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Evaluation of Machine Learning Models for
Classifying Upper Extremity Exercises Using

Inertial Measurement Unit-Based
Kinematic Data

Andrew Hua , Pratik Chaudhari, Nicole Johnson, Joshua Quinton, Bruce Schatz, David Buchner,
and Manuel E. Hernandez

Abstract—The amount of home-based exercise pre-
scribed by a physical therapist is difficult to monitor. How-
ever, the integration of wearable inertial measurement unit
(IMU) devices can aid in monitoring home exercise by an-
alyzing exercise biomechanics. The objective of this study
is to evaluate machine learning models for classifying nine
different upper extremity exercises, based upon kinematic
data captured from an IMU-based device. Fifty participants
performed one compound and eight isolation exercises
with their right arm. Each exercise was performed ten times
for a total of 4500 trials. Joint angles were calculated using
IMUs that were placed on the hand, forearm, upper arm,
and torso. Various machine learning models were devel-
oped with different algorithms and train-test splits. Random
forest models with flattened kinematic data as a feature
had the greatest accuracy (98.6%). Using triaxial joint range
of motion as the feature set resulted in decreased accu-
racy (91.9%) with faster speeds. Accuracy did not decrease
below 90% until training size was decreased to 5% from
50%. Accuracy decreased (88.7%) when splitting data by
participant. Upper extremity exercises can be classified ac-
curately using kinematic data from a wearable IMU device.
A random forest classification model was developed that
quickly and accurately classified exercises. Sampling fre-
quency and lower training splits had a modest effect on
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performance. When the data were split by subject stratifi-
cation, larger training sizes were required for acceptable
algorithm performance. These findings set the basis for
more objective and accurate measurements of home-based
exercise using emerging healthcare technologies.

Index Terms—Biomechanics, classification, inertial
measurement units, machine learning, physical therapy.

I. INTRODUCTION

EXERCISE regimens are prescribed by physical therapists
for a variety of purposes, including treatment of chronic

diseases (e.g. rheumatoid arthritis), treatment of acute joint
injuries (e.g. tears of rotator cuff muscles at the shoulder), and
prevention of injuries (e.g. fall injuries in older adults) [1],
[2]. When safe to do so, including home-based (unsupervised)
exercise in a prescribed regimen is preferable. Exercise can be
prescribed on most or all days of the week, making supervision
by therapists expensive and logistically difficult.

However, there are challenges to attaining the prescribed
quantity and quality of home exercise. One study reported that
nearly half of patients assigned self-monitored physical therapy
(PT) had to be switched to supervised PT after six weeks, due
to muscle atrophy, reduced range of motion (ROM), and low
compliance [3]. Given that higher adherence to PT exercise is
associated with greater physical function, self-perceived effect,
and decreased pain [4], it is concerning that other studies have
reported only 35-72% of participants had complete adherence
to prescribed PT exercise [5], [6]. Exercise adherence is most
commonly recorded with self-report exercise logs. However,
exercise logs could potentially cue patients to exercise, and as
such, the findings from studies using exercise logs may not be
generalizable to wider clinical practice [5], [7]. While exercise
logs are commonly used to monitor home exercise, logs have
limitations due to over-reporting and memory errors by patients
and due to the inherent difficulty of measuring exercise quality
by self-report.

Thus, it is important to develop objective methods of monitor-
ing home exercise. One approach is to use Red, Green, Blue, and
Depth (RGB-D) cameras, such as the Microsoft Kinect. RGB-D
cameras are widely used for gesture recognition and motion
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capture [8], [9] and are capable of high multi-classification
performance with accuracies exceeding 90% [8], [10], [11].
Reflexion Health, Inc., has developed a product called Vera,
which is capable of accurately counting exercise repetitions
as well as differentiating between acceptable and unacceptable
form [12]. However, RGB-D cameras have a few limitations,
including limited portability, accuracy, and significant physical
space requirements. To use an RGB-D camera in the home, ad-
equate space between the user and camera needs to be provided
(e.g. the Microsoft Kinect requires at least six to eight feet of
open space), and portability of the cameras will be limited due to
the size of the camera, computers, and power cables. Measures
from RGB-D cameras can deviate as much as 16° from the actual
patient’s movement [13], raising questions about their ability
to monitor exercise in patients at increased risk of injury or
re-injury with excessive joint movement [14].

