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Abstract—Accurate prediction of the host phenotype
from a metagenomic sample and identification of
the associated microbial markers are important in
understanding potential host-microbiome interactions
related to disease initiation and progression. We introduce
PopPhy-CNN, a novel convolutional neural network (CNN)
learning framework that effectively exploits phylogenetic
structure in microbial taxa for host phenotype prediction.
Our approach takes an input format of a 2D matrix
representing the phylogenetic tree populated with the
relative abundance of microbial taxa in a metagenomic
sample. This conversion empowers CNNs to explore the
spatial relationship of the taxonomic annotations on the
tree and their quantitative characteristics in metagenomic
data. We show the competitiveness of our model compared
to other available methods using nine metagenomic
datasets of moderate size for binary classification. With
synthetic and biological datasets, we show the superior
and robust performance of our model for multi-class
classification. Furthermore, we design a novel scheme
for feature extraction from the learned CNN models and
demonstrate improved performance when the extracted
features. PopPhy-CNN is a practical deep learning frame-
work for the prediction of host phenotype with the ability
of facilitating the retrieval of predictive microbial taxa.
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I. INTRODUCTION

NUMEROUS metagenomic studies of the gut microbiome
have linked dysbiosis to many host diseases [1]. A

metagenomic sample is usually described by its microbial
taxanomic composition, i.e., the relative abundance of microbial
taxa at one of the taxonomic levels (Super-kingdom, Phylum,
Class, Order, Family, Genus, and Species), represented as nodes
on a phylogenetic taxonomic tree. The identification of microbial
taxa that are associated with the host disease can benefit the
early diagnosis, the development of microbial reconstitution
(e.g., Probiotic) therapies [2], and the understanding of the
disease mechanism [3].

One primary effort on the analysis of microbiome has been
the disease association study and the identification of microbial
biomarker signatures for disease prediction. The detection of
the associations relies on statistical analyses (parametric or
non-parametric) to identify differentially abundant taxa between
disease and control groups [4]–[8]. However, the association of
the individual microbes to a particular type of disease has shown
contradictory results [9], [10]. This can be due to various reasons
such as the dynamic nature of microbes, small sample size, and
disease complexity.

Alternative approaches using machine learning (ML) models,
e.g., Random Forest (RF), least absolute shrinkage and selection
operator (LASSO), and Support Vector Machines (SVMs) based
on input representations of relative abundance of microbial
taxa or gene annotations have demonstrated the potential of
developing a microbial biomarker signature for the prediction
of the host phenotype [11]–[13]. These types of approaches
are motivated by the findings that a microbial signature for the
host phenotype may be complex, involving simultaneous over-
and under-representations of multiple microbial taxa at distinct
taxonomic levels and potentially interacting with each other [9],
[14]. The initial applications of ML models did not extensively
explore the relationship among the taxa, achieving moderate
level of predictive performance.

Recent studies have shown that constructing abundance of
features using the hierarchical structure of the taxonomic tree
can lead to better classification performance over the use of only
raw features [15], [16]. The use of phylogenetic tree to imprint

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7955-3980
https://orcid.org/0000-0001-7465-3133
https://orcid.org/0000-0002-7638-849X
mailto:dreima2@uic.edu
mailto:yangdai@uic.edu
mailto:ametwall@stanford.edu
mailto:junsun7@uic.edu
https://ieeexplore.ieee.org


2994 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 10, OCTOBER 2020

relevant biological knowledge in metagenomic data has been
seen in different machine learning models. For example, a
class of phylogenetic-based feature weighting algorithms was
proposed to group the relevant taxa into clades, and the
highly ranked clade groups in conjunction with RF had an
improved classification performance [17]. In another study [18],
a phylogeny-based smoothness penalty is introduced to smooth
the coefficients of the microbial taxa with respect to the phylo-
genetic tree in both linear and logistic regression models. It was
shown that the models improved over other regression-based
models in both biological and synthetic datasets. However, this
model is limited in exploring the natural correlation structure
among microbial taxa that exists according to phylogenetic
relationships.

