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Segmentation in Papillary Thyroid Carcinoma
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Abstract—The quantity of leukocytes in papillary thyroid
carcinoma (PTC) potentially have prognostic and treatment
predictive value. Here, we propose a novel method for
training a convolutional neural network (CNN) algorithm for
segmenting leukocytes in PTCs. Tissue samples from two
retrospective PTC cohort were obtained and representative
tissue slides from twelve patients were stained with hema-
toxylin and eosin (HE) and digitized. Then, the HE slides
were destained and restained immunohistochemically (IHC)
with antibodies to the pan-leukocyte anti CD45 antigen and
scanned again. The two stain-pairs of all representative tis-
sue slides were registered, and image tiles of regions of in-
terests were exported. The image tiles were processed and
the 3,3′-diaminobenzidine (DAB) stained areas representing
anti CD45 expression were turned into binary masks. These
binary masks were applied as annotations on the HE image
tiles and used in the training of a CNN algorithm. Ten whole
slide images (WSIs) were used for training using a five-fold
cross-validation and the remaining two slides were used as
an independent test set for the trained model. For visual
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evaluation, the algorithm was run on all twelve WSIs, and in
total 238,144 tiles sized 500 × 500 pixels were analyzed. The
trained CNN algorithm had an intersection over union of
0.82 for detection of leukocytes in the HE image tiles when
comparing the prediction masks to the ground truth anti
CD45 mask. We conclude that this method for generating
antibody supervised annotations using the destain-restain
IHC guided annotations resulted in high accuracy segmen-
tations of leukocytes in HE tissue images.

Index Terms—Digital pathology, artificial neural network,
antibody-supervised learning, papillary thyroid carcinoma,
tumor-infiltrating lymphocytes.

I. INTRODUCTION

PAPILLARY thyroid carcinoma (PTC), the most common
variant of thyroid cancer, shows an increase in incidence

and is about three times more common in women [1]–[3]. In
the US, about 52,000 new cases of PTC are diagnosed annually.
However, treated with surgery and radioiodine ablation therapy,
the vast majority of patients are cured, and the 5-year survival
rate for PTC is over 98% [1]–[4].

The immune response plays a crucial role in the defense
against the development of cancer. However, there is also ev-
idence that inflammatory cells can be actively tumor promoting
[5]. The inflammatory milieu of PTC plays a crucial role in tumor
progression, metastasis and recurrence of thyroid cancer [6], [7].
The presence of immune cells has been shown to correlate with a
favorable outcome of PTC [8], [9]. The prognostic significance
of specific immune cells in PTC has also been studied by
analyzing immunological parameters specific to certain cells
[10]. Several specific immunological markers have been shown
to be prognostically significant, including CD8 and PD-L1 [11].

Tumor-infiltrating lymphocytes (TILs) predict a more favor-
able survival in numerous types of cancers; e.g. breast cancer
[12], colon cancer [13], and melanoma [14]. Immune cells are
currently to the largest extent quantified by pathologists through
microscopy of tissue sections [15]. However, this method is
time consuming, has high inter- and intraobserver variability,
and consequently a poor reproducibility. Thus, new and more
objective methods for immune cell quantification are needed.

A class of artificial intelligence methods showing great perfor-
mance in various image recognition tasks in digital pathology
is deep learning-based algorithms [16]. Convolutional neural
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networks (CNNs) have been applied to many tasks in pathol-
ogy, including cell detection [17], outcome prediction [18],
as well as analyzing complex spatial patterns within tumors
[19]. Also, deep learning algorithms have been applied to a
wide range of tasks in image cytometry [20]. Indeed, CNNs
have already shown promising results in quantifying TILs in
hematoxylin and eosin (HE) stained tissue samples [21]. Fur-
thermore, reproducibility can even further be improved when
using leukocyte-specific immunohistochemical (IHC) stains as
a reference when annotating leukocytes in HE stained samples
[22], [23]. However, the tissue morphology might significantly
change in consecutive tissue sections, particularly on cell level.
This can prove to be problematic when using one section as an
annotation reference for another. Therefore, sequential staining
and digitization of the same tissue section, as has been proposed
in previous works, would be preferred for referencing purposes
[24], [25].

