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Abstract—For asymptomatic patients suffering from carotid
stenosis, the assessment of plaque morphology is an important
clinical task which allows monitoring of the risk of plaque rupture
and future incidents of stroke. Ultrasound Imaging provides a
safe and non-invasive modality for this, and the segmentation
of media-adventitia boundaries and lumen-intima boundaries of
the Carotid artery form an essential part in this monitoring
process. In this paper, we propose a novel Deep Convolutional
Neural Network as a fully automated segmentation tool, and its
application in delineating both the media-adventitia boundary
and the lumen-intima boundary. We develop a new geometrically
constrained objective function as part of the Network’s Stochastic
Gradient Descent optimisation, thus tuning it to the problem at
hand. Furthermore, we also apply a novel, bimodal fusion of
envelope and phase congruency data as an input to the network,
as the latter provides an intensity-invariant data source to the
network. We finally report the segmentation performance of
the network on transverse sections of the carotid. Tests are
carried out on an augmented dataset of 81,000 images, and the
results are compared to other studies by reporting the DICE
coefficient of similarity, modified Hausdorff Distance, sensitivity
and specificity. Our proposed method is shown to yield results of
comparable accuracy over this larger dataset, with the advantage
of it being fully automated. We conclude that Deep Convolutional
Neural Networks provide a reliable trained manner in which
carotid ultrasound images may be automatically segmented, using
envelope data and intensity invariant phase congruency maps as
a data source.

Index Terms—Ultrasound, Segmentation, Deep Convolutional
Networks, Carotid Artery, Phase Congruency.

I. INTRODUCTION

A
CCORDING to statistics presented by the American

Hearth Association, cerebrovascular disease is amongst

the leading causes of death in the United States, with an

estimated 7 million Americans above 20 years of age having

had a stroke between 2013 and 2016 [1]. In 2016 alone,

stroke accounted for approximately 1 in every 19 deaths, and

it thus ranks as the fourth leading cause of disease mortality

in the United States after heart disease, cancer and chronic

lower respiratory disease [1].

The underlying cause of these diseases is atherosclerosis - a
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Fig. 1: [Top] An example of a healthy carotid artery and

[Bottom] an example of an artery with an accumulation of

atherosclerotic plaque.

vascular pathology which is characterised by the thickening

and hardening of blood vessel walls [2]. When fatty substances

such as cholesterol, triglycerides, or cellular waste products

such as calcium and fibrin, start to accumulate on the inner

linings of an artery, they cause a progressive narrowing of

the lumen and consequently restrict the free flow of blood

[3]. This is shown in Figure 1. The carotid is one such artery

which is susceptible to such atherosclerotic deposits - or

plaque. Located on either side of the neck, it has the vital

function of supplying blood to the brain and to the muscles

in the face [4]. When atherosclerotic plaque ruptures in the

carotid artery, there is a significant risk that the blood clot

which forms will eventually travel upstream to occlude a

narrower vessel in the brain - ultimately leading to a stroke [4].

Localisation and grading of the severity of a stenosis, forms a

large part of the diagnostic process that clinical practitioners

use to assess the risk of rupture. Techniques such as Digital

Subtraction Angiography (DSA) and Magnetic Resonance

Angiography (MRA) are presently considered to be the gold

standard in assessing carotid disease severity [5]–[7]. However,

they are also considered to be somewhat invasive, and pose

risks to the patients due to the risk of emboli or nephrotoxicity

arising from the contrast agent used [7]. Ultrasound imaging

has therefore widely gained popularity due to its low cost
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and and non-invasive nature, permitting a quick assessment

of vessel geometry, degree of stenosis, as well as of plaque

morphology [4], [5], [7]. Classically, the intima-media thick-

ness (IMT) has been the clinical measure used in Ultrasound

imaging to monitor plaque progression and burden [8], [9].

However, given that plaque progresses faster along the length

of the vessel as opposed to in thickness, it may be better

indicated to monitor plaque progression in 3D, as this would

provide a better indication of sites which are at risk of rupture

[9].

In order for accurate measurement of vessel geometry to

take place - be it for later three dimensional reconstruction

of the artery or for further assessment of plaque burden

using metrics such as Total Plaque Volume (TPV) or Vessel

Wall Volume (VWV), two specific wall interfaces need to

be identified: the media-adventitia boundary (MAB) and the

Lumen - Intima boundary (LIB) [10]. Both these interfaces

need to be delineated in a robust and reproducible manner,

and manual methods have been shown to be tedious, labour

intensive [10], and prone to variability [11]. Thus, considerable

attention has been devoted to developing automated or semi-

automated carotid segmentation algorithms which facilitate

this process.

II. RELATED WORK

Previous literature shows certain patterns in the develop-

ment of the carotid segmentation techniques, allowing us

to categorise them by the nature of their approach. The

first distinction is that between addressing the segmentation

problem on longitudinal sections of the carotid, or segmen-

tation on transverse sections of the carotid. The majority of

studies available address the former [10], since this type of

segmentation then easily lends itself to evaluating the intima-

media thickness. A comprehensive review by Molinari et al.

[8] addresses some of the major works on the subject matter.

A. Segmentation in Longitudinal Images

A popular approach for longitudinal carotid segmentation

has been through using edge tracking or gradient-based tech-

niques, as shown in a number of studies [12]–[14]. In the

longitudinal section, the common carotid artery may be con-

sidered as a dark region surrounded by two bright line patterns

- the near wall and the far wall of the artery [8]. By considering

the intensity profile, or the intensity gradient across a section

cutting across the artery, the adventitial walls may be clearly

identified, and the IMT estimate may be obtained as the

distance between these two points [12]–[14].