A second approach uses small, inexpensive sensors called
IMUs (inertial measurement units), which measure orientation
in space. By use of special clothing to secure the IMUs to
the body, the IMUs measure body movements. IMUs have
been used in athletes to monitor movements related to risk of
overuse injuries, such as the number of baseballs thrown or
volleyballs served [15]. Xsens Technologies B.V. (Netherlands)
has developed IMU-based motion capture systems for research
use [13], [14], while others are developing lower cost systems
intended for clinical use [15]– [17]. Studies report that IMUs can
be used to differentiate correct versus incorrect exercise form
[16], [18], [19]. A small study of two-weeks of PT exercise
using an IMU device reported high adherence to exercise and
positive user experience, even though the device had bugs and
inaccuracies [20]. More research using IMU-based systems
is appropriate, as these systems may provide an inexpensive,
portable, accurate, and adaptable technology for use in home
settings. With automatic activity logging, combined with the
internet of things (IoT), messages can be sent through smart-
phones or smart homes to remind patients to complete their daily
exercises, which has been shown to improve exercise adherence
[21]. These systems also offer clinicians the ability to remotely
monitor patients and identify patients in need of more intensive
rehabilitation, so as to realize more personalized and precise
healthcare.

We propose a low-cost IMU-based device that can be worn
by PT patients during exercise for the purpose of monitoring
exercise. The device costs less than $150 and consists of a
Raspberry Pi 3 Model B and 4 Adafruit BNO055 9DOF IMUs.
In part, the shoulder was chosen due to the lack of IMU-related
research on upper extremity movement [22]. The objectives
of this study are: 1) to evaluate machine learning models for
classifying nine different upper extremity exercises, based upon
biomechanics captured from the IMU-based device, and 2) to
determine the effect of various train-test splits and sampling
frequencies (64 Hz, 11 Hz, and 5 Hz) of the IMU device on
classifier performance. As high accuracy (>89%) has been
reported when using a smartwatch to classify shoulder exercises
[23], we sought to exceed a 90% classification accuracy as our
device incorporated multiple sensors.

Fig. 1. Device placement on participant. Sensors were placed on the
lateral aspect of the torso, upper arm, forearm, and hand. Sensors were
placed midway on each body segment. The Raspberry Pi and battery
were centered on the front of the abdomen.

II. METHODS

A. Study Sample

50 participants were primarily recruited from the local
Champaign-Urbana region using electronic advertisements.
Word-of-mouth recruitment was also used. Interested parties
contacted research staff indicating interest and were given a link
to complete an online intake survey, gathering basic demograph-
ics information, past upper extremity injury history, and inclu-
sion/exclusion criteria. The inclusion criteria for the study were:
1) 18-64 years of age, 2) willing to come to Urbana-Champaign
for lab testing, and 3) willing to perform light resistance training.
Exclusion criteria included: 1) unable to perform upper extrem-
ity movements due to physical immobilization (casts, splints,
etc.), 2) unwilling to exercise without a shirt or compression
clothing, 3) diagnosed with a neurological disorder that affects
motor skills, 4) unable to perform a jumping jack or throw a
ball, 5) pregnant, and 6) BMI greater than 30.0. 60% of the
sample were males. The mean age was 21.9 ± 4.0 years of age.
The mean BMI was 22.6 ± 2.7. This study was approved by
the Institutional Review Board at the University of Illinois at
Urbana-Champaign (Protocol Number: 18122).

B. Testing Protocol

Upon arrival to the testing site, informed consent was obtained
from participants. The IMU-based device was then secured
to the participant using elastic straps (Fig. 1). Triaxial IMUs
were oriented with the top of each board facing the right side
of the body. Participants were asked to complete 9 exercises:
1) standing row, 2) external rotation with arm abducted 90°,
3) external rotation, 4) bicep curl, 5) forearm pronation/
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supination, 6) wrist curls, 7) lateral arm raise, 8) front arm raise,
9) and horizontal abduction. Prior to each exercise, research staff
taught participants how to perform each movement to ensure
relatively consistent form across participants. Participants could
practice until exercises could be performed without coaching.
Exercises were completed using either lightweight resistance
bands, a 2 lb. dumbbell, or no resistance at all.