Several methods using deep neural networks (DNNs) were
proposed in the hope that DNNs could identify more complex
relationship among the microbial taxa that benefit the pheno-
type prediction. The first relatively large scale evaluation is the
application of multi-layer perceptron neural network (MLPNN)
and recursive neural network (RNN) using the input form of
the relative Operational Taxonomic Unit (OTU) vectors [19]
for a metagenomic sample. However, it has been shown that a
simple layer neural network and RF performed better than DNN
models, although RNNs could reveal a hierarchical structure
among the samples. More recently, Fioravanti et al. proposed a
convolutional neural network (CNN) architecture that explores
the distance between nodes on a phylogenetic tree by the patristic
distance (the sum of the lengths of all branches connecting
two OTUs on the tree) [20]. Their approach is to embed the
phylogenetic tree in an Euclidean space and apply convolution
over k nearest neighbors. The evaluation for their method (called
Ph-CNN) reported promising results on synthetic data using
gut metagenomic data from 222 inflammatory bowel disease
patients and 38 healthy subjects compared to linear SVMs, RF,
and a fully connected multi-layer perceptron neural network.

The performance of these DNN models is encouraging, ow-
ing the ability of deep architectures in identifying potential
interactions of microbial taxa for host phenotype prediction.
However, the results also raise the skepticism that DNNs may
not be suitable learning models due to their requirement of large
amounts of training data, which is impractical in present metage-
nomic studies [19]. A recent work summarized all available
standard ML and DNN models for host phenotype prediction
and shows the evaluation of DNNs is incomplete and DNNs
were superior than other standard ML models [21]. Furthermore,
DNNs are often used as black-boxes, making it difficult to extract
informative features from the learned models.

In this work, we introduce PopPhy-CNN, a novel CNN frame-
work expanded from our previous work [22] to address the crit-
icism to DNNs mentioned above. Our model takes advantage of
CNNs’ ability in generating convolutional layers with multiple
feature maps that capture spatial information in training data,
such as in images [23]. Since a metagenomic profile is usually
represented by a vector of relative abundances of microbial
taxa in arbitrary orders, a scheme to convert this information
into a biological structure is needed. To empower CNNs for
metagenomic phenotype prediction, we construct a phylogenetic

Fig. 1. Flowchart of PopPhy-CNN. The taxa and count table are used
to create and populate a phylogenetic tree, which is represented as a
matrix and used to train a CNN. Features are extracted from the trained
model.

tree to preserve the relationship among the microbial taxa in the
profiles. The tree is then populated with the relative abundance of
microbial taxa in each individual profile and represented in a 2D
matrix. The constructed matrices provide spatial and quantitative
information in the metagenomic data, which are more suitable
to CNNs compared to the input vectors of relative microbial taxa
abundances in an arbitrary order. Our method takes a completely
distinct approach in utilizing the information of a phylogenetic
tree compared to the one used in Ph-CNN [20].

We demonstrate PopPhy-CNN’s competitive and robust per-
formance for binary classification using nine publicly available
datasets by benchmarking against several well-established ML
methods and other DNNs including Ph-CNN. Using both bio-
logical and synthetic datasets, we also compare their abilities in
handling multi-class classification problems. In order to gauge
what has been learned by PopPhy-CNN, we further design a
novel procedure to retrieve informative microbial taxa from
the trained CNN models and evaluate their usefulness. Finally,
we include a visualization to facilitate the interpretation of the
retrieved taxa on the phylogenetic tree.

II. MATERIALS AND METHODS

The major components of PopPhy-CNN is shown in Fig. 1.
We first describe how a microbial taxonomic abundance profile
obtained from a sample can be represented in a 2D matrix
based on the use of a populated phylogenetic tree. Then, we
describe our CNN architecture and the training procedure. Last,
the scheme of feature extraction will be presented.

A. Representing Metagenomic Profiles in 2D Matrices

We developed a prototype of our algorithm to transform the
microbial taxonomic abundance profiles into a structured data
by using a phylogenetic tree [22]. The detail of the algorithms for
tree construction and population can be found in the Appendix.
Our method is demonstrated using taxonomic profile data
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represented by the relative abundances of the OTUs. However,
it is applicable to profiles of any level of taxonomic annotation
obtained from metagenomic study.