Another widely used segmentation approach is based on Ac-

tive Contours, or Snakes. This entails having a set of vertices

connected by line segments [8] which dynamically move to

settle around the desired contour, under the action of defined

forces. Snake models however have issues that effect their

performance. They require correct fine tuning of parameters

for them to be correctly attracted to edges; they depend on the

initialisation of the snake model, and they are also prone to

leaking through edges which are not clearly defined [8]. Other

segmentation approaches for longitudinal sections described

in [8] include the use of Dynamic Programming, Nakagami

modelling, the use of the Hough Transform, and the use of

motion estimation and Bayesian frameworks.

B. Segmentation in Transverse Images

A number of studies have also addressed the problem

of segmenting carotid arteries in the transverse section, us-

ing either native 2D images or else from transverse slices

extracted from 3DUS images. In 2009, Seabra et al. [15]

proposed a semi-automatic technique for plaque segmentation

in transverse images based on a manually initialised 2D

active contour algorithm. Another study by Yang et al. [16]

proposed to use active shape models to segment both the

MA and LI interfaces. Ukwatta et al. [10] proposed a novel

semi-automated technique based on a level-set method to

segment the MA and LI interfaces. The operator was asked

to provide anchor points as high-level domain knowledge, and

this together with the incorporation of local and global image

statistics with boundary separation-based constraints allowed

accurate segmentation of the MA and LI interfaces. Other

segmentation approaches for transverse sections included the

use of deformable models [11], [17], modified Cohen Snakes

[18] and a Star algorithm improved by Kalman filtering [19].

Alternative methods have been proposed to segment the carotid

structures or plaque morphology natively in three dimensions.

Gill et al. [7] proposed a semi-automatic method based on a

dynamic balloon model in 2000. In 2010, Solovey et al. [20]

also proposed an LI interface segmentation algorithm on native

3D images based on a level-set method. In 2015, Hossain

et al. [9] presented a semi-automatic method for segmenting

both MA and LI interfaces using a distance regularized level

set algorithm, with a novel stopping criterion and a modified

energy function.

One notes further that, particularly in the case of transverse

segmentation, studies have aimed to segment either the LI

interface alone [7], [11], [17], [20]–[22], or else both the

LI and the MA interfaces [9], [10], [16], [23]. The latter

approach has increasingly gained interest, due to new volu-

metric parameters such as vessel wall volume (VWV) and

total plaque volume (TPV) which have been proposed to

characterise plaque burden [24]. Although these parameters

have been used in a number of research studies, they have

not yet gained widespread clinical acceptance due to certain

challenges, amongst which are the tediousness and inter/intra-

observer variability when manually delineating the LI and

MA interfaces [9]. Studies have therefore sought to develop

automatic or semi-automatic algorithms to segment these

interfaces.

C. Our Contribution

Deep networks have recently garnered much interest, as

they have driven forward the state-of-the-art in computer

vision tasks such as image classification, object detection and
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segmentation [25]. Such advancements have also been picked

up by the medical imaging research community. The survey by

Litjens et al. in 2017 [26] provides a comprehensive review

of studies employing Deep networks for a variety of tasks

and application areas within medical imaging. Litjens et al.

review over 300 contributions since 2012, with approximately

20 of these being contributions within the ultrasound imaging

field, and in turn 6 of these being related to cardiac / vascular

applications. None of these however treat the subject of carotid

segmentation. The study by Menchon-Lara et al. in [27]

addresses longitudinal carotid ultrasound segmentation using

a single layer perceptron network preceded by an autoen-

coder, for the purpose of intima-media thickness estimation.

The segmentation of the MAB interface in transverse and

longitudinal carotid images using deep convolutional neural

networks is thus a novel application, proposed by ourselves

in our preliminary work reported in [28]. In [28], we evaluate

various network configurations to find the optimal network size

and depth, as well as the optimal filter dimension. We further

propose a novel fusion of envelope and phase congruency data

as an input to the network, as the latter provides an intensity-

invariant data source to the network.

In this work, we propose a novel, geometrically constrained

Deep Convolutional Neural Network (DCNN), as well as

its novel application to concurrently segment both the MAB

interface and LIB interface on a larger data set of symptomatic

and asymptomatic transverse carotid ultrasound images. The

segmentation of both MAB and LIB is necessary if the total

plaque burden contained in between these two interfaces is to

be quantified. We propose a new geometrically constrained

objective cost function which is constructed and tuned to-

wards the segmentation of carotid structures. An enhanced

data augmentation strategy is also employed to improve and

enlarge further the size of the dataset. Finally, we present

an extensive set of experiments to test the performance of

our technique, and we compare it to the performance of

other methods by reporting the DICE coefficient of similarity,

modified Hausdorff Distance, the Sensitivity and Specificity.

III. METHODS

A. Study subjects and Image Acquisition

A total of fifty transverse ultrasound images were obtained

from across 15 subjects, having carotid arteries which display

varying degrees of stenosis of between 0% (negligible) and

60% (European Carotid Surgery Trial ECST Criteria). Sub-

jects had ages spanning between 60 to 80 years. Subjects

provided signed consent to participate in the study, which

was in turn approved by the University of Malta Research

Ethics Committee. The 2D ultrasound images were acquired

using an Ultrasonix Sonix RP ultrasound machine (Analogic

Corporation, Peabody, MA, USA), equipped with a 14 MHz

L14-5 Linear Probe. Scanner settings were set as follows:

Frequency: 6.6MHz, Depth: 3.0cm, Sector width: 100%, Gain:

51%, Dynamic Range: 92dB, Persist Setting: 0, Map Setting:

9, Chroma Setting: 0; Power Setting: 0; and were kept constant

across all subject acquisitions. Subjects were asked to lie

supine on a couch, and the probe was placed against the neck

while an image sequence was acquired for transverse carotid

sections. The probe was kept in the same spatial location while

the image sequence was acquired at a rate of 24 Hz.