In the present proof-of-concept study, we propose a method
for generating antibody-supervised annotations for training of
CNN algorithms. Our aim was to assess the feasibility of a
machine-learning based method for segmenting leukocytes. In
the present study, we trained the model on HE stained tissue sec-
tions since it is the most widely used stain in routine diagnostics.
The annotations were generated using a novel destain-restain
protocol where the pan-leukocyte anti CD45 antibody staining
formed the ground truth for the HE stained samples.

II. MATERIAL AND METHODS

A. Patient Cohort

The twelve patient cases used in the present study derived
from two different patient cohorts. Five patients were originally
included in a cohort consisting of 65 PTC patients treated
between 1973 and 1996 [26], [27]. The remaining seven cases
derived from a newer series of PTC patients treated between
2003 and 2013. All patients were treated at the Helsinki Uni-
versity Hospital. These representative cases visually contained
varying amounts of leukocyte infiltration were selected to be
used in training and testing of the CNN algorithm. As no clinical
records were retrieved for this study, and the study contained no
personal identifiers, no written consent was required according
to the Ministry of Social Affairs and Health, Finland Act on the
Medical Use of Human Organs, Tissues and Cells (Amendments
including and up to 227/2013)

B. Staining Protocol and Digitization of Tissue Samples

Two researchers (S.S., J.A.) reviewed all available original
tissue glass slides of the twelve patients included in the training
and the independent test set. One formalin-fixed and paraffin-
embedded (FFPE) tissue block containing the most representa-
tive tumor material was selected for each of the twelve patients.
The selected FFPE blocks were retrieved from the archives of
Helsinki University Hospital Laboratory (HUSLAB, Helsinki,
Finland). Sections (0.3 µm) were freshly cut and fixed on glass
slides. The tissue slides were then stained with HE according
to standard procedures. The HE stained samples were digitized

with a whole-slide image scanner (Pannoramic 250, 3DHistech,
Hungary). The HE procedure as well as the scanner specifics
are described in detail in the appendix. The scanned images
(0.24 µm/pixel) were then imported to an image management
platform (WebMicroscope, Aiforia Technologies Oy, Helsinki,
Finland). After digitization of the HE slides, the coverslips were
soaked off in xylene and the sections were rehydrated. Then the
HE was boiled off during antigen retrieval for 20 min in 99 °C
10 mM Tris/ 1mM EDTA pH9 solution. For antigen retrieval,
slides were pre-treated with Cell Conditioning 1 buffer (Ventana
Medical Systems, Inc., Arizona, USA) for 20 min. The tissue
sections were incubated with the primary anti CD45 antibody
(RTU CD45, clone 2B11PD7/26, Ventana) for 44 min at room
temperature and the tissue sections were then processed using
an automated staining system (BenchMark ULTRA system,
Ventana). A 3,3′-diaminobenzidine (DAB) kit (UltraVIEW, Ven-
tana) was used as the detection. Finally, the anti CD45 stained
tissue sections were digitized into whole-slide images (WSIs)
using the same scanner as with the HE stained samples (Fig. 1).