Briefly, a phylogenetic tree that captures similarity infor-
mation among OTUs can be constructed by comparing the
microbial genomes based on multiple sequence alignment and
organizing similar taxa into clades. The similarity between
taxa is represented by their closeness in the tree. In our work,
PhyloT [24] was used to create the phylogenetic tree, and a
constant distance of one between nodes in the tree is assumed.
The phylogenetic tree is structured using ancestral nodes from
both taxonomic groups and subgroups with no defined distances
between nodes. Therefore, we define the distance between any
two nodes by the number of nodes between them and the tree is
essentially a taxonomic tree.

The tree is used as a template to construct a populated tree for
each sample in the dataset. The value of each OTU from a sample
is assigned to its respective node in the tree. The tree is then
populated such that an abundance value for each internal node
is equal to the sum of its children’s abundance values. Once the
tree has been annotated with abundance values, it is transformed
into a matrix by placing the root’s abundance in the top left
corner of a matrix. Then for a given row, the children of the
nodes from that row are selected and their abundances are placed
in the subsequent row in the order that their parents appear,
starting with the left most column. The rest of the matrix is
filled with zeros. We represent the tree this way in order to allow
the CNN model to have a dense pocket of data. Given a graph
G = {V,E}, this representation has a memory complexity of
O(V 2). However, in our evaluation, we found the matrix size
to scale at 4.93 V on average, showing that it uses drastically
less memory than an adjacency matrix of size V 2. Compared to
adjacency matrix, our representation maintains a smaller number
of features so PopPhy-CNN can be trained without excessive
amount of data.

B. Architecture of Convolutional Neural Network

Standard CNNs are composed of multiple convolutional lay-
ers followed usually by at least one fully connected layer. Each
convolutional layer is composed of multiple kernels, each of
which transforms an input matrix M into a set of feature maps
of velocities through a convolutional operation. The feature
maps composed of these velocities are then passed through a
non-linear activation function and subsampled through max or
mean pooling to give a matrix of activations.

Our CNN architectures consist of two convolutional layers
followed by a single fully connected layer and a single output
layer. The first convolutional layer contains a rectangular filter
to scan areas of local features. The second convolutional layer
consists of a single 1× 1 kernel. This collapses the set of feature
maps from the first convolutional layer into a single feature
map in order to reduce the number of network parameters. Each
layer uses the exponential linear unit (ELU) activation function.
In our studies, we observed that max-pooling was sometimes
detrimental to prediction, so our model does not perform any
pooling. The softmax activation function was applied to the

Fig. 2. A kernel k slides over the input matrix M . Each position in
the feature map contains a velocity which is the element wise sum of
the Hadamard product between k and a submatrix of M . We call this
submatrix a reference window and denote it as R.

Fig. 3. Time complexity for machine learning models based on (A)
number of samples and (B) number of features.

output layer for class prediction. The model was trained using
a weighted cross entropy loss function to help address class
imbalance. To prevent overfitting, we regularize the networks
using both L1 and L2 normalization penalties on the weights as
well as dropout in the fully connected layers [25].

C. Extraction of the Informative Features

To address the criticism that deep learning models lack inter-
pretability, we attempt to push past the black-box of the CNNs
by extracting the important features for the learned models. A
previous study has shown that using feature maps captured by
CNN models as features for other machine learning models
(i.e., RF and SVMs) yielded better results than using the raw
features [26]. Even though deeper layers yielded better features
in the previous study, the loss of resolution through subsampling
and extra layers of nonlinear transformations could jeopardize
interpretability. Therefore, we focus on the post analysis of the
feature maps generated by the first convolutional layer. A visu-
alization for the generation of a feature map is shown in Fig. 2.

To do this, we take the feature maps generated by a kernel k
across all the samples for a specific class c in the training set. For
each of these feature maps, we take the positions of a proportion
of maximum values specified by a given hyper-parameter, θ1.
We then select the maximums which were found in at least a
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proportion, θ2, of the samples for that class. For each velocity
selected, we trace its location in the feature map back to the
submatrix of the input M from which it was calculated. We call
this matrix R our reference window.

Every position (i, j) of a reference window represents some
node v from the phylogenetic tree with an OTU label, f . We
calculate the importance of each feature f given the reference
window R for sample S as its proportion of the velocity.