B. Data Pre-processing

Image Pre-Processing. All data acquired from the Sonix

RP Ultrasound Scanner was saved in raw RF format and

transferred to a workstation for data processing with MATLAB

(Mathworks, USA). For the creation of B-mode images, a

Hilbert transform was used to demodulate the amplitude infor-

mation from the RF sinusoids. The amplitude data was then

passed through a logarithmic function to adjust for dynamic

range, and then decimated by a factor of four. The resulting

B-mode image was scan converted to obtain correct image

geometry. A median speckle reduction filter was then imple-

mented as per methodology described in [29], and applied over

all the B-mode images to reduce the effect of speckle noise.

Manual Segmentation. All the acquired transverse ultrasound

images were manually and independently traced with the

assistance of 2 radiographers, and used as labelled training

data for the DCNN. Each radiographer manually traced the

image sets twice, with a period of 2 weeks in between sessions.

The radiographers traced both the MAB and LIB in the

transverse sections of the carotid arteries.

C. Data Augmentation.

An abundance of training data is an important prerequisite

for correctly training a neural network. If the data is scarce,

simple distortions such as rotations, translations or skewing,

may be applied to the original training data as an easy way

of expanding the size of the data set [30]. In the case of the

ultrasound data sets, transverse image sets, as well as the corre-

sponding labelled datasets, were first scaled twice by a factor

of 1.2 and 1.5. The scaled images were then cropped back

to their original dimension. Each image, having dimensions

of 256 x 256 pixels was then patch-wise sampled 9 times

along an equally spread 3x3 grid centred about the middle,

using a 120 x 120 pixel window with a constant overlap

between each region. Finally, the images were rotated through

90, 180 and 270 degrees. All the additionally generated image

sets and corresponding labels were concatenated into separate

augmented dataset-pairs. From 15 different patients, originally

having a total of 50 images each, the dataset was augmented

to a total of 81,000 images.

D. Extracting Phase Congruency Information

The presence of speckle noise, low contrast, and local

changes of intensity make ultrasound image segmentation a

fairly difficult problem [31]. Methods which seek to delineate

a contour of interest based on a globally set intensity threshold

are often problematic - particularly because relevant contours

might not be visible due to tissue-dependent attenuation,

transducer orientation or structure depth [32]. There is also

another inherent variable which is the end user. Preferences
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on intensity gain settings vary across end-users and across

machines, thus making it difficult to find optimum parameter

values which apply across the board. It is therefore desirable to

approach the ultrasound segmentation problem using features

which are intensity-invariant and robust to attenuation. The

use of phase information provides one such possibility, since

phase is theoretically amplitude-invariant, and preserves the

structural information of a signal [31], [32].

In 1987, Morrone et al. [33] proposed a model of feature

perception called the local energy model. The said model

postulates that features may be perceived within an image,

at the points where the Fourier components are maximally in

phase. At the point of an edge transition, all the constituent

Fourier components of a square wave are exactly in phase -

and hence the phase congruency is said to reach a maximum

value. More specifically, we note that the phase is 0� at positive

edges, and 180� at negative edges. At all other points in the

square wave, the phase congruency will be low [34]. In their

work, Morrone et al. [33] define phase congruency as follows:

PC(x) = max
φ̄(x)2[0,2π]

P

n An cos(φn(x)� φ̄)
P

n An
(1)

where An is the amplitude of the nth Fourier component of a

one-dimensional signal I(x) =
P

n Ancos(φn(x)), and φn is

the local phase. The value of φ̄(x), over which the equation

is maximised, is the amplitude weighted mean local phase

angle of all Fourier components at the point being considered.

Venkatesh et al. [35] however show that points of maximum

phase congruency may also be found by searching for peaks

in the local energy function, and that the energy function is

equal to the phase congruency scaled by the sum of the Fourier

amplitudes:

E(x) = PC(x)
X

n

An (2)

One clearly notes therefore that the local energy model is

directly proportional to the phase congruency function, and

thus, peaks in local energy correspond to peaks in phase

congruency.

Kovesi [34] proposed a more convenient method of computing

phase congruency via the local energy model, by convolving

the signal with a filter bank of quadrature logarithmic Gabor

filters. These allow for an arbitrarily large bandwidth filter to

be constructed, while still maintaining a zero DC component

in the even-symmetric filter. The log Gabor function has the

following transfer function on the linear frequency scale [34]:

G(ω) = exp�
(log(ω/ω0))

2

2(log(κ/ω0))2
(3)

where ω0 is the filter’s centre frequency, and the term κ/ω0

ensures a constant shape-bandwidth ratio by keeping it con-

stant over varying ω0. If the even-symmetric (cosine) and

odd-symmetric (sine) wavelets are denoted by Me
n and Mo

n

respectively at a scale n, then, given signal I , the responses

of each quadrature pair of filters may be seen as follows:

[en(x), on(x)] = [I(x) ⇤Me
n, I(x) ⇤M

o
n] (4)

The amplitude and phase at a given scale n is therefore given

by the following equations:

An(x) =
p

en(x)2 + on(x)2

φn(x) = arctan 2(en(x), on(x))
(5)

where An and φn are response vectors defined at each point

x in the signal. The response vectors form the localised

representation of the signal, and may be used in the same

way that Fourier components are used to calculate phase

congruency [34]. Thus, given that:

PC(x) =
E(x)

P

n An(x)
(6)

and that:

E(x) =
p

e(x)2 + o(x)2 (7)

it follows that:

PC(x) =

p

(
P

n en(x))
2 + (

P

n on(x))
2

P

n

p

en(x)2 + on(x)2
(8)

To mitigate the problem of noise resistance, Kovesi further

suggests to modify Eq. (7) as follows:

PC(x) =
E(x)� T

P

n An(x) + ε
(9)

where ε is a small positive constant which is included to avoid

dividing by zero, and T is a noise threshold.