C. Creation of Binary Masks

For creating binary masks, we first created a custom soft-
ware using C# in Dotnet (Microsoft, Redmond, WA) and Win-
dows Presentation Foundation (WPF, Microsoft, Redmond, WA)
frameworks. The five WSI pairs of HE and anti CD45 DAB
antibody stained tissue sections were imported to the software
and registered. Using the abovementioned custom software, we
manually registered the WSIs using the HE as base layer and the
ground truth anti CD45 DAB immunostaining as the top layer.
First, the slides were roughly registered using morphological
landmarks that could be seen in the tissue slides. Following this,
regions of interest (ROIs) were exported as 5000 × 5000-pixel
sized tiles. These tiles were then re-layered and re-registered,
now on a cell level, and further tiled into smaller 500× 500-pixel
sized image tiles. This two-step matching and tiling procedure
was performed to limit the impact of potential stitching shifts
that occur in the digitization of the slides (Fig. 2). During tiling
and exporting of the 500 × 500 sized images, the ground truth
mask, the anti CD45 DAB stained sample, was turned into a
binary mask in multiple steps. First, the image tiles were split
into red, green and blue color channels. Since the blue color
channel had the best contrast between DAB stained anti CD45
positive regions and the background, the red and green color
channels were discarded. The blue color channel image was
then converted into a binary mask by manually selecting the
threshold matrix prior to export. After this, the binary mask was
further processed by blurring. Finally, noise was filtered out by
discarding areas smaller than a total area of 350 pixels (Fig. 3).

D. Image Datasets

A total of 1,738 500 × 500-pixel image tiles of the twelve
destained-restained WSIs (range: 48–321 tiles per tissue slide)
were selected and used in the training and testing of the CNN
algorithm. The tiles of ten of these slides (n = 1,387) were
used for training and validating the CNN algorithm. The trained
model was then tested on an independent test set comprising 351
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Fig. 1. Flowchart of protocol used in the study. First, tissue sections were stained with hematoxylin and eosin. Then, the sections were digitized
into whole-slide images (WSIs) before being destained. The sections were then restained with anti CD45 antibody immunostaining and again
scanned into WSIs. This staining protocol yielded HE and anti CD45 antibody stains of the same tissue section.

500 × 500-pixel tiles exported from the remaining two destain-
restained tissue slides (Fig. 4). The entire WSIs in the training
set were analyzed for internal validation outside the tiled regions
used for training.

The WSIs were analyzed in 500 × 500-pixel image tiles.
Before performing the analysis, we discarded the all-white tiles
which did not include any tissue. Excluding the training and
testing tiles, 236,377 tiles of 500 × 500 pixels (mean 19,698
tiles per slide, range: 11,464–30,476 tiles) were analyzed with
the CNN algorithm. Of these, 197,071 were from the ten WSIs
included in the cross-validation training. The 39,306 remaining
tiles were from the WSIs in the independent test set.

E. Deep Convolutional Neural Network Image Analysis

The U-Net architecture [28] is a CNN tailored to solve various
image segmentation tasks in the medical domain. Specifically,
the U-Net performs dense semantic segmentation, where each
pixel of the input image is assigned a corresponding class label.
In our study, we adapted the U-Net architecture with ImageNet
[29] pre-trained weights and ResNet-18 [30] backbone to per-
form binary segmentation, i.e. separation of leukocytes from
the rest of the tissue. The upward path was left identical to the
original U-Net architecture. We used the default learning rate
of 0.001. Batch normalization was not used, nor was dropout or
L1/L2 regularization. Also, both encoder and decoder weights
were optimized at training phase. We utilized on the fly data
augmentation by applying random horizontal and vertical flips
to the image-mask pairs as well as random shear up to 15 percent.
Training was done by presenting augmented HE tissue samples

as input and corresponding anti CD45 DAB binary masks as out-
put. A five-fold cross-validation method was implemented. The
folds were made by preserving the percentage of tiles from each
of the WSIs in both training and validation splits. In each fold,
an average of 1,110 tiles were used for training and an average
277 tiles were used for validation (Fig. 4). After the network
models reached their best performance on the validation set, it
was evaluated on held-out image-mask pairs to validate that the
trained model generalizes and performed well on unseen data.
Each of the five models trained in cross-validation were applied
to the held-out set and the results were averaged. Evaluation of
the results was done both quantitatively, by calculating segmen-
tation accuracy metrics, as well as qualitatively, by visual ex-
amination and comparison of ground truth labels with predicted
segmentation masks. For quantitative assessment of algorithm
performance, the prediction map created by the algorithm was
turned into binary masks which were compared to the anti CD45
DAB ground truth binary masks. For visual assessment, the
probability score for each pixel generated by the algorithm was
turned into a color intensity score which resulted in a heatmap
directly based on the probability map. The generated heatmap
was then registered with the HE stain for each corresponding
WSI for visual assessment. At training an adaptive learning rate
optimization algorithm [31] was minimizing the Jaccard index
in mini batches of size 16 over 45 epochs.

