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Abstract—Objective: To provide objective visualization
and pattern analysis of neck muscle boundaries to inform
and monitor treatment of cervical dystonia. Methods:
We recorded transverse cervical ultrasound (US) images
and whole-body motion analysis of sixty-one standing
participants (35 cervical dystonia, 26 age matched
controls). We manually annotated 3,272 US images
sampling posture and the functional range of pitch,
yaw, and roll head movements. Using previously validated
methods, we used 60-fold cross validation to train, validate
and test a deep neural network (U-net) to classify pixels to
13 categories (five paired neck muscles, skin, ligamentum
nuchae, vertebra). For all participants for their normal
standing posture, we segmented US images and classified
condition (Dystonia/Control), sex and age (higher/lower)
from segment boundaries. We performed an explanatory,
visualization analysis of dystonia muscle-boundaries.
Results: For all segments, agreement with manual labels
was Dice Coefficient (64 ± 21%) and Hausdorff Distance
(5.7 ± 4 mm). For deep muscle layers, boundaries predicted
central injection sites with average precision 94 ± 3%.
Using leave-one-out cross-validation, a support-vector-
machine classified condition, sex, and age from predicted
muscle boundaries at accuracy 70.5%, 67.2%, 52.4%
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respectively, exceeding classification by manual labels.
From muscle boundaries, Dystonia clustered optimally
into three sub-groups. These sub-groups are visualized
and explained by three eigen-patterns which correlate
significantly with truncal and head posture. Conclusion:
Using US, neck muscle shape alone discriminates dystonia
from healthy controls. Significance: Using deep learning,
US imaging allows online, automated visualization, and
diagnostic analysis of cervical dystonia and segmentation
of individual muscles for targeted injection.

Index Terms—Deep learning, ultrasound imaging,
cervical dystonia, segmentation, muscle boundaries,
diagnosis.

I. INTRODUCTION

C ERVICAL Dystonia (CD), also called spasmodic torti-
collis, is a painful condition in which the neck muscles

contract involuntarily, causing the head to twist, turn, and pull
into an abnormal posture. This neurological movement disorder
affects an estimated 18,000 adults in the UK [1]. The reported
mean duration from symptom onset to diagnosis is 44 months,
with consultations sought from a mean of 3.5 different healthcare
providers before reaching a diagnosis and receiving effective
therapy [2]. For CD, the diagnosis is based on expert clinical
assessment since laboratory testing and imaging of the brain or
spine is typically unrevealing [2].

Treatment of CD is symptomatic and the established protocol
is injecting the neck muscles with botulinum neurotoxin (BoNT)
[3]. Clinical experience shows the main causes for treatment
failure are suboptimal neck muscle selection or BoNT dosing,
indicating the importance of appropriate targeting of overactive
muscles [4], [5]. Furthermore, monitoring the effectiveness of
treatment is confounded by use of differing rating scales and
assessment methods [6]. There is a clinical need to diagnose
CD more promptly, to improve analysis and identification of
dystonic muscles, to improve delivery of injection and dose to
specific muscles, to provide objective recording of injection sites
for retention within medical records and to track longitudinally
the effect of injections on individual muscles [7].

A. Current Clinical Methods

The most common method of identifying and injecting the
muscles involved in CD is clinical examination and manual
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Fig. 1. Posture (linked US-MRI) datase. (A) Representative axial
ultrasound image targeted at vertebral level C4. The probe plane was
marked with four cod liver oil capsules. (B), (C), (D): Axial, coronal
and sagittal MR images of the same participant showing the ultrasound
image plane marked by four cod liver oil capsules (blue circles). Here,
the ultrasound image plane lies between cervical vertebrae C3 and C4.
Note the challenge of extracting muscle boundaries from the ultrasound
image. For the whole dataset, images were acquired at level 3.8 ± 0.6
(mean ± SD).

needle placement, based on the clinician’s knowledge of func-
tional anatomy of the neck muscles, directed by head position,
shoulder elevation and assessment of muscle tone and hyper-
trophy on palpation [8]. Within the clinic, this method may be
efficacious for superficial neck muscles but is compromised for
deeper muscles - typically the deeper neck muscles (e.g., spinalis
cervicis, multifidus) are difficult to assess clinically and inject.
There is increasing awareness of the clinical relevance of deep
cervical muscles in the pathogenesis and potential therapy of
CD [9], [10], but the tools to assess and treat these muscles
are currently not fully developed. Compared with intramuscular
electromyographic (iEMG) mapping of cervical muscle activity,
the sensitivity of clinical examination has been reported as 59%
and the specificity 75% [8]. The positive predictive value of
shoulder elevation and muscle hypertrophy is reportedly only
70% and head position does not provide added value, because
individuals with solitary dystonic head postures do not have
muscle dystonia following simple patterns [8]. Without iEMG
mapping, 41% of dystonic muscles would not be recognized and
25% of inactive muscles would be judged dystonic [8]. However,
iEMG is time consuming, requires substantial expertise, is inva-
sive and cannot be performed in individuals on anticoagulants.
Other methods including measurement of electrical impedance
have been proposed to be sensitive to muscle changes in CD, but
are not as yet validated [11].

Ultrasound (US) offers non-invasive visualisation of muscle
structures with easy contralateral comparison, is readily avail-
able, and improves the precision of injections [12], [13]. How-
ever, use of US requires training, is dependent upon operator
expertise, and remains subjective [12].

Fig. 2. Hypothesis pipeline: Using Deep Learning Semantic Seg-
mentation, Boundary Extraction, support vector machine (SVM) Clas-
sification, Clustering, Pattern Analysis, Visualisation and whole body
motion analysis, we sequentially test five hypotheses concerning trans-
verse ultrasound images of the human neck. H1, Segmentation is ac-
curate enough to guide injection of deep neck muscles (Figs. 4, 5).
H2, Cervical Dystonia can be classified from age matched controls
using muscle shape alone (Table III). H3, Muscle shape clusters into
subtypes of Cervical Dystonia (Fig. 5). H4, Cervical Dystonia can be
reduced to significant eigen-patterns of muscle shape (Figs. 6–8). H5,
Eigen-patterns of neck muscle shape are associated with features of
whole body posture (Fig. 8).