The phase congruency calculation for a one dimensional signal

has required the formation of a 90 degree phase shift of

the original signal using odd-symmetric filters [34]. For the

analysis of two dimensional data, we note that one cannot

construct rotationally symmetric odd-symmetric filters, and

therefore we must apply our one dimensional analysis over a

number of separate orientations, and then combine the result to

obtain a single measure of edge significance [32]. Kovesi et al.

[34] suggested to construct a series of orientable 2D filters by

spreading a Log-Gabor function into 2D. Thus, considering

the one dimensional Log-Gabor filters defined earlier with

geometrically increasing centre frequencies and bandwidths,

we now mask these with an angular Gaussian tuned to a

particular orientation φ0 as follows [32]:

G(ωr,φ) = exp
�

✓

(log(ωr/ωr0))2

2(log(κ/ω0))2
+

(φ−φ0)2

2σ2
φ

◆

(10)

where σφ defines the standard deviation of the Gaussian

spreading function in the angular direction.

From these filters, Kovesi et al. [36] proposes a phase-based

measure called feature asymmetry (FA), which combines
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(a) B-Mode image (b) Phase Congruency Map

Fig. 2: A Transverse B-Mode image of a Carotid Artery, and

the corresponding Phase Congruency Map

the orientation information and identifies step-like edges.

The 2D FA measure proposed by Kovesi was first applied

to echocardiography images by Mulet Parada et al. in

[32], whereby it was extended to a 2D + time measure for

boundary detection. Their method showed an improvement

in the number of spurious feature responses due to speckle.

We opt to use instead the maximum moments of phase

congruency, proposed also by Kovesi in [37] as an indication

of feature significance. The maximum moment of phase

congruency is obtained by computing the Phase Congruency

Covariance Matrix for each point in the image as follows:

G =

 P

PC2
x

P

PCxPCy
P

PCxPCy

P

PC2
y

�

(11)

where PCx and PCy are the x and y components of the

Phase Congruency PC(x), for each orientation. The maximum

moment may be obtained by taking the maximum singular

value of the covariance matrix G. This provides us with a

Phase Congruency Map, an example of which may be noted

in Figure 2.

E. Deep Convolutional Neural Networks

A DCNN is a multilayer perceptron network which can

exploit the stationary nature of natural images by learning

features on locally connected pixels. The convolutional layers

learn small features from small image patches sampled from

the whole image [38]. The sub-sampling layers are used

to reduce the computational complexity by summarising the

statistics of a feature over a region in the image [38]. Our im-

age segmentation task may be posed as a pixel-by-pixel clas-

sification problem, whereby a decision is made for each pixel

- classifying it into ’foreground’ or ’background’. The output

of the network will therefore be a segmentation mask, ideally

matching the manual segmentation (ground truth) provided by

the expert. This may be defined as an optimisation problem,

whereby we attempt to minimize the error between our output

mask and the ground truth, by finding the optimal set of

parameters, θ and b for the objective function below. First,

assume we have a training set {(x(1), y(1)), ..., (x(m), y(m))}
of m training examples:

JO(θ, b) =

m
X

k=1

(hθ,b(x
(k))� y(k))2 (12)

The objective function JO(θ, b) is the sum of differences

between the predicted output segmentation mask hθ,b(x
k) and

the ground truth labels yk, over all different training examples

k = 1, 2, 3...m. The mask h(x) is the result of a feed forward

operation carried out through the network. Referring to Figure

3, we note that the full DCNN is constructed using two parts:

an encoder section and a decoder section. The encoder is

built using stacks of convolutional and subsampling layers,

whereas the decoder is built using stacks of convolutional

transpose layers and up-sampling layers. Typical CNNs nor-

mally resemble just the encoder structure, with their final layer

being fully interconnected to a one-dimensional layer of nodes,

before feeding on to the output. Such CNNs however have the

inherent drawback of loss of image resolution, arising partially

out of the convolution operation in the convolution layers,

and partially out of the subsampling process designed to sum-

marise the feature space. Since we intend to train our network

in an end-to-end fashion, a decoder is appended to the end of

the encoding CNN, to expand the extracted features back to

full resolution, while concurrently calculating a probabilistic

mask. The feedforward equation for a particular layer l in the

encoder is provided by the following deterministic function

g(l):

z
(l)
j = g(l)(z

(l�1)
i , w

(l)
ij , b

(l)
j )

= ψ

 

ρ

 

I
X

i=0

w̃
(l)
i,j ⇤ z

(l�1)
i + b

(l)
j

!!

(13)

where z
(l)
j , j 2 [1, F ] is the jth output feature map for layer l,

calculated by convolving the trainable convolution filter w
(l)
ij

with the input to that layer z
(l�1)
i . The index i denotes the

number of input maps available from the preceding layer,

F denotes the number of filters, b
(l)
j denotes the trainable

bias term for layer l, w̃ denotes the flipped version of w
[39], and ⇤ denotes the convolution operator. The function

ρ(x) denotes the rectified linear activation function (ReLu),

defined as ρ(x) = max(0, x), whereas the function ψ(x)
is used to define the sub-sampling function. Subsampling

functions normally implement either a max pooling function,

whereby the maximum value from the preceding layer of local

connections is passed onwards, or a mean pooling function,

whereby the average is passed onwards to the next layer

instead of the maximum. Within the decoder structure, the

feedforward equation is provided by the function h(l) [40]:

y
(l)
j = h(l)(y

(l�1)
i , w

(l)
ij , b

(l)
j )

= ρ

 

I
X

i=0

w
(l)
i,jΨ(y

(l�1)
i ) + b

(l)
j

!