F. Ethical Statement

The Ethics Committee at the University of Helsinki approved
the study protocol (226/E6/2006, extension 17.4.2013). The
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Fig. 2. The hematoxylin and eosin (HE) and pan-leukocyte anti CD45
antibody stained tissue slides were layered and manually registered
using a custom software. Larger, 5000 × 5000-pixel image tiles of re-
gions of interest were then exported. Following this, the tiles were again
layered and matched and further tiled into 500 × 500-pixel image tiles.
During the last export, the registered positively DAB stained anti CD45
regions were processed in multiple steps and turned into binary masks.
The binary masks were used as annotations for the HE stained images
and a convolutional neural network (CNN) algorithm was trained based
on the patterns of these masks. Results of the algorithm is illustrated as
heatmaps.

National Authority of Welfare and Health approved the retro-
spective study (Valvira Dnro 10041/06.01.03.01/2012).

III. RESULTS

For performance evaluation, the trained CNN algorithm was
tested on 351 image tiles sized 500 × 500 pixels. For each
of these tiles, the probability masks generated by the CNN
algorithm were turned into binary masks and compared to the
ground truth mask based on the anti CD45 DAB staining. Thus,
in pixel-wise comparisons of the algorithm result mask and the
ground truth mask, a total of 87.8 million pixels were compared.
Based on this independent test set, we observed an intersection
over union (IoU) of 0.82. By averaging results from the five
models trained in cross-validation, we observed a receiver oper-
ating characteristics area under the curve (ROC AUC) of 0.96 on
the held-out data when comparing the anti CD45 DAB ground
truth mask to the algorithm result mask on pixel level (Fig. 5).

For visual performance assessment, the HE WSIs of all twelve
destain-restained tissue sections were analyzed by the trained
algorithm. For convenient visual evaluation, we registered the
algorithm result heatmap and the HE stain of the ten WSIs
included in the training set. For the test WSIs, we registered
the HE stain, the algorithm result heatmap, as well as the anti
CD45 DAB ground truth stain. The algorithm results could be
visually compared to the anti CD45 DAB antibody stain by
moving through the layers (Fig. 6). The WSIs subject to the
visual performance assessment can be explored via the following
URL: https://tinyurl.com/qorlnlg

IV. DISCUSSION

In this proof-of-concept study, we used a novel method for
antibody-supervised training of a CNN algorithm. The trained
algorithm was highly accurate both measured on a pixel-level
in the test set image tiles and through visual examination of the
analyzed WSIs, which indicates that the proposed method of
generating training sets is feasible.

Machine learning-based tools have previously been used to
quantify leukocytes within tumors [21], [22]. However, these
methods use supervised learning and rely on manual annota-
tions. This method is both laborious and subjective and thus has
poor reproducibility. We propose a method that require no man-
ual annotations and is more objective. To the best of our knowl-
edge, the proposed method for applying antibody supervised
annotations derived from binary masks using a destain-restain
protocol of the same tissue section has not been described.

Previously, a method for transferring annotations from an IHC
stain to HE has been proposed [25]. However, this method differs
from the present method in a few ways. First, in our method, we
suggest using binary masks when transferring the annotations
in between stains which allows for pixel-wise training of the
algorithm. In contrast, in the paper by Tellez et al, they train
the first CNN patch-wise using 100 × 100-pixel tiles. Secondly,
in the method proposed in this paper, no manual annotations
are required, compared to an average of 2 hours per observer.
However, we manually reviewed and selected the exported tiles
which introduced a manual element in our method as well.

