharing robustness to contact impedance [18]. BFSD-EIT 
shows advantages over the algorithm presented in [18] in terms 
of computational efficiency. Further, as BFSD-EIT compares 
measurement frames at each frequency point from mirror image 
orientations at that frequency point, it avoids a direct 
comparison of measurement frames taken at different frequency 
points. Hence, BFSD-EIT avoids sources of error associated 
with fdEIT techniques resulting from the fact that different 
errors are present at different frequencies [13], [16], [19]. This 
latter point also explains the superior hemorrhage detection of 
BFSD-EIT over a fdEIT algorithm such as that in [18] as in 
BFSD-EIT the contrast in conductivity between hemorrhage 
and brain is leveraged at each f point for detection, and does not 
rely on a change in conductivity across frequencies which is 
absent for bleed and brain. Finally, the results in this study were 
achieved without mesh refinement at electrode contact points 
which was required in [18]. This lack of electrode refinement 
aids in the computational efficiency of BFSD-EIT. 

While BFSD-EIT has limitations and is currently not fit for 
consideration in clinical use as a stand-alone diagnostic device, 
the technique shows strong promise when applied to stroke 
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diagnosis provided that the error tolerances listed above are 
respected. In particular, use of the GMI metric and a multi-
frequency approach can result in a robust stroke detection 
method with promising results seen in the application of the 
algorithm to data from a human ischemic stroke patient. Future 
work will further investigate this algorithm, and examine 
application optimization when applied to phantom and human 
data. 

APPENDIX 
All models and software relating to the head model is 

available at https://github.com/ EIT-team/Tanks (archived at 
DOI:10.5281/zenodo.1489106). The forward solver used, 
PEITS (Parallel EIT Solver) is available at 
https://github.com/EIT-team/PEITS (archived at DOI: 
10.5281/zenodo.1641128), and the reconstruction software  is 
available at https://github.com/EIT-team/Reconstruction 
(archived at DOI: 10.5281/zenodo.1643416). 
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