(14)

where y
(l�1)
i in the first instance would be z from the

preceding encoder layer. Thereafter it would be simply the

output of the previous decoding layer. The function Ψ(x)



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, MAY 2019 6

Fig. 3: A graphical representation of the encoder-decoder structure of the Deep Neural Network.

denotes an up-sampling operation, and the operator refers

to the transposed full convolution. Each layer is once again

followed by a ReLu function ρ(x). At the end of the decoder

network, the number of output maps are reduced to three, and

fed into a softmax classifier, which provides logistic regression

for a three-class problem [38]. The softmax function σ(z) has

the effect of maximising the maximum value of the outputs,

making these close to 1, and the rest close to 0. A graphical

representation of the DNN structure utilised is shown in Figure

3.

F. Modification of the Objective Cost Function

The objective function JO(θ, b) is defined in equation

(13) as the sum of differences between the predicted output

segmentation mask hθ,b(x
k) and the ground truth labels yk,

over all different training examples k = 1, 2, 3...m. The output

segmentation mask hθ,b(x
k) is itself defined as the output from

the softmax function σ(z) at the end of the DCNN. Thus:

(hθ,b(x
(k)) = σ(y

(l)
j ) (15)

where y
(l)
j is defined from equation (16) as being the output of

the network prior to softmax normalisation. In order to tune the

objective function and make it more sensitive to the nature of

the structures that are being segmented, we propose to modify

the objective function with three additional cost terms which

are defined as follows:

Curvature. The radius of curvature at any point on a curve is

equal to the radius of the circular arc which best approximates

the curve at the said point as shown in Figure 4. It is

also defined as the inverse of curvature, and is expressed

mathematically as follows:

R =
1

κ
(16)

where κ is the curvature at a point. If we let the contour

of the artery, from which these penalty terms are going to be

derived, be expressed in the form of a curve in two dimensions

as u = f(v), then the curvature term κ itself may also be

expressed as [41]:

κ =

�

�

�

d2u
dv2

�

�

�



1 +
�

du
dv

�2
�3/2

(17)

The penalty term we propose from the above measure of

curvature κ is is defined as follows:

C(u) = α (max (|κ|� |κ̄|� 0.5, 0)) (18)

In equation (20), α is a scaling coefficient. The absolute

value of κ is used because we may ignore the sign of the

value, which is indicative of the direction of curvature, and

which is not important for computation of the penalty term.

The subtraction of the mean of κ is implemented so that

the penalty term is made negligible if the contour is largely

smooth and without notches, a situation which would generally

yield similar values of κ all throughout the curve. Finally,

we subtract a value of 0.5 because we may ignore curvature

values below this value as simple noise. Noise values below

0.5, which yield negative values after this subtraction are in

fact truncated to 0 by the max function to ensure a 0 penalty

in this case.

Solidity. Solidity is a measure of morphological roughness

and is sensitive to concavities in a shape or structure. It

compares the pixel area of the object to the area of a bounding

reference shape, which in this case would be the convex hull.

Mathematically therefore, it may be expressed as:

SLD =
A(u)

Ac(u)
(19)
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Fig. 4: [Left] A graphical representation of Curvature CA and

CB , where the penalty at CB > CA because the radius of

the osculating circle at CB is smaller than that of CA. [Right]

Curvature CC is of opposite sign due to opposite direction of

deformation.

Fig. 5: A graphical representation of incorrect intersection

between the MA outer boundary and LI inner boundary.

where A(u) is the area of the object and Ac(u) is the convex

area of the shape in question. A solidity of 1 would indicate

a perfectly solid shape with an area which is equal to convex

area. An irregular shape with concavities would present with

a solidity which is < 1 due to the area being smaller than

the convex area. With regards to defining a penalty term,

the media adventitia boundary of the carotid is expected to

be smoothly circular, without any irregular concavities within

the perimeter. Thus we would seek to penalise the objective

function in instances where the solidity of the segmented mask

would again deviate significantly from 1. The cost term we

propose is therefore:

S(u) = β

✓

Ac(u)

A(u)
� 1

◆

(20)

where β is a scaling coefficient and the inverse of SLD is

used to have an increasing term in proportion to increased

concavities in shape.

Intersection. The third penalty term we introduce to the

objective cost function is a term which penalises the instances

whereby the lumen intima boundary would not be contained

within the media adventitia boundary, as is shown in Figure

5. This is in fact a circumstance which may not anatomically

occur, and therefore its occurrence is penalised heavily to

reduce the possibility of the neural network from converging

to such a result. Referring to Figure 5, if we consider the MAB

to be defined as contour C1, the LIB to be defined as contour

C2, and their joint intersection as contour C3, it easily follows

that any occurrence whereby AreaC2 6= AreaC3 should be

penalised. The proposed penalty term is therefore defined as:

I(u) = γ

✓

AreaC2
�AreaC1\C2

AreaC0

◆

(21)

where γ is a scaling coefficient used to scale the normalised

summation of pixels outside C1 to a suitable magnitude of

penalty term.