In order to train an algorithm for segmentation tasks, the anno-
tated or labeled training material has to be as precise as possible.
Thus, creating high quality training material is a time-consuming
process. Our proposed method replaces the manual annotation
task with the IHC staining mask that is directly applied as anno-
tations to the HE-stained training material. This trains the CNN
model to output a virtual IHC stain e.g. a “digital biomarker”
that mimics the performance of the particular antibody used as
the mask.

The proposed method for generating training data is fast;
matched and marked areas are tiled, processed, and exported in a
matter of minutes and can easily be extended to whole WSIs that
are hard to fully label by a human annotator. Also, as compared to
manual annotation, the antibody-supervised annotation method
is likely to be more reproducible.

We explored several different thresholding methods for the
image processing, including automatic methods such as Otsu’s

https://tinyurl.com/qorlnlg
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Fig. 3. Image processing protocol. First, the images were split into red, green and blue color channels, and the red and green channels were
discarded (a). Since the blue color channel had the best contrast between anti CD45 DAB positive and background regions, we used this for further
processing. We then turned the blue channel image into a binary mask (b). This image was then blurred and noise smaller than a total area of 350
pixels were filtered out (c).

Fig. 4. A consort diagram showing the datasets used in the study. A
total of twelve destained-restained tissue slides were used. Ten WSIs
were used in a five-fold cross validation training protocol. The tiles from
all ten WSIs were pooled and divided up in five batches so that each
fold had an equal number of tiles from all ten WSIs averaging 1,110
tiles for training and 277 for validation. The performance of the five
models generated were averaged and run on unseen image tiles from
the two WSIs in the test set and the performance was evaluated both
quantitatively and visually.

method. The masks created by various thresholding methods
were visually reviewed and we decided on a manual thresh-
olding method since it gave superior results compared to the
other methods. This, in turn, means that the threshold has to
be manually selected and thus introduces some subjectivity.
However, compared to a fully manual way of creating training
annotations, this method of antibody-supervised training is still
a more objective way of creating annotations. In our proposed
method we selected the blue color channel for further image
processing. This color channel was selected because it offered
good contrast with the positively DAB stained areas and the rest
of the tissue and thus could easily be converted to a binary mask.
A method for color deconvolution has previously been proposed
[32]. We also explored this method which resulted in similar
binary masks as with our proposed method (supplementary
Fig. 1). However, using an image with only one-color channel,
as we propose, decreases the size of the files being processed to

Fig. 5. Average receiver operating characteristics (ROC) curve of the
five-fold cross validation algorithm. The pixel-level predictions scores of
the five models were averaged and turned into binary masks which were
then compared with the anti CD45 DAB ground truth masks of the image
tiles in the independent test set. The independent test set comprised of
351 tiles of 500 × 500 pixels. Thus, 87.8 million pixels were evaluated.
The area under the curve was 0.96.

one third compared to using RGB images. This is a significant
decrease in data being processed and using color deconvolution
could drastically slow down the image processing step in bigger
datasets.

Since the annotations of the training material is directly based
on the IHC stains, the staining quality, in turn, directly affects
algorithm performance. In the present study, we limited this
by manually reviewing all exported image tiles and selecting
the training data. Another issue that needs to be taken into
consideration is the scanner stitching artifacts. When digitizing
a tissue slide, the slide is first being scanned in tiles and then
stitched together. This might cause imperfect alignment and
thus some shift between the scanned tiles. This effect is further
amplified when layering multiple WSIs and had to be considered
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Fig. 6. Analysis of one of the whole slide images in the independent test set. Two separate regions of interest zoomed-in from the hematoxylin
and eosin slide (a and b) and the corresponding areas in the immunohistochemically stained slide (e and f). The images in between these (c and
d) represents heatmaps of the analysis result of the trained deep convolutional neural network algorithm. The rest of the WSIs can be explored in
detail via the following URL: https://tinyurl.com/qorlnlg.

in the layering and tiling process. Therefore, we used a two-step
matching and tiling protocol previously described in the methods
section to limit the impact of the stitching shifts (Fig. 2). Also,
training images with misalignments due to stitching shift were
discarded in the manual review process.