The objective of this study is to provide an automated, ob-
jective visualization of neck muscle boundaries and to analyze
whether these boundaries have diagnostic value discriminating
patterns of cervical dystonia from healthy controls. If successful,
these methods demonstrate proof of concept for a clinical tool for
objective online diagnosis, injection guidance and monitoring,
with minimal requirement for operator expertise and minimal
burden on clinical time.

B. Contribution of This Study

The use of deep learning to extract information from limited
quality images (c.f. Fig. 1A) is progressing rapidly. Application



1018 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 4, APRIL 2020

to US is under-developed and application to skeletal muscle
is rare. This study builds upon previous work by our group
realizing the scientific and clinical value of in-vivo skeletal
muscle analysis [14]–[19], applying deep learning to skeletal
muscle US [20]–[22] and specifically developing methods for
analysis of the neck muscles [23], [24]. Recently we contributed
a dataset, a methodology for labelling training images suitable
for participants with involuntary head movement, and a bench-
mark deep learning method for segmenting the neck muscles
[24], [25]. Here we apply that methodology to cervical dystonia.

Our primary interest is to establish whether from a single axial
image, neck muscle shape allows differentiation of cervical dys-
tonia from healthy controls. Our secondary interest is whether
or not segmentation is accurate enough to guide injections to
deep neck muscles.

Cervical dystonia is characterized by the sustained contrac-
tion of specific muscles. Our general hypothesis is that those
contracting muscles cause an identifiable pattern of neck muscle
shape and an associated pattern of whole body posture. Dystonic
muscles are specific to an individual, but common combinations
are observed. Each dystonic combination should produce a
pattern of neck muscle shape or posture away from the normal
distribution, along a dimension which is distinct from other
combinations.

We test in sequence five specific hypotheses (Fig. 2):
(i) Segmentation will identify injection points within deep neck
muscles accurately. (ii) Cervical dystonia can be classified from
age matched controls using neck muscle shape alone. (iii) Dysto-
nia clusters into natural sub-groups using neck muscle shape (iv)
Dystonic muscle shapes can be expressed as significant eigen-
patterns, (v) Dystonic muscle eigen-patterns are associated with
patterns of whole body posture.

II. METHODS

A. Data Collection

Using a probe (7.5 MHz, SonixTouch, Ultrasonix, USA) held
transversely to the posterior neck, B mode US images (depth
5cm), were recorded from 61 adults: 35 cervical dystonia (mean
age 61 ± 10, 15 male) and 26 age matched controls, (mean age
59 ± 14 years, 18 male) while standing and while performing
head rotation tasks defining their range of pitch, yaw and head
rotation. Power and contrast were adjusted per participant using
visual feedback. We disabled image enhancement processes to
reduce internal frame averaging. Images were interpolated (bi-
linear) to a size, and resolution common to our previous datasets
(491 × 525 pixel, 10 pixels per mm) [24]. These experiments,
performed in the Faculty of Science and Engineering, Manch-
ester Metropolitan University (MMU), received ethical approval
from the NHS Health Research Authority (REC: 15/NW/0016,
IRAS:169803) and from MMU Science and Engineering Faculty
Ethics Committee. The study was conducted in accordance with
the Declaration of Helsinki guidelines. All values are reported
as mean ± SD unless stated otherwise.

Posture (Linked US-MRI) Dataset: These posture images are
the subject of this paper. Participants stood upright, observing
a monitor at 1m distance, just below eye level. Three or more

Fig. 3. U-Net Model Architecture. This figure details the best per-
forming model, according to Table I Supplementary Material. The model
consists of 2D convolutional and pooling layers in the encoder part of
the network (blocks to the left), and 2D up-sampling, concatenation and
convolutional layers in the decoder part of the network (blocks to the
right), where concatenation layers concatenate up-sampled layers along
the feature channels with compatible layers in the encoder network
enabling flow of information and gradients in forward and backward
passes, respectively. This neural network has over 51,000,000 trainable
parameters, and over 21,000,000 functional outputs, and operates in
real-time (approx. 10 frames per second) on a modest PC or laptop.
Hyperparameters and augmentation were fixed, chosen based on the
experience and well-established literature. Hyperparameters: Dropout
= 0.25,L^2 = 0.0005, Adam(α = 0.00005, β_1 = 0.9, β_2 = 0.999),
BatchSize = 1,Epochs = 40. Data Augmentation: Local Contrast
Normalisation = 31 × 31, Rotation = ± 8°, Transx = ± 128,
Transy = ± 64

axial US images of the posterior neck targeted at level C4 were
recorded, each with renewed probe placement (Fig. 1A). Four
cod liver oil capsules were taped (using Transpore medical tape)
to the neck, two either side of the neck approximately in the
image plane of the probe. The probe was removed, leaving the
capsules in place, and an MRI scan (0.3T open MRI scanner,
G-Scan, Esaote, Italy) was obtained with participants lying
supine on the scanning bed and their neck positioned central
within a cervical imaging coil. Axial scans (Spin T1-weighted
HF, matrix 512× 512) were performed in a range from the upper
jaw line to the clavicle, orthogonal to the spine, in 19 equidistant
sections (Fig. 1B-D). Manual labelling of muscle boundaries
in US images is challenging. The purpose of collecting linked
MRI-US data is to train experts in labelling US images using
methods reported previously [24].

Head Motion (Linked US-Vicon) Dataset: In a separate ses-
sion, forty seven retroreflective markers were attached to the
body to allow motion analysis of eighteen body segments (head,
neck, thorax, pelvis, thighs, shanks, feet, clavicles, upper arms,
forearms, hands).

Participants stood in the middle of the calibrated volume
and were instructed to perform pitch (flexion/extension), yaw
(right/left) and roll (right side/left side) head rotations, turning
their heads as far as possible in both directions. Each trial was
repeated starting in the opposite direction. Body motion was
recorded by a 9 camera Vicon MX motion capture system. For
each trial, the US probe was held to the posterior neck targeted
at level C4, to allow free movement of the head and image of
5 bilateral layers of muscles. Images were saved digitally at
10 Hz with start time synchronized to the Vicon recording.