Kinematic data were recorded for 4 seconds. Participants
were asked to spend one second on the lifting phase and one
second on the lowering phase with no pause at the maximum
range of motion. Each exercise was repeated 10 times in sin-
gle repetition trials for a total of 90 trials. Participants could
rest as needed to ensure good, consistent form. Each sensor
recorded orientation in the form of a quaternion. Joint angles
were obtained by calculating the relative rotation between a pair
of sensors. Joint angles were then converted from quaternions
to Euler angles, a more interpretable measure. Each trial was
segmented as the paper was part of a larger study that sought to
validate the IMU-based device against a motion capture system
for the purpose of developing a portable device that could be
used in physical therapy settings to measure exercise quality via
kinematic analysis. Each trial was collected individually to allow
for kinematic analysis as the two data sets needed to be compared
frame-by-frame, and continuous data would have introduced an
additional layer of computation that could impact validation.

C. Data Cleaning

There were two major problems with the data collected by
the device: 1) the sensors sometimes jumped from the positive
axis to the negative axis (or vice versa) as the sensors were
constrained to a range of values (e.g.,−180 to+180 rather than 0
to 360 degrees), and 2) the device had an inherent deficiency with
clock-stretching that resulted in sporadic incorrect data points.

To address the first problem, the jumps were identified by
taking the product of consecutive datapoints. The theory behind
this was that if a flip in axis occurred whether it was −180
to +180 or −1 to +1, that product would be negative. To
differentiate between these two scenarios, the product of the two
points must be less than −25,000 (approximately the square of
158). This would allow small, correct changes in angle while
filtering large jumps. This process was applied to the entire data
series, and the index of each value that satisfied the previous
condition was noted. Each consecutive pair of indices marked a
segment of the data series that underwent an axis flip. To correct
these errors, the direction of the flip needed to be identified. If
the sign of the first value of each pair was positive, this indicated
that the values in the segment went from+180 to−180, and 360
degrees was added to all values in the segment to correct for the
error. If the sign of the first value of each pair was negative, this
indicated the opposite, and 360 degrees was subtracted from all
values in the segment.

To address the second problem, the errors were identified by
calculating change between consecutive points. If a difference
was greater than or equal to 5 times the distance (time) from
the last “good” data point, the current value was considered an
outlier. If the difference was less than the previous quotient, then

Fig. 2. Plots demonstrating the correction algorithm implemented to
clean data. Raw signal included errors due to axis flipping (+180 to
−180) and drops in data (sudden deviations from the curve). Axis-
flipping was corrected by adding or subtracting 360 to flipped seg-
ments. Outliers were replaced with cubic spline interpolation. A 2nd
order Savitzky-Golay filter with an 11 data points window was applied
to smooth data.

the current value was not changed, and the last “good” data point
was updated with the current value. All outliers were replaced
with a piecewise cubic spline interpolation using the unchanged
values.

After filling missing data and correcting errors, a 2nd order
Savitzky-Golay filter with 11-data-point window was applied.
Fig. 2 shows the cleaning steps applied to sample data.

D. Data Preparation

There was a total of 4,500 trials in the dataset. The raw dataset
had an average sampling rate of 64 Hz. Simulated reduced
sampling rate datasets were generated by sampling every second,
third, fourth, sixth, and twelfth points from the raw datasets.
Cleaning methods were applied after down sampling to prevent
confounding the new datasets as down sampling could alter the
waveform shape.

Two feature sets were created from the data. The first feature
set consisted of a flattened structure of the data. The nine curves
each were padded with 0s to match the length of the longest
trial. The padded data were then flattened into a single array as
a feature. The second feature set consisted of range of motion
(ROM) values calculated for each of the nine curves. Range of
motion was calculated for each trial by subtracting the minimum
measured angle from the maximum measured angle.