I(k)s (f | R) =
W (k)(i, j) ∗RS(i, j)∑

(|W (k)| �RS)
s.t. R(i, j) ↔ f (1)

Here k is our current kernel with weights W (k) and the
summation is over all positions in RS . The absolute values of
the weights in the denominator are used to scale all importance
values to be between 1 and −1, and the absolute value of all
importance values within a reference window will sum to 1.

Within a single reference window, some taxa may score
highly in a small subset of samples but may not be important
considering all of the samples. In order to better capture the
taxa which were consistently found important, we calculate the
mean importance value of a feature f across all samples in class
c given a single reference window R and kernel k.

I(k)c (f | R) =

∑
s∈c I

(k)
s (f | R)

nc
(2)

Here nc represents the number of samples in class c. Since a
feature is present in multiple reference windows and kernels, a
single feature may have multiple importance values. To handle
this, we selected the importance of f to be the maximum over
all reference windows containing f and over all kernels, k.

Ic(f) = max
R,k

{ I(k)c (f | R) } (3)

Lastly, we assigned a score for a feature from the perspective
of class c as the difference of the feature importance using all
the samples within the class and the feature importance using
all the samples not in the class.

Sc(f) = Ic(f)− Ic̄(f) (4)

From these scores we create a list of feature scores for each class,
allowing the analysis of feature importance from the perspective
of different classes that can then be ranked. The algorithm for
this feature extraction is shown in Algorithm 1.

D. Datasets Used in Evaluation

We used nine publicly available datasets to evaluate PopPhy-
CNN. Three datasets are contained within the MetAML pack-
age [13]: cirrhosis, type 2 diabetes (T2D), and obesity. They
were selected due to the varying difficulty for prediction. The
cirrhosis dataset was taken from a study of 114 cirrhosis patients
and 118 healthy subjects [27]. The T2D dataset was a combi-
nation of two studies [4], [28] yielding a total of 223 patients
with T2D and 223 healthy subjects. The obesity dataset comes
from a study of 292 individuals of which 89 individuals with a
BMI lower than 25 kg/m2 were studied against 164 individuals
with a BMI greater than 30 kg/m2 [29]. Each of these datasets
was generated using Metagenomic Shotgun (MGS) sequencing.
In the MetAML study [13], the OTUs for each dataset were

assigned by MetaPhlAn2, which selects OTUs based on the
read coverage of clade-specific markers and then estimates their
relative abundance [30].

The six other datasets were taken from a study on inflam-
matory bowel disease (IBD) investigating the differences be-
tween the microbial community during disease remission and
flares [31]. The dataset contains 38 healthy samples and 222
samples from patients with IBD. In our experiment, we separated
the data into three disease categories: Crohne’s disease (CD),
ileal Crohne’s disease (iCD), and ulcerative cholitis (UC). The
datasets were further broken into two sets where one set consti-
tutes patients with lessening conditions who were in remission
and one set with patients whose condition was worsening. This
gave six total datasets: 59 patients with iCD disease who were in
remission (iCDr), 44 patients with iCD whose symptoms were
worsening (iCDf), 76 patients with CD who were in remission
(CDr) or whose symptoms were worsening (CDf), 44 patients
with UC whose symptoms were in remission (UCr), and 41
patients with UC whose symptoms were worsening (UCf). These
datasets were selected for benchmarking against Ph-CNN since
the coordinates required for the method are provided [20].

The OTUs in each dataset were aggregated at genus level.
In addition, the OTUs from the cirrhosis, T2D, and obesity
dataset were also aggregated at the species level. Full taxonomic
trees were obtained using PhyloT [24] and were pruned based
on the observed OTUs. For any OTU which was specified as
“unclassified”, the label for the that OTU at the next highest
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TABLE I
TABLE SHOWING NUMBER OF CASE AND CONTROL SAMPLES, ORIGINAL

OTUS, AND NODES IN THE TREE FOR BINARY DATASETS

TABLE II
TABLE SHOWING NUMBER OF SAMPLES IN EACH CLASS, ORIGINAL OTUS,

AND NODES IN THE TREE FOR MULTICLASS DATASETS

taxonomic level was used. A summary of these datasets is shown
in Table I.