The purpose of collecting linked Vicon-US data is to inves-
tigate the relationship between neck muscle boundaries and
posture/movement. Whole body kinematic data provides an
additional modality of explanation and validation of the infor-
mation content of neck muscle boundaries in US images
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Fig. 4. Boundary Extraction and Injection Point Analysis. This
illustrates the output and visualisation provided by the neural network
approach. This participant had cervical dystonia (note the asymmetry).
Top row: Left: ultrasound image. Middle: Manually defined labels.
Right: neural network predicted classification of pixels. 2nd row: Left:
boundaries (green) estimated around each segment. Middle: Injection
point (red star) defined as pixel most distant from predicted segment
boundary. Colour spectrum blue to yellow shows decreasing distance
from predicted boundary and hence increasing target margin around
injection point. Boundary of right multifidus label (green). 3rd row: Left
and middle: as 2nd row middle, but predicted pixels shown restricted to
confidence greater than 60 and greater than 80% respectively. Right:
confidence of the neural network (yellow = high confidence) in clas-
sifying pixels. Right: Average precision of pixels within target region
for right multifidus. Lines red, yellow, magenta, green show pixels re-
stricted to confidence greater than 20, 40, 60, 80% respectively. The
clear visualisation of predicted segment (top right) will be appreciated
by clinicians. The visualisation of confidence of classifying pixels (2nd

row right) gives the user feedback regarding optimal probe location
and orientation.

B. Image Labelling

Using published methods two annotators were trained to
a common standard using MRI images linked to US images
[24]; their agreement is shown Supplementary Material (SM)
(SM-Table IV). US images (192 total, ∼3 per participant) from
the Posture (linked US-MRI) dataset were labelled manually
by annotating the boundaries around ten muscles, vertebra,
ligamentum nuchae and skin. As described previously [23], [24],
MRI images showing the same cod liver oil capsule marked
plane were annotated and registered to the US images to guide
annotation of the US images.

Fig. 5. Precision of Injection points. Testing Mode results:
(A) Average Precision for all pixels of confidence more than 80% in
the target region for a variety of sizes of target region. (B) Average
Precision for varying levels of confidence. Precision is number accurate
as a percentage of pixels predicted to be within muscles. Average pre-
cision is precision averaged with respect to recall, sorted in descending
confidence.

Two thousand US images (∼30 per participant) from the
Head Motion (linked US-Vicon) dataset, sampling uniformly
the range of pitch, yaw and roll head rotations [24] were labelled
manually for the same 13 segments.

Image-labels from this Cervical Dystonia Project (CDP) were
supplemented by our previous posture dataset (25 linked US-
MRI neck image-labels) [23] and our previous Head Motion
dataset (1100 linked US-Vicon neck image-labels) [24]. These
supplementary image labels were acquired using a different US
probe and machine (7.5 MHz T shaped probe, taped to the neck,
Aloka) at the same neck location and for the same posture and
head motion tasks.

C. Machine Learning

We divided data into independent training, validation and test
datasets. We report a ‘Testing Mode’, and an ‘Analysis Mode’
of division. ‘Testing Mode’ is used for testing Segmentation,
Boundary extraction and SVM classification of dystonia, sex
and age (Fig. 2).

Testing Mode: 60-fold leave-one-out (LOO) cross validation.
The 61 CDP participants (2192 image-labels) were assigned into
60 folds (one per fold, except one fold contained two partic-
ipants). These 60 folds provided 30 groups each containing a
‘test’ (one participant), ‘validation’ (one participant) and ‘train’
(58 participants) dataset. Each ‘train’ dataset was supplemented
by the 1100 Head Motion image-labels [24].

Analysis Mode: All 3100 (2000 + 1100) Head Mo-
tion image-labels were assigned to the ‘train’ dataset. All
217 (192 + 25) Posture image-labels were assigned to the
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Fig. 6. Classifying Dystonia, sex and age from segment bound-
aries. For 36 deep neural networks of varying architecture and hyper
parameters dating from the very start of this investigation tested on the
Posture dataset (61 participants), panels show Jaccard Index, and SVM
classification accuracy for Dystonia, sex and age v mean predicted con-
fidence. Points of confidence <75%, are early 10 fold cross validation
networks using only the Posture dataset (∼200 image-labels). Points
of confidence >75% include addition of Head Motion dataset (∼3000
image-labels) to neural network trained in Analysis Mode, except one
point which is the Testing Mode U-net. Red horizontal lines show SVM
classification using the manually annotated boundaries used to train
the neural networks. Key Points: Neural networks become better at
extracting information than the human annotated ground truth used to
train them. Ultrasound neck images contain the information required to
classify Dystonia. Sex information is contained less well and age is not
revealed within these US images. Jaccard Index increases with confi-
dence. Classification of condition, sex or age requires US information
content in addition to accurate segmentation.

‘validation’ and ‘test’ datasets and participants were assigned
alternately to the ‘validation’ and ‘test’ datasets.

The ‘Testing Mode’ maintains strict independence between
training, validation and test dataset since participants do not
overlap folds. To maximize the training set in each fold, we
performed LOO cross-validation. Since, some participants pro-
duce poorer quality images (e.g., deep fat layer, indistinct mus-
cles), validation (selection of the training iteration to use for
testing) will be sub-optimal. Typically, validation scores over
fit prematurely before the neural network fully encodes the
generalizable content of the data. ‘Testing Mode’ represents the
harshest possible testing regime.

‘Analysis Mode’ maximizes the training set (all Head Motion
data), and also maximizes the number of participants (all Posture
data) in each validation and test set. We propose motion of the
head, (and to a lesser extent repositioning the probe to a new
location, pressure and orientation), produces more independence
between images than changing participant. Moving the head
changes the depth, muscle shape, scale, texture and dropout
of each image. We propose, ‘Analysis Mode’ maintains inde-
pendence between training (Head Motion) and validation/test
(Posture) sets, and allows learning to extract more fully the
content of the data.