E. Machine Learning Models

With raw accelerometer, magnetometer, and gyroscope data,
the values are too abstract for a human to identify an exercise and
call for more complex machine learning techniques. However,
this study uses joint angle data which provide each exercise
with a unique kinematic “fingerprint” that can easily be identi-
fied by humans. Thus, we elected to use simpler classification
algorithms in this study as we believe the classification problem
is not particularly complex. Using the scikit-learn library for
Python, models were constructed using Random Forest (RF),
LinearSVC, k-Nearest Neighbors (kNN), and Multilayer Per-
ceptron (MLP) algorithms to classify the nine different exercises.
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RF custom parameters included 300 trees with a maximum
depth of 20 nodes. LinearSVC custom parameters included
200,000 max iterations and primal optimization. kNN models
were constructed on the range of 1 to 10 neighbors. MLP
hyper-parameters were optimized using a randomized search on
hidden layer sizes, activation, solver, alpha, and learning rate.

Three analyses were performed: 1) to identify the best per-
forming classification algorithm and feature set using a random
selection of data for training and testing, 2) to evaluate the impact
of different training group sizes using a random selection of data
for training and testing, and 3) to evaluate the impact of different
training group sizes using subject stratified training and testing.

For comparison of different models and feature sets, a 50-50
train-test split was used. Accuracy, precision, recall, F1-score,
speed, and support were used to assess classifier performance.
Precision is defined as the fraction of true positives relative to
the total number of predicted labeled. Recall is defined as the
fraction of true positives relative to the total number of true
labeled. F1-score is defined as the harmonic average of precision
and recall where a score of 1 represents high performance.
Support is defined as the number of trials predicted for each
label. Confusion matrices were also shown for some classifiers.

For comparison of different training group sizes, RF models
were used. The flattened and ROM feature sets were combined
into a single feature set for these analyses. Training group splits
ranged from 1% to 50%. A second analysis randomly split the
data by participants rather than a randomly mixed sample to
assess classifier performance on unseen participants. Training
group splits ranged from 10% to 98%. For each training group
split, the average classifier accuracy was calculated over ten
randomly blinded samples, and 10-fold cross validation was
used for each sample.

III. RESULTS

A. Feature Set Selection and Comparison of
Machine Learning Algorithms

Table I shows classifier performance with RF, Linear SVC,
3-NN, and MLP algorithms applied to the flattened and ROM
feature sets. Overall classifier performance was excellent with an
average accuracy of 90.6%. Models using the flattened feature
set consistently outperformed models using the ROM feature set
(97.2% accuracy vs. 91.0% accuracy, respectively). However,
models using the ROM feature set were noticeably faster to train
and test.

The RF models had the greatest accuracy (98.6%) in compar-
ison to 3-NN (97.4%) and MLP (95.7%) for the flattened feature
set. The same trend was true for models using the ROM feature
set. MLP models took at least two orders of magnitude longer to
train in comparison to RF and 3-NN; however, the testing time
for MLP was similar to RF and faster than 3-NN. RF and MLP
models had longer train times and shorter test times whereas
3-NN had shorter train times and longer test times. LinearSVC
was not viable for either feature set. The ROM feature set had
poor accuracy (75.6%), and the flattened feature set required too
much time to compute.

TABLE I
CLASSIFIER PERFORMANCE APPLYING RANDOM FOREST (RF), K-NEAREST
NEIGHBORS (3-NN), AND MULTILAYER PERCEPTRON (MLP) ALGORITHMS
WITH FLATTENED KINEMATIC AND RANGE OF MOTION (ROM) FEATURE

SETS. ACCURACY, TRAINING TIME, AND TEST TIME ARE SHOWN
FOR 50% TRAINING SETS

B. Exercise Specific Performance

Fig. 3 shows the confusion matrices for RF models using the
flattened and ROM feature set. The RF model using the flattened
feature set was 100% accurate on five exercises: 1) standing row,
2) external rotation with arm abducted 90°, 3) bicep curl, 4)
wrist curl, and 5) horizontal abduction. All models using the
flattened feature set had the tendency to misclassify lateral and
front arm raises as each other. Models using the ROM feature set
had two patterns of misclassification: 1) external rotation with
the arm abducted 90° and external rotation, and 2) lateral arm
raises, front arm raises, and horizontal abduction. These models
consistently classified four exercises well: 1) standing row,
2) bicep curl, 3) forearm pronation/supination, and 4) wrist curls.