The overall new objective cost function, JM (θ, b), may there-

fore now be represented in the following manner:

JM (θ, b) =
m
X

k=1

(hθ,b(x
(k))�y(k))2+C(v)+S(v)+I(v) (22)

or alternatively:

JM (θ, b) =

m
X

k=1

(hθ,b(x
(k))� y(k))2

+ α (max (|κ|� |κ̄|� 0.5, 0))

+ β

✓

Ac(v)

A(v)
� 1

◆

+ γ

✓

AreaC2 �AreaC1\C2

AreaC0

◆

(23)

The final intent of a modified objective cost function as

described in equation 25, is to firstly require the network to

train further, if the cost function results in greater, penalised

values, but also to feed back through the backpropagation

algorithm a set node errors observed at the output, such

that the network may direct correction efforts towards the

right filter map nodes further in. Modifying the nature of

the backpropagation algorithm itself is beyond the scope of

this work, and thus a heuristic approach to feeding back

the node errors at the output was implemented, and which

allows different penalty coefficients to be applied locally to

individual output maps. Furthermore, the modified objective

cost function, JM (θ, b), was implemented in the DCNN with

the scaling coefficients α,β, and γ being expressed as a

fraction of the unmodified, original cost function JO(θ, b).
The rationale behind this was to have the scaling coefficients

vary proportionately according to the original cost function,

thus applying heavy penalty terms in the beginning when

the errors were large, and eventually having diminishing

penalty terms when the network was beginning to converge.

The scaling coefficients, α,β, and γ were set, after several

experiments to: α = 0.26JO(θ, b), β = 0.33JO(θ, b) and

γ = JO(θ, b). This allowed for the evaluation of the overall

modified cost function JM (θ, b) as follows, which served to

guide convergence.
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JM (θ, b) =

m
X

k=1

(hθ,b(x
(k))� y(k))2

+ 0.26JO(θ, b) (max (|κ|� |κ̄|� 0.5, 0))

+ 0.33JO(θ, b)

✓

Ac(v)

A(v)
� 1

◆

+ JO(θ, b)

✓

AreaC2
�AreaC1\C2

AreaC0

◆

(24)

Then, to feed back information regarding the relative nodes

producing errors at the output, an indication of which output

nodes are misclassifying results is required first, followed by

a manner in which to amplify and accentuate their error to

the network. To implement this, an apportionment of the

penalty scale coefficients α,β, and γ, deriving from how much

we wish to penalise errors in the MAB and LIB is first re-

quired. Following experiments, we split up the original scaling

coefficients, α,β, and γ into two sets of constituent scale

coefficients for both MAB and LIB contours. Mathematically

therefore:

α = αMAB + αLIB

β = βMAB + βLIB

γ = γMAB + γLIB

(25)

The coefficients are thus split up and set at:

αMAB = 0.16JO(θ, b), βMAB = 0.16JO(θ, b) and

γMAB = 0 for the outer MAB, and αLIB = 0.10JO(θ, b),
βLIB = 0.16JO(θ, b) and γLIB = JO(θ, b) for the inner LIB.

The smaller curvature penalty for the LIB was implemented to

achieve a somewhat lesser level of smoothening interference

on the LIB than the MAB - since the LIB must be allowed

to retain less regular shapes than the MAB.

The separate sets of α,β, and γ allow the computation of

two temporary, intermediary cost functions which we denote:

JMAB(θ, b) and JLIB(θ, b) as follows:

JMAB(θ, b) =

m
X

k=1

(hθ,b(x
(k))� y(k))2

+ 0.16JO(θ, b) (max (|κ|� |κ̄|� 0.5, 0))

+ 0.16JO(θ, b)

✓

Ac(v)

A(v)
� 1

◆

(26)

JLIB(θ, b) =

m
X

k=1

(hθ,b(x
(k))� y(k))2

+ 0.10JO(θ, b) (max (|κ|� |κ̄|� 0.5, 0))

+ 0.16JO(θ, b)

✓

Ac(v)

A(v)
� 1

◆

+ JO(θ, b)

✓

AreaC2
�AreaC1\C2

AreaC0

◆

(27)

These are both generally larger than the original unmodified

cost function JO(θ, b). If we divide both temporary cost

functions JMAB(θ, b) and JLIB(θ, b) by the unmodified cost

function JO(θ, b), the resultant ratio is a multiplier > 1

which gauges the proportionate increase in penalty due to

classification errors in the output maps of the MAB and

LIB respectively. Reverting back to the error maps at the

output layers, the respective multipliers are applied to all

node deltas in their respective error maps. These node deltas

would correspond, spatially, to pixels found on the contour

and pixels contained within the said contour for the LIB,

and to pixels contained within an annular ring for the MAB.

Then, error nodes which already had a significant error value,

are correspondingly augmented by the multiplier. Conversely,

error nodes which had small error values are augmented by

the same factor, but their already small error values ensures

that the change remains negligible. The augmented node errors

are then fed back through the network via the backpropagation

algorithm.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Given the size of the dataset available, the data was first

augmented using the strategy described in section III C. A

number of schemes were then employed in order to prevent

over-fitting and in order to ensure validity of the results.

Firstly, during the training of the neural network, a basic

early-stopping technique described by Prechelt in [42] was

implemented in order to account for over-fitting. In accordance

with the technique described by Prechelt, the dataset was

split into two sub-datasets: a training dataset and a validation

dataset. This split was implemented in a ratio of 66% training

data and 33% validation data. Training took place only on the

training set, and the error was evaluated on the validation set

after each epoch. Once the training is stopped, the weights that

the network had in the previous training run are used. In our

experiments, we train using stochastic gradient descent, with

batches of 5 ultrasound images, a learning rate η of 5⇥10�6,

a momentum of 0.90 and a weight decay of 5 ⇥ 10�6. The

weights and bias terms were randomly initialised. The early

stopping technique was applied after 20 to 30 epochs.