Manual annotators were blind to the condition and sex of the
image and these labels played no part in training, validation

or testing. To select the mode with best descriptive power for
Pattern Analysis and Visualisation (Fig. 2), we selected the mode
(‘Testing’ v ‘Analysis’) with the highest SVM classification of
dystonia and sex.

Augmentation: Each US image and corresponding label was
flipped about the vertical line of symmetry, to double each
training, validation and test set and to remove asymmetry bias
from each process of training, validation and testing.

Implementation: Following previous work [24], and using
software written within this group, we conducted extensive
evaluation of 99 trained neural networks (c.f. SM for detail).
The best encode-decoder neural-network (U-Net) was trained
(Fig. 3). Training error between labels and network predic-
tion was computed using a class-weighted cross-entropy cost
function −∑m

i=0 β(k)y
(i)

(k)
log ŷ(i) where m is the number of pixels

in a single image, i is the index of a pixel in a single image, k is
the class associated with the pixel i, y(i)(k) is the label category (0

or 1), ŷ(i) is the SoftMax response, and β(k), which up-weights
(β(k) ≥ 1) a given class using, β(k)=

max(C)

Ck , where Ck is the
total count of pixels of class k, and max(C) is the total count of
pixels of the class with the maximum total pixel count.

Network training consisted of online learning, interrupted
every quarter pass (550 learning iterations) through the training
set, to record cross entropy test results from the validation and
test (test) sets. If the cross-entropy loss for either test set was
lower than any previous recorded loss for that test set, the
network was saved to long term storage. Each selected network
was tested by the other set, and vice versa for both networks.
This process yielded held-out test results for all images in both
test sets. Training terminated after 35 epochs.

The Posture dataset and predicted output was used for post
neural network analysis. Please refer to Fig. 2 which defines the
flow of hypothesis, methods and results.

D. Boundary Extraction

The Posture dataset was used for boundary extraction and in-
jection point analysis (Figs. 4, 5). To the classified pixels (Fig. 4)
we applied an 8× 8 pixel median filter, filled holes, smoothed the
boundaries and extracted boundaries using MATLAB functions
(medfilt2, imfill, imclose and bwtraceboundary respectively. All
boundaries were extracted clockwise, starting from a key point,
defined as the most medial pixel for muscles, and interpolated
to 100 evenly spaced points (Fig. 3). For one image, the pattern
of 13 segments is described by a row vector or 2,600 numbers
(100 horizontal, then 100 vertical coordinates for each segment).
Accuracy of extracted boundaries was assessed using Jaccard
Index (JI), Dice Coefficient (DC), Hausdorff Distance (HD) and
modified Hausdorff Distance (MHD) (Table I) [25].

For each segment, the central predicted injection point was
defined as the pixel of maximum distance (dmax) from any
boundary point (Fig. 3, middle row). We iteratively increased
the margin around this injection point by distance t = 0, 1, 2 …
dmax mm. The pixels enclosed by this boundary at distance
dmax – t from the predicted segment boundary provided a
series of target injection regions (Fig. 4). By comparison with
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TABLE I
BOUNDARY ACCURACY BETWEEN BOUNDARIES EXTRACTED FROM NEURAL NETWORK OUTPUT AND MANUAL ANNOTATION. JACCARD INDEX (JI) AND DICE

COEFFICIENT (DC) SHOW PERCENTAGE INTERSECTION OVER UNION. HAUSDORFF DISTANCE (HD, IN mm) SHOWS THE GREATEST DISTANCE, AND
MODIFIED HAUSDORFF DISTANCE (MHD, IN mm) SHOWS THE MEAN DIFFERENCE BETWEEN PREDICTED AND MANUALLY ANNOTATED BOUNDARIES. THIS
TABLE REPORTS MEAN ± S.D. FOR ALL IMAGES FROM THE POSTURE DATASET (N = 384 = 192 + 192 REFLECTIONS) USING ‘TESTING MODE’. THE
PENULTIMATE COLUMN ALONE REPORTS ALL SEGMENTS USING ‘ANALYSIS MODE’. THE FINAL COLUMN REPORTS AGREEMENT BETWEEN THE TWO

ANNOTATORS WHO CONTRIBUTED THE LABELS FOR THIS DATASET

corresponding pixels in the manually labeled image, we com-
pute average precision, for varying target region. This analysis
was iterated using pixels only of predicted confidence (Soft-
Max scores) greater than 0, 0.2, 0.4, 0.6 and 0.8 respectively
(Figs. 4, 5).

E. SVM Classification Using Boundaries

Boundaries from reflected images were discarded. For all 61
participants we computed the mean segment boundaries. This
generated a matrix of 61 rows by 2600 columns. With Matlab
functions fitcsvm, crossval and kfoldLoss, we used a support
vector machine, with 61-fold LOO cross validation to test ability
of the boundaries to classify clinical condition (Dystonia v
Control), Sex (male v female), and age (higher, lower) where age
as divided into two groups around the median value (Table III).

F. Clustering of Boundaries

Using k-means, we tested the extent to which the 61 × 2600
matrix of segment boundaries clustered into groups. We used
Matlab function kmeans with correlation as the distance metric.
We used the CalinskiHarabasz value to evaluate separation into
2 to 10 groups. (Fig. 7).

G. Pattern Analysis and Visualisation

In a series of steps, we reduced the boundaries to the sta-
tistically significant eigen-patterns which discriminate dystonia
sub-groups and healthy controls (Figs. 8, 9).

Using all images from the Posture dataset, we reduced 2600
columns to 100 principal components. Each component rep-
resents a pattern of variation from the mean shape. Using un-
reflected cases only, we computed the mean principal component
scores for the dystonia and control participants (n = 61). We
selected the principal components which reconstruct the group
membership (Dystonia 1-3, Control). To select, we computed
a univariate ANOVA for each principal component. Then, us-
ing MATLAB functions sequentialfs (10-fold cross validation,
50 monte-Carlo repetitions, forward entry starting with signif-
icant univariate components), and classify (‘diaglinear’, naive

Fig. 7. Clustering Dystonia into sub-groups Dystonia participants
were clusterred into sub-groups using segment boundaries and k-
means algorithm. (A) Clustering success metric v numer of clusters.
(B) Division of Dystonia into optimal number of sub-groups (Dystonia
1-3, n = 9, 17, 9 respectively) using Analysis Mode. For each group
we show: Top Row. Group averaged ultrasound images, Bottom Row.
Mean segment bounadaries. Left side of all images represents the left
anatomical side of the participants. Dystonia groups 1-3 appear left
side compressed, right side compressed and both sides compressed
respectively.