We trained the algorithm using a five-fold cross validation on
1,387 image tiles cropped from ten WSIs and annotated using
the proposed antibody-supervised method. In the quantitative
performance evaluation, the algorithm accurately segmented
leukocytes in the HE stained WSIs when comparing algorithm
prediction masks to the ground truth masks. For visual per-
formance evaluation, we then ran the algorithm on all twelve
WSIs. The material in the training and testing comprised of
only 0.73% of the entire WSI tissue area analyzed by the
algorithm. Even though the algorithm was trained on a relatively
small training set and few individual tissue slides, the algorithm
accurately segmented leukocytes in the test WSIs (URL: https:
//tinyurl.com/qorlnlg). Here, the algorithm can also be seen
working well on slides containing few leukocytes (supplemen-
tary Fig. 2). However, due to several factors, the accuracy tends to
drop when testing algorithms on samples coming from different
centers [33]. Thus, including more samples representing a larger
variety of fixation, staining and scanning protocols from multiple
centers in the training set needs to be evaluated in further studies.

The prognostic and predictive value of the quantity of per-
itumoral and tumor infiltrating immune cells in PTC is still
largely unclear. The HE stain is widely used for identification of
leukocytes in tumor tissue in addition to identification of specific
antibodies [34]. Therefore, we used HE as the selected staining
for training of the CNN algorithm. Our aim was to study whether
an algorithm can be trained to detect leukocytes in HE stained

samples guided by a leukocyte-specific antibody. The anti CD45
pan-leukocyte marker was used as the immune cell marker in the
present study, but the method needs to be evaluated using other
immunohistochemistry stainings in future studies.

In conclusion, we show that a destain-restain protocol and
transfer of the anti CD45 DAB stain to be used as a mask on
HE stained samples is a feasible method for quickly generating
annotations for training accurate machine learning models.

APPENDIX

The freshly cut tissue glass slides were stained with hema-
toxylin & eosin according to standard procedure. First, the tissue
sections were deparaffinized and rehydrated after which they
were incubated for 10 min at room temperature in Mayer’s
hemalum solution (Merck 1.09249, Merck Life Science, Darm-
stadt, Germany). The slides were then rinsed under tap water
for 5 min and the staining was differentiated by dipping the
slides twice in 70% EtOH/1% HCl solution. The slides were
then rinsed with tap water for 5 min more after which they were
incubated in aqueous 1% eosin solution (Sigma E4382, Sigma
Corporation, USA) for 2 min. After dehydration in alcohol and
xylene, the slides were mounted in DPX mounting medium
(Sigma, USA).

Both the HE and the immunohistochemistry stained sam-
ples were digitized with a scanner (Pannoramic 250 FLASH
3DHISTECH Ltd., Budapest, Hungary) equipped with a plan-
apochromat 20x objective (NA 0.8), a VCC-F52U24CL camera
(CIS, Tokyo, Japan) with three image sensors (1,224 × 1,624;
4.4 × 4,4 µm/pixels), and a 1.0 adapter. After digitization,
the scanned images were compressed into a wavelet format

https://tinyurl.com/qorlnlg
https://tinyurl.com/qorlnlg
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(Enhanced Compressed Wavelet, ECW, ER Mapper, Intergraph,
Atlanta, GA) with a compression ratio of 1:9 and imported
to an image management platform (WebMicroscope, Aiforia
Technologies Oy, Helsinki, Finland).
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