We also evaluated PopPhy-CNN using three multiclass
datasets. In the first dataset, we included samples in the obesity
between 25kg/m2 and 30kg/m2 as a third class. The second mul-
ticlass dataset was constructed by grouping the six IBD binary
datasets into a single dataset containing seven classes. The third
dataset was the combination of the cirrhosis, T2D, and obesity
datasets as well as a colorectal cancer dataset [32] and another
IBD dataset [33], both contained within the MetaML package,
resulting in a dataset with 10 different classes. Additionally,
using the R package SparseDOSSA [34], we constructed syn-
thetic datasets containing 3, 5, 7 and 9 classes. Each synthetic
dataset contained 500 features and about 250 samples per class.
A summary of the these datasets is shown in Table II. The
visualization of the IBD, Multi-Disease, and Syn9 datasets using
Principal Coordinate Analysis (PCoA) based on the Bray-Curtis
dissimilarity as the distance metric is shown in the Appendix
(Fig. S1).

Lastly, we construct two binary synthetic datasets in order to
evaluate the robustness of PopPhy-CNN. The smaller dataset
(SynA) contains 750 samples and 500 features. The larger
dataset (SynB) contains 1500 samples and 1000 features.

III. RESULTS

A. PopPhy-CNN is Competitive in Host Phenotype
Prediction

PopPhy-CNN was benchmarked against RF, SVM, LASSO,
an MLPNN with two fully connected layers, a 1D-CNN model
using one convolutional layer with two fully connected layers,
and Ph-CNN, which was designed using information of the
phylogenetic tree. The 1D-CNN model serves as the baseline

to evaluate if the addition of phylogenetic information improves
the prediction in CNN. In addition, we compared PopPhy-CNN
to Ph-CNN [20] for the datasets in which the coordinates
for the method were available. Each model was trained using
10-fold cross validation, using the same partitions across all
methods. The area under the receiver operating characteristic
curve (AUC-ROC), area under the precision-recall curve (AUC-
PR), Matthews correlation coefficient (MCC), and F1-Score are
reported.

In order to train CNNs under cross validation efficiently, each
network was trained using early stopping. To do so, 20% of the
training set was set aside for a validation holdout set and the
loss for this set was calculated each epoch. Each model was
trained until the loss on the validation set had not decreased
for 100 consecutive epochs, and the previous best weights were
restored. The final model was then evaluated on 10% of the data
that was set aside for a blind test. The learning rate, number
of kernels, hidden layer size, and the regularization parameters
on network weights were tuned by doubling the values until
a drop in performance was observed. The number of kernels
and hidden layer size started at 4 and the learning rate and
regularization parameters started at 0.00001. The kernel sizes
tested for PopPhy-CNN were5× 3,4× 3, and3× 3. The kernel
sizes for the 1D-CNN were the same width as the kernels used
in PopPhy-CNN. In order to obtain stable results, an ensemble
of 10 networks were trained for each partition and the mean
predictions across the models was used for the final prediction.

Before evaluating all datasets, we first used the cirrhosis
dataset to confirm that there is no significant difference on the
performance when using two different representations of the
populated tree. We also evaluated different tree matrix repre-
sentation schemes by using 0 padding and −1 padding to align
children starting directly under the parent node and found no
significant difference either.

RF, SVM, and LASSO were trained using Python’s scikit
package. In RF training a maximum of 200 trees was set and all
other parameters were left as the default. The SVMs were trained
using a grid search 5-fold cross validation over the linear and
Gaussian kernels with an exhaustive search using the set 1, 10,
100, 1000 for error terms and the set 0.001, 0.0001 for γ values in
Gaussian kernels. The LASSO model was trained using iterative
fitting of the error term α using the set of 50 numbers from 10−4

to 10−0.5 that were spaced evenly on a log-scale. The best model
parameters were again evaluated using 5-fold cross validation.
For each model, the data were min-max normalized between
0 and 1.