Bayes), we selected the combination of principal components
which predicts group membership.

To reduce the model to statistically significant discriminant
eigen-functions, maximizing separation of the groups, we per-
formed one-way Multivariate Analysis of Variance (n = 61),
using MATLAB function manova1 (Figs. 8, 9);
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TABLE II
MUSCLE INJECTION ACCURACY. SHOWS CLASSIFICATION ACCURACY FOR PIXELS OF CONFIDENCE GREATER THAN 80% WITHIN TARGET REGION. VALUES
ARE MEAN FOR ALL PARTICIPANTS IN TEST SET (N = 61). DEEP MUSCLES SHOWS MEAN ± S.D. FOR MULTIFIDUS TO SPLENIUS. INJECTION POINT IS THE

PIXEL FURTHEST FROM ALL BOUNDARY POINTS. TARGET RADIUS: DECREASE IN DISTANCE FROM EDGE TO TARGET REGION INCREASE TARGET AREA.
DISTANCE FROM EDGE: DISTANCE OF TARGET BOUNDARY FROM SEGMENT BOUNDARY. N POS, N NEG: NUMBER OF PIXELS IN IMAGE. ACC: PERCENTAGE

OF PIXELS CLASSIFIED CORRECTLY. TP RATE, FP RATE, FN RATE, TN RATE: TRUE POSITIVE, FALSE POSITIVE, FALSE NEGATIVE, AND TRUE NEGATIVE
RATE RESPECTIVELY. AP: AVERAGE PRECISION (PRECISION AVERAGED WITH RESPECT TO RECALL SORTED IN DECREASING CONFIDENCE)

H. Correlation of Eigen-Functions With Whole
Body Posture

For each participant, we computed their median multi-
segment posture (51 angular components from 17 joints) from
all their trials in the Head Motion (linked US-Vicon) dataset.
To identify joint angles associated with neck boundary eigen-
functions, we calculated the structure matrix showing corre-
lation (n = 61) of all joint angles with each eigen func-
tion and limited the lists to those significant at p < 0.05
(Table IV).

III. RESULTS

Supplementary Material, presents comparative analysis of 96
trained neural networks from ten different models extending our
previous work [24] and justifying the best model selected for this
paper. The video in SM demonstrates live neural network output
of the selected model.

Figure 2 defines the flow of hypotheses and results presented
below. We report five main findings: (i) accuracy of extracted
boundaries and of injection points within neck muscles, (ii)
classification of condition, sex and age from muscle boundaries,
(iii) the optimal clustering of dystonia into sub-groups, (iv)
reduction to eigen-patterns of muscle shape associated with
cervical dystonia and (v) the association of neck muscle eigen-
patterns with whole body posture.

A. Accuracy of Extracted Boundaries and
Injection Points

For the Posture dataset, accuracy of all segment boundaries
using metrics JI, DC, HD and MHD was equal using ‘Testing
Mode‘, or using ‘Analysis Mode’ and both marginally higher
than inter-annotator agreement (Table I). These values were
typical for muscles deep to the surface (Multifidus, Spinalis
Cervicis, Spinalis Capitis, Splenius Capitis), (Table I).

A meaningful assessment of accuracy is provided by the ques-
tion “would an injection into the predicted segment target the
proposed muscle accurately?” Predicted classification of pixels
is more confident towards the center of the muscles rather than
at the boundary (Fig. 4). By using SoftMax confidence at 80%

TABLE III
CLASSIFICATION OF DYSTONIA, SEX AND AGE FROM MUSCLE BOUNDARIES.

A SUPPORT VECTOR MACHINE, WITH LOO 60 FOLD CROSS VALIDATION
PREDICTED CONDITION (DYSTONIA V CONTROL), SEX (MALE VS. FEMALE)
AND AGE (ABOVE MEDIAN VS. BELOW MEDIAN) FROM POSTURE DATASET

OF 61 PARTICIPANTS

or more to select injection points (Fig. 4), accuracy indicated by
average precision is improved (Fig. 5). Setting minimum predic-
tion confidence to 80%, accuracy of injection points for the deep
muscles (multifidus, spinalis cervicis, spinalis capitis, splenius
capitis) is indicated by average precision 93.5 ± 3% (Table II).
These results support our hypothesis (i) that segmentation of
deep muscles will identify injection points within the designated
muscle.

B. SVM Classification Using Segment Boundaries

Using Testing Mode results, and predicted neck segment
boundaries alone as input, a support vector machine with LOO
cross validation, classified Dystonia from age matched controls
with accuracy 70.4%, which was higher than sex (67.2%) or
classification age (52.4%) (Table III). This classification was
higher than classification from manual annotated boundaries at
54%, 57% and 49% for condition, sex and age respectively.
Classification of Dystonia and sex from boundaries was higher
using Analysis Mode (77.0%, 68.9% respectively), than us-
ing Testing Mode (Table III). Results since the start of our
investigation have been consistent: ‘Dystonia’ manifests more
clearly in neck US images than sex; age cannot be classified
from these images; and neural networks out-perform the human
annotators (Fig. 6).
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Fig. 8. Reconstruction of Dystonia sub-groups using eigen-
patterns of neck muscle shape. We have reduced description of dysto-
nia sub-groups and controls to three discriminant eigen-functions (DF1,
DF2, DF3, Wilk’s lambda, p-values shown panel A). Each eigen-function
represents a weighted combination of principal components of US mus-
cle boundaries from all participants (35 dystonia, 26 age matched con-
trols). N.B. “Muscle” shape refers to all 13 segments (muscle, vertebra,
ligament, skin). (A) Distance (mean linkage) between group centres
using Mahalanobis distance (i.e., units of within group variance, so 16
= 4 S.D. of within group variation). (B) Axes shown first two canonical
discriminant function scores (c1, c2 for DF1, DF2 respectively, n =
61). Dystonia sub-groups differ from healthy controls in directions which
are distinct from each other. Each eigen-function represents a pattern
(Fig. 9).