In addition to the early stopping technique, a 15-fold leave-

one-out validation scheme was also utilised to have some

assurances on the validity of the results. The data available

from the acquisitions was split at patient-scan level during

each iteration into two categories: training + validation datasets

(described earlier for the early stopping technique) and testing

datasets. The training + validation datasets were created by

concatenating the various ultrasound images obtained from

different patient scans, and then randomising their sequence.

The testing dataset in each iteration was then always made

up of a hold-out set of ultrasound images from a particular

patient scan, which were not present as image in the training

data set.

Two experiments were carried out to compare the perfor-

mance of the network without the modified geometrically
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TABLE I: Results for testing DICE coefficient and MHD across [15]-fold Leave-one-out validation

Method Without modified objective function With modified objective function

MAB DICE MAB MHD LIB DICE LIB MHD MAB DICE MAB MHD LIB DICE LIB MHD

in mm in mm in mm in mm

Average 0.92 ± 0.04 0.27 ± 0.16 0.89 ± 0.08 0.36 ± 0.34 0.94 ± 0.04 0.24 ± 0.16 0.91 ± 0.07 0.33 ± 0.33

constrained objective function, and that of the network with

the said modification. Cross validation iterations were run in

both scenarios. The DCNN was built using the MatConvNet

toolbox and trained on an Intel Core i7 with a Geforce GT

650M video card. The segmentation results obtained from the

DCNN were compared against a manually labelled ground

truth dataset which were manually and independently traced

with the assistance of 2 radiographers, and used as labelled

training data. Each radiographer was asked to manually trace

the image sets twice, with a period of 2 weeks in between

sessions and an average across both labelling sessions was

retained as the final ground truth.

A number of evaluation metrics were used in order to quantify

the performance of the convolutional neural network, and

in order to allow comparison against other methods in the

literature:

Similarity. The similarity between the segmented result and

the ground truth is computed using the Dice Coefficient

of Similarity. This effectively gauges the degree of overlap

between two boundaries.

Modified Hausdorff Distance. The Hausdorff Distance is a

measure of distance between two point sets. It provides

the largest mismatched points between two boundaries. The

Modified Hausdorff distance [43] on the other hand finds the

mean distance between two boundaries and is computed as

follows:

MHD = max(d(A,B), d(B,A)), (28)

where

d(A,B) =
1

Na

X

a2A

d(a,B) (29)

Since the HD is a measure of the largest mismatch between

two boundaries, a single point can cause a high HD value. The

MHD mitigates this effect.

Sensitivity. The Sensitivity term is defined as the ability of a

method or test to correctly classify a sample as being diseased

[44], or in other words, the probability of a test being positive

when the disease is indeed present. A method which displays

high sensitivity is considered reliable when it produces a result

that is negative, since it rarely misdiagnoses instances where

the disease is present.

Specificity. The Specificity term, is defined as the ability of

a method or test to correctly classify a sample as being free

from disease [44], or in other words, the probability of a test

being negative when the disease is indeed absent. A method

which displays high specificity may be considered to reliably

exclude the presence of disease when this is in fact absent.

B. Results

As a novel application over our previous work in [28],

the network was trained to identify the contours of both

the media adventitia boundary as well as the lumen intima

boundary contemporarily. Thus the segmentation performance

was quantified individually for these two boundaries and

reported in our results. The rationale behind this is because the

problem of segmenting these two boundaries poses different

levels of challenge for the network. The media adventitia

boundary normally presents itself as an approximately circular

structure with well defined contours. This is shown to be

fairly consistent across a number of patient B-Mode scans,

as evidenced in Figure 7. The lumen intima boundary on

the other hand is prone to having an irregular shape, partly

because of the plaque which may be sited between the walls

of the intima, and partly because the walls of the intima

might not have clearly defined contours. This naturally poses

a greater challenge for the radiographer to manually label, and

correspondingly, a greater challenge for the network.

In Table 1 we present the averaged performance metrics

quantified for both training methods. The DICE coefficient

and the Modified Hausdorff Distance defined previously are

noted for both MAB and LIB. We observe that in agreement

with the noted difficulty of segmentation task, the segmenta-

tion performance of the network in delineating the MAB is

consistently higher than the performance for delineating the

LIB. The average DICE coefficient for the MAB is approx-

imately 3% higher for both instances of training methods.

Correspondingly, the average modified hausdorff distance is

noted to be approximately 0.09mm lower in the MAB than

the LIB, for both training methods. The overall performance of

the network is noted to be satisfactory, with DICE coefficients

exceeding 90% in both instances of MAB and LIB.

We further observe the performance of the network itself

using both training methods. The average DICE coefficients

for MAB and LIB respectively with the modified cost function

are 0.94 ± 0.04 and 0.91 ± 0.07. Whereas the average MHD

coefficients for the same modified cost function are 0.24 mm

± 0.16 mm and 0.33 mm ± 0.33 mm. These figures are both

improved in relation to the corresponding average DICE and

MHD coefficients for the MAB and LIB using a standard ob-

jective function. This indicates that our proposed modification

to the objective function, which imposes geometric constraints

on the stochastic gradient descent function, correctly discour-

ages the latter from assuming irregular segmentation results,

particularly for the media adventitia boundary which we know
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TABLE II: Results for testing Sensitivity (Sens) and Specificity (Spec) across [15]-fold Leave-one-out validation

Method Without modified objective function With modified objective function

MAB Sens MAB Spec LIB Sens LIB Spec MAB Sens MAB Spec LIB Sens LIB Spec

Average 0.924 ± 0.056 0.961 ± 0.025 0.937 ± 0.029 0.968 ± 0.026 0.929 ± 0.051 0.964 ± 0.025 0.936 ± 0.035 0.972 ± 0.020

should have an approximately circular shape. The modification

which penalises intersection of borders on the other hand

prevents instances whereby the lack of clearly defined LIB

border causes the network to result in incorrect interpretations.