The summary of the benchmarking results for datasets aggre-
gated at the genus level and species level are shown in Table III
and Table IV, respectively. The standard ML methods were
trained using the original OTU features while PopPhy-CNN
and Ph-CNN were trained using their respective input formats.
We observe that PopPhy-CNN outperforms Ph-CNN and is
comparable to the other methods with RF generating slightly
better prediction. We also benchmarked PopPhy-CNN by using
a vector containing the values from all the nodes from a popu-
lated tree as input to other methods. The performance of RF is
reduced, suggesting it may have difficulty in taking advantage
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TABLE III
THE AUC-ROC, AUC-PR, MCC, AND F1-SCORE VALUES FROM LASSO, RF, SVM, MLPNN, AND 1D-CNN MODELS ARE REPORTED FOR ALL BINARY

CLASS DATASETS AT THE GENUS LEVEL. THE VALUES FOR PH-CNN ARE REPORTED IN THE DATASETS IN WHICH COORDINATES
WERE AVAILABLE TO PERFORM THE METHOD

TABLE IV
THE AUC-ROC, AUC-PR, MCC, AND F1-SCORE VALUES FROM LASSO, RF, SVM, MLPNN, AND 1D-CNN MODELS ARE REPORTED

FOR ALL BINARY CLASS DATASETS AT THE SPECIES LEVEL

TABLE V
THE MCC VALUES FROM POPPHY-CNN, RF, MLPNN, AND 1D-CNN

MODELS ARE REPORTED FOR MULTI-CLASS DATASETS AT THE
SPECIES LEVEL

of information provided by the additional internal nodes in the
phylogenetic trees (data not shown).

Next, we evaluated our model in a multiclass setting. We
benchmarked our model against a multiclass instance of RF,

TABLE VI
THE MCC VALUES FROM POPPHY-CNN AND RF FOR SYNTHETIC

MULTI-CLASS DATASETS OF VARYING NUMBER OF CLASSES
AT THE SPECIES LEVEL

MLPNN, and a 1D-CNN using both the original OTU features
as well as the set of nodes in the populated tree as features. We
observed that PopPhy-CNN performed the best on biological
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Fig. 4. Benchmarking of top 25 features extracted from PopPhy-CNN
for cirrhosis (A) and obesity (B). Features extracted from PopPhy-CNN
(teal) are benchmarked against features found by RF (purple), signal-to-
noise ratio (brown), and a Wilcoxon rank-sum test (red).

data. When using synthetic data, the neural network models all
performed similarly and were robust to the number of classes.
Since features in the synthetic datasets were randomly spiked,
we did not expect PopPhy-CNN to benefit from considering
local areas in the input matrices. On the other hand, a noticeable
decrease in RF models as the number of classes increased was
observed.

In summary, PopPhy-CNN is competitive to the other stan-
dard ML models without requiring a large amount of training
data; using hierarchical features in other methods did not show
an overall improvement. In addition, when expanding to multi-
class data, PopPhy-CNN did not suffer from larger numbers of
classes, suggesting its strength in establishing better predictive
models on datasets containing multiple disease states.

B. Computational Complexity and Robustness

To evaluate the complexity of our model, we recorded the
amount of time it took to train a single model using different
numbers of sample and feature sizes. To do so, we created syn-
thetic datasets with 500, 1000, 2500, 5000, and 10,000 samples,
each with 500 features. Additionally, we created datasets with
500, 750, 1000, 1250, and 1500 features, each with 500 samples.
The average training for training a single model during a 10-fold
cross-validation is reported in Fig. 4. For consistency, all neural
network models were trained to 50 epochs using an NVIDIA
Titan XP GPU, which was sufficient for accurate prediction in
each case. We observed that RF models had the largest overhead
and that SVM models scaled the worst based on both sample and
feature size. PopPhy-CNN increased more than the other neural
network models based on sample size, but that was expected due
to the increased input space of the matrix representations of the
populated trees. Despite this, it was still observed to train faster
than the RF models.

Next, we evaluated how the parameter size of the neural
network models scaled based on the original input size. We
observed that MLPNN and CNN-1D models scaled almost
identically and that PopPhy-CNN scaled at a rate 5.08 times
faster than the other two models (Fig. S2). However, this was
expected since the matrix representation used in PopPhy-CNN

was shown to scale in size on average 4.93 times the number of
nodes in the tree.