Fig. 9. Reconstruction of Dystonia using patterns of neck muscle
shape. Sub-types of dystonia can be reconstructed from three signif-
icant eigen-patterns of neck muscle shape shown in order of signifi-
cance. Green is sample mean principal component. Yellow and Blue
show respectively +0.5 and +1 standard deviation of the eigen function.
Image left shows anatomical left. DF1 shows the right muscles of the
neck compressed and all muscles compressed to the skin. DF2 shows
enlargement, fattening of left splenius. DF3 shows a squashing of all
muscles to the skin, more compression on left side, but more symmetri-
cal than DF1.

C. Does Dystonia Cluster Naturally Into Sub-Groups?

Using neck segment boundaries alone, the 35 Dystonia par-
ticipants clustered optimally into three groups (Fig. 7A), using
both Analysis Mode and Testing Mode. Given higher SVM clas-
sification, Analysis Mode was selected for descriptive clustering
and pattern analysis. The mean boundaries of these groups show
‘right’ asymmetry (Dystonia 2), ‘left’ asymmetry (Dystonia1)
and ‘deep’ segments with a large gap between skin and muscle

TABLE IV
POSTURE ASSOCIATED WITH NECK EIGEN-PATTERNS (STRUCTURE

MATRIX). SHOWS JOINT ANGLES ASSOCIATED WITH THREE DISCRIMINANT
EIGEN-FUNCTIONS. DF1 ASSOCIATES WITH THE WHOLE BODY LEANING

RIGHTWARDS, THE HEAD TILTING DOWN AND TO THE LEFT, THE LEFT
SHOULDER RAISED THE RIGHT WRIST COCKED. DF2 ASSOCIATES WITH

THE WHOLE BODY LEARNING RIGHTWARDS. DF3 ASSOCIATES WITH RIGHT
ARM OUT, THE HEAD TILTED TO THE RIGHT, THE LEFT KNEE BUCKLED, AND

THE RIGHT FOOT ROLLED OUT

(Dystonia 3), (Fig. 7). A large gap could represent a thicker fat
layer or could represent altered pitch of the head. The right/left
asymmetry could result from a tilted head (roll), a turned
head (yaw), an elevated shoulder, a laterally shifted neck or a
combination.

D. Can Dystonia be Reduced to Statistically Significant
Eigen-Patterns of Neck Muscle Boundaries?

Four groups can be discriminated by a maximum of 3 eigen-
functions. Having reduced the segment boundaries to 100 prin-
cipal components, the feature selection procedure selected 15
components to predict group membership (Dystonia 1-3, Con-
trol) robustly and reconstructed group membership correctly at
85.2% using LOO classification.

Discriminant function analysis of the 61 case× 15 component
matrix revealed three significant eigen-functions (DF1, DF2,
DF2, p= 1.1× 10-11, p= 7.3× 10-7, p= 0.0004, Fig. 8). Fig. 8A
shows that with a separation of 16 units of mahalanobis distance
(i.e., 4 S.D of within group variance), Dystonia3 (‘deep’) differs
substantially from Dystonia 1-2 and Control. At 13.5 units, Dys-
tonia 1 ‘left’ differs substantially from Dystonia2 and Control
whereas Dystonia2 ‘right’ differs from Control by only 8 units
(Fig. 8A). Thus we expect ‘deep’ to represent the largest pattern
of difference from controls.

The three discriminant functions (DF1-3) represent the sig-
nificant dimensions separating the groups (Fig. 8B) and those
functions also represent patterns of altered neck muscle shape
distinguishing the groups (Fig. 9).

The first dimension (DF1) provides an axis separating
Dystonia3-‘deep’ from Dystonia 2-‘right’, with Dystonia1 and
Controls in the middle (Fig. 8B). DF1 as a patterns shows super-
ficial movement of all structures, and rightwards displacement of
the midline and a relative depth-wise compression of the right
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muscles (Fig. 9B). Correlation of muscle areas (calculated as
percentage area of all segments) with DF1 at (p < 0.05) shows
reduced area of right Splenius (r = − 0.47, p = 0.00014),
right spinalis capitis (r = − 0.47, 0.00015), right trapezius
(r = − 0.43, p = 0.00046) and increased area of left splenius
(r = 0.41, p = 0.001), left spinalis capitis (r = 0.3, p = 0.002)
and left spinalis cervicis (r = 0.28, p = 0.027).

The second dimension (DF2) provides an axis proceed-
ing from all Dystonia groups (negative) to controls (positive)
(Fig. 8B). As a pattern, DF2 shows asymmetric enlargement
of the left muscles and compression of the right muscles, but
no general superficial movement or sideways displacement of
the midline (Fig. 9). DF2 is associated with reduced area of
right splenius capitis (r = −0.34, p = 0.008). DF3 shows
superficial shift of all structures, leftward displacement of the
midline (Fig. 9) and is associated with significant reduction of
left muscles and enlargement of right muscles.

E. Correspondence Between Neck Muscle Patterns
and Whole-Body Posture

The Dystonia sub-groups, clustered from neck muscle bound-
aries alone are associated with patterns of whole body standing
posture. The median standing postures of these groups (Dystonia
1-3, Control) show differences in whole body truncal alignment
and head turn which are described in the legend. Univariate
ANOVA of joint angles confirms the most significant difference
between groups lies in whole body frontal lean to the right (Right
AnkleAngle_y, p = 0.0005), left head tilt (AtlantoOccipitalAn-
gle_y, p = 0.003) and head pitch (AtlantoOccipitalAngle_x,
p = 0.01).

The discriminant neck muscle eigen-patterns associate with
postural joint rotations. The associations with posture give
validation and explanation to the neck muscle eigen-patterns.
As shown in Table IV, DF1 is associated with whole body
lean rightwards, head looking downwards (pitch/extension), left
shoulder elevation, head turning leftwards (yaw) and right wrist
curled (extension). DF2 is associated with whole body lean
leftward and has little association with head-neck rotations.
DF3 is associated with right upper arm elevation (abduction),
head tilt rightwards (roll), left knee inward and right foot roll
(supination).