The results noted in Table II provide further comparative

analyses with additional performance metrics of Sensitivity

and Specificity. Here we notice no particular consistency in

improvement between the MAB and LIB boundaries, as we

have instances where the sensitivity and specificity of the LIB

are better than those recorded for the MAB, and vice versa.

However we do also note a general improvement in average

performance across sensitivity and specificity for the modified

objective cost function, when this is compared to the unmod-

ified objective cost function. The only exception is noted in

the Sensitivity of the LIB, whereby the sensitivity with the

unmodified objective cost function is marginally better. It may

suffice to note again however that the performances for both

MAB and LIB are in excess of 90% for both sensitivity and

specificity. The images in Figure 7 show a qualitative result,

comparing the outputs of the ground truth with that of the

network with both optimisation methods. One may notice that

the results obtained exhibit a good degree of similarity to the

manual labelling, because indeed both network types generally

achieve DICE similarity coefficients in excess of 90%. The

third column shows degraded performance. The reason behind

this is that this particular dataset exhibited a higher degree of

occlusion and poor contrast in the delineation between the

MAB And LIB borders. This naturally poses a harder than

usual task for the neural network, which is reflected in its

poorer performance. The second and fifth columns exhibit

instances where the DCNN with the modified optimisation

achieves quantitative and qualitative improvements. Here we

observe a similar performance in the outer border but the inner

border however exhibits improved performance quantitatively,

which translates to a closer degree of congruence in Figure

7 between the labelled inner border and the corresponding

result produced by the network with the modified objective

function. Taking column 2 for instance, we note that the sharp

notch produced by the network on the left of the LIB with

the standard objective function is reduced and smoothed in

the corresponding result produced by the modified network.

Similarly, the kink visible at the top edge of the LIB in the

5th column is smoothed in the corresponding result produced

by the modified network. If one notes columns 1 and 4

on the other hand, we may here notice improved smoothed

performances on the outer MAB border at the top edge for

column 1 and rightmost edge for column 4 respectively. These

results are important, because although the ’general’ DICE

performance of both networks is still fairly high, with similar

coefficients in straightforward cases, the geometric constraints

imposed by the modified network serve to smooth the contours

produced by the network. Of course, care must be taken to

tune the effect of such geometric constraints to within limits

whereby the smoothing influence they exert on the LIB is

smaller and more subtle, to allow the latter to assume irregular

shapes which are common of atherosclerosis.

The results noted in Table III show a comparative assessment

of performance between our technique and the techniques of

other studies whose work similarly addressed the problem of

MAB and LIB segmentation. Table III shows that our average

results yield similar performance to that of Ukwatta et al. in

their study in [23] and [10], and superior performance to that

of Yang et al. in [16] and that of Hossain et al. in their

work of [9]. In their work, Ukwatta et al. propose a semi-

automated technique based on a level-set method to segment

the MA and LI interfaces, whereby the operator was asked

to provide anchor points as high-level domain knowledge.

This together with the incorporation of local and global image

statistics with boundary separation-based constraints allowed

for segmentation of the MA and LI interfaces. In comparison

to this, the technique proposed in our work is a fully automated

technique which requires no user intervention, barring the

initial training on a manually segmented dataset which would

have presumably been carried out once in the beginning with

a large enough and representative dataset.

V. CONCLUSION

In this work, we have developed a novel system, based on

a bimodal and geometrically constrained Deep Convolutional

Neural Network, for segmenting both the Media Adventitia

Boundary and the Lumen Intima Boundary in transverse

carotid Ultrasound images, using a fully automated approach.

We have combined the novel fusion of amplitude and phase

data as a bimodal source of input data, and also developed

a novel geometrically constrained objective function for the

training of the Deep Convolutional Neural Network.

We have shown that our geometrically constrained Deep

Convolutional Neural Network shows improvement of approx-

imately 2% in terms of DICE coefficient of performance, in

comparison to the DCNN with the standard objective cost

function that we have developed in our previous work. Fur-

thermore, we demonstrate that albeit the technique being fully

automated and having a larger and more generalisable dataset,

it retains a good performance of 94% and 91% for MAB

and LIB borders respectively, and that this retains comparable

performance to techniques from other studies which test on a

much smaller dataset.
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Fig. 6: A sample of segmentation results of outer MAB and inner LIB borders. [Row 1] - Averaged Ground truth; [Row 2] -

Classification without optimisation; [Row 3] - Segmentation without optimisation; [Row 4] - Classification with optimisation;

[Row 5] - Segmentation with optimisation. N.B red lines denote ground truth, green lines denote network results.

TABLE III: Results across different studies. Note that ’-’ denotes no results available from said study.

Study MAB DICE MAB MHD LIB DICE LIB MHD

in mm in mm

Ukwatta et al. [10] 0.954 ± 0.016 - ± - 0.931 ± 0.031 - ± -
Yang et al. [16] 0.918 ± 0.035 - ± - 0.936 ± 0.026 - ± -

Ukwatta et al. [23] 0.95 ± 0.017 - ± - 0.92 ± 0.042 - ± -
Hossain et al. [9] 0.915 ± 0.035 0.25 ± - 0.735 ± 0.169 0.25 ± -

Azzopardi et al. [28] 0.988 ± 0.035 0.05 ± - - ± - - ± -
This study 0.940 ± 0.040 0.24 ± 0.16 0.910 ± 0.070 0.33 ± 0.33
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