Lastly, we tested the robustness of PopPhy-CNN using 5-fold
and 3-fold cross-validation for larger heldout sets using the
cirrhosis dataset as well as two synthetic datasets, SynA and
SynB. When holding out 20% for testing, the AUC-ROC for cir-
rhosis was 0.916 (2.66% decrease), for SynA was 0.928 (0.24%
decrease), and for SynB was 0.927 (0.24% decrease). When
using 33% as held out data, the AUC-ROC for cirrhosis was
0.917 (2.66% decrease), for SynA was 0.900 (2.92% decrease),
and for SynB was 0.904 (2.78% decrease). Together, this shows
that PopPhy-CNN is robust to using larger sets of held-out data
even for datasets with moderate size.

C. PopPhy-CNN Identifies Important Features

We used the top three datasets in Table I at the genus level for
this evaluation. Feature scores for each dataset were generated
following the procedure outlined in the Materials and Methods
section. In the results shown, we used θ1 = 0.01 and θ2 = 0,
indicating that we consider only the top 1% of values in each
feature map of each sample. This allows a fair baseline compar-
ison across the datasets from which the tuning of the parameters
may lead to stronger feature evaluations. We constructed a single
ranked list using the feature scores. The method for constructing
the joint ranked list is described in the Appendix.

To evaluate the informativeness of the extracted features,
we examined whether they could be used in building better
prediction models in SVM. This is because SMV is the only
model that does not have any feature selection capacity in our
evaluation. To do this, we trained SVM models using the top
ranked features from the original OTUs ranging from the top 5,
10, 15, 20, and 25.

For comparisons, we used ranking lists based on signal-to-
noise ratio, the significance from the Wilcoxon test, as well as
the average feature rankings from the RF models that achieved
an AUC score greater than the average AUC over the 10 times
10-fold cross validated training. We chose not to use differential
abundance analysis methods for feature ranking due to the fact
that the abundance values were normalized as relative abundance
and no longer followed a negative binomial distribution. The
SVM models were trained in the same way as described in the
model evaluation.

For the cirrhosis dataset (Fig. 4A), we observed that the higher
ranked features of PopPhy-CNN performed best, followed by
the features identified by RF. The features identified by the
Wilcoxon rank-sum test were not stable and showed a decrease
in prediction performance before increasing afterwards. In the
obesity dataset, we observe that PopPhy-CNN and the Wilcoxon
rank-sum features perform similarly, however the RF features
perform poorly (Fig. 4B). For the T2D dataset, all models
performed about the same (Fig. S3). PopPhy-CNN was the only
method to perform competitively in all three datasets. Addi-
tionally, PopPhy-CNN captured unique OTUs and we observed
little overlap between the OTUs captured by the three methods
(Fig. S4).
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Fig. 5. Visualization of the cirrhosis features found by PopPhy-CNN.
An annotated phylogenetic tree from the cirrhosis dataset shows sub-
trees found important in the cirrhosis patients (red) as well as the healthy
subjects (green). The table highlights nodes from the tree who are
leaves of their annotated subtree. The top 5 features in each class are
shown in bold.

D. Biological Relevance of the Extracted Features:
A Case Study of the Cirrhosis Dataset

In the cirrhosis patients, Veillonella, Streptococcus,
Haemophilus, Prevotella, and Actinomyces were found
important. In the healthy subjects, Alistipes, Rumminococcus,
Roseburia, Clostridium, and Bilophila were found to be the
most important features. Many of the top ranked features were
also identified in the original study [27]. A separate study on a
different cohort of subjects with Cirrhosis found similar results,
showing that Streptococcus, Veillonella, and Prevotella were
associated with Interleukin-23 (IL-23) and Interleukin-2 (IL-2),
two cytokines which have been shown to be associated with
inflammatory gut diseases [35], [36]. In addition, among the
identified features, Veillonella and Lactobacillus have been
shown in previous studies to be correlated with the mortality rate
of subjects with cirrhosis, while Clostridium may be protective
against cirrhosis mortality [37], [38].