This whole-body motion analysis, provides validation that
dystonic patterns of neck muscles identified from US images,
have functional correlates in the standing posture.

F. Comparison of Diagnosis by US With Diagnosis
by Posture

Classification of clinical condition (dystonia v control) by
neck muscle boundaries was superior to classification by stand-
ing posture (Table III). Using the SVM, with LOO cross val-
idation (n = 61), we provide a comparative classification of
condition, sex and age using whole body motion data. From
the 51 components of joint rotation (17 joints × 3 degrees of
rotation), the SVM classified condition with lower accuracy
than the US based classification, sex with higher accuracy and
could not predict age (Table III). These results confirm the US

images of the neck provide a better basis for diagnosing cervical
dystonia than body posture.

IV. DISCUSSION

A. Contribution of This Study: The Main Results

This study reports the first application of deep learning to
the segmentation, analysis and visualization of axial neck US
images to participants with cervical dystonia. From a sample
of 35 participants with cervical dystonia, and 26 age matched
controls, we classified image pixels, extracted neck muscle
boundaries, and tested ability to classify Dystonia, sex or age
from muscle boundaries. We further clustered dystonia partic-
ipants into sub-groups (Dystonia 1-3) identified the significant
eigen-patterns, reconstructing dystonia and related those eigen-
patterns to posture.

The most salient findings are: -
i) Cervical dystonia can be discriminated from age matched

healthy controls, using an axial US image of the neck mus-
cles. Leave-one-out classification of Dystonia v Control
using SVM was correct at 70% (Table III)

ii) Cervical dystonia is associated with visible, explainable
patterns of neck muscle shape (Fig. 7, Fig. 9). This sample
showed optimally three dystonia sub-groups, resulting
in three significant eigen-patterns of neck muscle shape
(Figs. 7, 9).

iii) Each pattern showed characteristic changes in muscle
depth, midline asymmetry-curvature and left-right mus-
cle imbalance (Fig. 7, 9). The first (DF1) is associated
with a postural pattern of head pitch, head turn, shoulder
elevation and truncal tilt (Fig. 10, Table IV). The second
(DF2), associated most strongly with truncal tilt. The third
(DF3) associated most strongly with head tilt.

iv) Segmentation is accurate enough to guide injections to
specific muscles (Table II).

v) Supervised deep learning of US muscle images, can en-
code information with a veracity exceeding the manual
annotation of its human supervisors (Table III).

B. Rationale for Methods of Analysis

This focus of this paper is primarily scientific. In other
words, do transverse ultrasound images of the neck, obtained
from an ordinary ultrasound machine, contain the information
necessary to inform understanding and diagnosis of dystonia
and to aid delivery and monitoring of treatment by botulinum
toxin injections? The development of methods for annotating
images, training neural networks and evaluating deep learning
architectures to segment muscle boundaries in US images of the
posterior neck is fully discussed in our preceding work [24]. The
technical challenge of segmenting muscles is already solved [24]
although as shown in supplementary material (SM) this paper
demonstrates considerable improvement since our previously
published work [24]. Here, we apply the deep learning methods
developed in our lab and we test a series of hypothesis con-
cerning the value of neck muscle boundaries for understanding
dystonia (Fig. 2). By comparison with classification of sex and
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Fig. 10. Median posture Dystonia sub-groups facing the reader.
Shows joint angles, median from all linked US-Vicon trials for each par-
ticipant, averaged across all participants in group. This head referenced
presentation shows the kinematic chain reconstructed from the head
segment which is presented vertical and forward looking for each group.
The red lines show the axis of extension and typically points to the right
of the participant. The green lines show the axis of frontal rotation and
typically points forwards. The blue lines show the axis of axial rotation
and point along the segments long axis which is typically vertical. For
the head, red, green blue axes indicate pitch, roll and yaw. For the trunk,
red green and blue axes indicate forward lean, rightwards lean and right
turn. Dystonia2 show neck deviated to their right relative to head, trunk
deviated to their left relative to neck and back to the midline. Dystonia1
shows neck deviated to their left relative to head, trunk also deviated to
their left. Dystonia 3 shows neck deviated to their right relative to head
and trunk deviated further to their right.

age, our results demonstrate that US images of the neck muscles
contain the information necessary to visualize, understand and
potentially diagnose cervical dystonia (Table III, Figs. 7–11).

Having tested segmentation and classification of Dystonia
using 60-fold cross validation (‘Testing Mode’) we sought to
maximize the accuracy of analysis and visualization of dystonia.
Our switch to use of ‘Analysis Mode’, for description and ex-
planation of the predicted boundaries is justified by the purpose
of the analysis. The purpose of cross-validation is to answer
the question “how well do you expect your system to perform
out in the real world on unseen data?” We have answered that
with 60-Fold cross-validation. The purpose of our hypotheses
is to see in optimal circumstances how dystonia manifests in
ultrasound and how dystonia manifests in cross-sectional shapes
of muscles. For that we used clinical labels to select (using SVM)
the best training Mode. The clinical labels were not used in the
process of annotation, training, validating and testing the neural
networks. In practice, analysis and visualization of Testing Mode
gave similar results to those presented, but the quality of the
reconstruction of groups was lower (∼72% rather than 85%,
meaning the description was less accurate or complete.

C. Scientific and Clinical Value of Results

Cervical dystonia is a neurological disorder of sensorimotor
integration characterized by abnormal postures of the head and
neck. Abnormal involuntary dystonic activation of neck muscles
is a primary symptom, but is a direct cause of pain, abnor-
mal whole-body posture, and constraints on movement. Neck
muscles traverse the primary link between the head (which is

Fig. 11. Examples of Dystonia sub-groups. Each block contains
the three example cases closest to the group center using discriminant
function scores from Fig. 8. Each case shows the US image (above) and
predicted labels (below).
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the source of visual-vestibular head referenced sensory frames,
location of sensory integration and motor planning) and the
mass distribution of the body (trunk, upper and lower limbs).
Abnormal action of neck muscles causes local changes in head
and shoulder position and to maintain vertically aligned balance,
these local changes require compensatory changes in whole
body posture of the trunk and limbs. Neck muscles provide
sophisticated proprioceptive sensation and have a primary role
in integration of head-referenced with ground referenced coor-
dinate frames which is also subject to interference by abnormal
neck muscle activity. Altered body posture and sensory feed-
back is a consequence of abnormal neck muscle action. Thus,
analysis of the neck muscles provides direct insight into cervical
dystonia.

US imaging analysis can quantify dystonic muscle attributes
(Figs. 8, 9, 10). US does not require participants with movement
disorders to remain still and avoids limitations of MRI. US is
relatively low cost and available in clinics.

The confidence measure provided by this neural network
analysis (Fig. 4) gives inexperienced operators feedback to
improve the quality of their US probe location and image. This
analysis within clinic could facilitate communication between
patient and clinician and would inform patients about their neck
muscles and their specific dystonia. The objective recording of
images and analysis provides a potential tool for guiding and
recording the location of injections, for monitoring change and
improvement with treatment, and thus is expected to improve
the patient experience. In addition, our findings reinforce the
potential critical role in CD of deep neck muscles, which have
previously not been amenable to assessment or treatment.

D. Relationship to Previous Work

The application of machine learning and specifically deep
learning to analysis of ultrasound images of muscle is rare
[20], [22], [26]. While under-developed, the domain of muscle
diagnosis is valuable since unlike visual observation, manual
palpation or surface electromyography, ultrasound can see mus-
cles deep within the body.

Segmentation is the foundation of muscle-specific analysis
and recent methods providing segmentation of the neck muscles
include computer vision [23] and deep learning approaches [24].
As shown in Supplementary Material, this study applies the most
recent deep learning methods for this application. Following
[24], this study uses direct manual annotation of US images
to provide training labels. This approach allows us to develop
training datasets for participants with a movement disorder who
cannot remain still in an MRI machine [24]. Using metrics of
JI and HD (Table I), the accuracy of segmentation achieved
is consistent with existing benchmarks [23], [24]. The metric
MHD (Table I) shows boundaries are typically accurate 1.9 ±
1.8 mm, and for deep muscles this accuracy allows for injection
at average precision more than 90% for target sizes of several
millimeter (SM Fig. A) and a margin from the muscle boundary
of 3.7 ± 1 mm (Table II). These findings have important clinical
implications, as freehand injections of botulinum toxin have
been shown to have potentially suboptimal accuracy [27].

Prior to this study, it was an open question whether infor-
mation contained within images of the neck muscles was of
any value for diagnosis and understanding of cervical dystonia.
This study affirms the US information content with respect to
objective clinical labels (control, dystonia) and with respect to
motion analysis.

Manual annotations provide only an approximation to the
true muscle boundaries. With training, neural networks should
learn image features that correlate consistently with the labels.
In principle, machine learning should discard random error in
human labels, and converge to the on-average correct answer
within and between labelers.

The exciting result reported here (Table III, Fig. 6) is that
these neural networks out performed their supervisors: we
urge the reader to study SM Fig. 6 which shows very nice
examples. These results confirm that neural networks encode
information in the data consistent with supervisory labels, but
which reduces the random error and non-generalizable compo-
nent of the labels. These results (Table III) validate altogether,
the method of labelling, the method of segmentation and the
information content of ultrasound muscle images regarding
dystonia.

This study demonstrates proof of concept of the feasibility
of US imaging analysis of the neck muscles for understanding
and diagnosing cervical dystonia. Figure 11 shows examples of
dystonia sub-group categorization on the basis of eigen function
scores and illustrate the immediate diagnosis that could be
possible in the clinic. This proof of concept motivates further
development of US technology. If deployed widely in clinics,
there is potential to collect large quantities of data from the
estimated 18,000 adults with this condition in the UK [1].
Combined with further exploration of neural network methods,
there is potential for this tool to become very robust, and for
a new domain (automated ultrasound muscle analysis) to be
established. Evaluation of the effect of therapeutic interventions
e.g., BoNT on the patterns of change on US would also be critical
to determine the utility of this tool to monitor changes in dystonia
severity, and to evaluate its utility as a potential biomarker.

E. Limitations

The current work contains several limitations. First, we have
a relatively small number of cases, which may not encom-
pass the full and expanding spectrum of neck movements seen
in cervical dystonia [10] However we contribute our data to
address the shortage of publically available examples (DOI:
10.23634/MMUDR.00624643). Further validation in a larger
and independent clinical cohort would be desirable. Using more
data, a clinical classifier would most logically be embedded
within the neural network architecture. Second, this analysis is
limited to an axial image at level C4. A larger number of probe
locations/orientations and muscle images would be desirable.
Third, this work predicts and interprets muscle shape, excluding
prediction of texture and muscle activity. Further work will
exploit the ultrasound information content revealing muscle
function [20], [21] as well as geometry for a larger range of
probe locations and orientations. We would expect segmentation
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accuracy, boundary analysis and classification of clinical condi-
tion, all to depend to some extent on the quality of the image. We
recommend to those readers replicating and extending our work,
to choose an ultrasound machine, probe and machine settings
providing the best possible image quality at full depth down to
the vertebra.

V. CONCLUSION

This study provides the first application of deep learning
to US imaging of the neck muscles in cervical dystonia and
provides an automated objective visualization (c.f. Video) and
subsequent pattern analysis of neck muscle boundaries. These
results demonstrate that muscle boundaries extracted from a
single axial image of the neck muscles have the information
content to discriminate cervical dystonia from healthy controls
and to visualize and understand the dystonic pattern of neck mus-
cles. This proof of concept demonstrates potential for a clinical
tool to provide objective online diagnosis of cervical dystonia,
guidance and objective logging of injection sites, and objective
monitoring of the effect of treatment with minimal requirement
for operator expertise and minimal burden on clinical time. This
work supports a case for further evaluation of an automated
US-based tool in a larger longitudinal dataset.
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