When analyzing the scores of internal nodes of the tree,
we observed cases in which ancestral nodes have much larger
importance scores than their children. This could imply that no
single child feature was discriminative between disease states,
however the collection of them was. For example, the family
Bifidobacteriaceae, had a score of 0.292 while its children had
much lower scores. This family of microbes was not identified
as important in the original analysis of this dataset, however,
a different study has shown that microbes in the Bifidobacteri-
aceae family produce glutamate dehydrogenase, a protein found
to have higher expression levels in patients with Cirrhosis [39].
Therefore, the aggregation of all the genera under Bifidobac-
teriaceae should be more discriminative than any single genus
observed in our feature analysis.

E. Visualization of Extracted Features

We used Cytoscape [40] to visualize the phylogenetic tree and
annotate the nodes and edges based on the calculated importance
scores, the score differences used in creating the joint rank list

as the annotated scores for each node. Nodes and edges were
then colored based on which phenotype they were associated
with where green represents healthy and red represents disease.
The edges are colored in a similar way based on the average
score of the connected nodes. This visualization can facilitate
the interpretation of extracted features in the context of the phy-
logenetic tree. The annotated tree for the cirrhosis dataset shows
that the feature extraction not only capture OTUs presented in
the original datasets, but the ancestral nodes as well (Fig. 5).

IV. CONCLUSIONS

We have developed a novel CNN framework, PopPhy-CNN,
for the prediction of the host disease status from a metage-
nomic sample of the host. PopPhy-CNN leverages biologi-
cal knowledge in microbial taxa relative abundance profiles
through a phylogenetic tree by our novel propagation and matrix-
representation procedure. Using nine binary class metagenomic
datasets, we have shown that PopPhy-CNN models are com-
petitive compared to RF, SVMs, LASSO, 1D-CNN, MLPNN,
and Ph-CNN models in benchmarking for binary classification
datasets. Our evaluation establishes the evidence that PopPhy-
CNN can deliver robust performance without requiring exces-
sively large training sets. Additionally, PopPhy-CNN showed
the best performance for multi-class biological and synthetic
datasets and is robust with respect to the number of classes.

We have also demonstrated the feasibility of our novel proce-
dure for retrieving informative features from the learned CNN
models. Our procedure provides an unique way to interpreter the
network models. We showed that SVMs with the selected feature
sets performed better than SVMs trained on features ranked
based on the criteria of the signal-to-noise ratio, the Wilcoxon
test, and by RF models. This result is especially intriguing as it
provides the evidence that the feature maps of the first convolu-
tional layer maintain spatial relationship between the microbial
taxa on the phylogenetic tree. This implies that PopPhy-CNN
benefits from learning informative features on the populated
phylogenetic tree represented in the matrix format, which may
explain the effectiveness of PopPhy-CNN. The limitation of our
current procedure of feature extraction is that we only look at
the kernel map activation at the first convolutional layer for
easy interpretation. This procedure may miss important features
involving in complex nonlinear relationship to the phenotype.

There are several directions for further study. The phyloge-
netic tree is one of the core components in the PopPhy-CNN
learning framework. Different trees constructed from different
methods may affect the predictive performance and may also
identify different microbial features. Furthermore, the current
representation scheme is designed to prevent sparsity in the
matrix while preserving spatial phylogenetic relationships. This
can create areas where the descendant nodes are not directly
under their ancestors, allowing for unique patterns to be picked
up by the CNN. However, if descendant nodes are shifted far
enough away from the ancestral nodes the CNN kernels may
not capture them together. Therefore, different ways of rep-
resenting the populated trees as matrix image may also affect
the model performance. It may even be possible to expand
beyond a rooted tree to a graph structure, a domain in which the
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newer graph convolutional networks can be explored [41]. Also,
if the number of microbial taxa substantially outnumbers that
of the learning samples, more effective regularization schemes
or algorithms that promote the learning of important features
in CNNs are likely necessary. Another direction is to expand
the feature extraction method to include deeper layers of the
network, further exploiting the non-linear patterns learned by
PopPhy-CNN.

APPENDIX

S1. APPENDIX OF SUPPORTING INFORMATION AVAILABILITY

OF DATA AND CODE

The datasets and the code used in this study can be found at
https://github.com/YDaiLab/PopPhy-CNN.
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