C. Impact of Down Sampling Data on
Classifier Performance

Table II shows performance metrics of RF classifiers using the
flattened feature set at six different sampling rates. All classifiers
met the goal of at least 90% classification accuracy. There was no
significant change in classifier performance when decreasing the
sampling rate to 32 Hz (half), 22 Hz (third), or 16 Hz (quarter).
Precision, recall, and F1-score values were within .01 of those
of the raw classifier. Classifier performance did not begin to
diminish until reducing the sampling rate to 11 Hz (sixth).
Precision, recall, and F1-score decreased slightly, about 0.02 for
each metric compared to the raw classifier. Further decrease in
classifier performance was seen with 5 Hz data, but the classifier
still met the goals. Precision, recall, and F1-score decreased by
about .03 compared to the raw classifier.

Misclassification patterns persisted with down sampling data.
Front and lateral arm raises continued to be misclassified as
each other, and the magnitude of the errors increased as the
data was further down sampled. One interesting discovery was
the shape of the graphs after down samplings (Fig. 4). The
overall shape of the curves remained similar for the quarter and
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Fig. 3. Confusion matrices for random forest models using the (a) flattened and (b) ROM feature sets. Exercises are as follow – 1: standing row;
2: external rotation with arm abducted 90°; 3: external rotation; 4: bicep curl; 5: forearm pronation/supination; 6: wrist curl; 7: lateral arm raise;
8: front arm raise; 9: horizontal abduction.

TABLE II
PERFORMANCE METRICS FROM RANDOM FOREST CLASSIFICATION OF NINE UPPER LIMB EXERCISES AT THREE SAMPLING FREQUENCIES. PRECISION IS
DEFINED AS THE FRACTION OF TRUE POSITIVES RELATIVE TO THE TOTAL NUMBER OF PREDICTED LABELED. RECALL IS DEFINED AS THE FRACTION OF
TRUE POSITIVES RELATIVE TO THE TOTAL NUMBER OF TRUE LABELED. F1 SCORE IS DEFINED AS THE HARMONIC AVERAGE OF PRECISION AND RECALL

WHERE A SCORE OF 1 REPRESENTS HIGH PERFORMANCE. SUPPORT IS DEFINED AS THE NUMBER OF TRIALS PREDICTED FOR EACH LABEL

sixth down sampling in comparison to the original raw curve.
Despite the classifier still performing quite well, the twelfth
down sample curve looks drastically different and does not
provide any clinically relevant information to patients other than
the direction of movement.

D. Impact of Training Group Size on
Classifier Performance

Table III shows performance metrics of RF classifiers using
the combined feature set with different training group sizes
ranging from 1% to 50%. Accuracy decreased about 1.5% as the
training group size decreased from 50% to 30% of the sample.
Accuracy further decreased to 94.1% and 91.2% with a training

split of 20% and 10%, respectively. Accuracy decreased below
90% with a training split of 5% and rapidly decreased with a
training split of 2% and 1%.

Fig. 5 shows performance metrics of RF classifiers using
the combined feature set with participant stratified training and
testing groups. With a 10% training size (5 participants for a
total of 50 trials for each exercise), classifier performance was
acceptable with an accuracy of 90.2%. The accuracy did not
significantly change as training group size increased to 80%.
Classifier performance was inconsistent with an 80% training
group split as indicated by the large standard deviation. Classifier
performance increased significantly with a training group split of
at least 90%. 99.9% accuracy was achieved with a 98% training
group split (classifying only one person).
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Fig. 4. Graph showing changes in kinematic data with down sampling
due to applied filters and cleaning algorithm during external rotation with
arm abducted 90°.

TABLE III
PERFORMANCE METRICS OF RF CLASSIFIERS USING THE COMBINED

FEATURE SET WITH TRAINING GROUP SIZES RANGING FROM 1% TO 50%

IV. DISCUSSION

This study found that machine learning methods could ac-
curately classify a variety of upper extremity exercises using
biomechanical data from an IMU-based device. The highest
accuracy (98.6%) was attained using a random forest method–a
level of accuracy surpassing the study goal of 90% and similar
to the accuracies (96.85% to 97.5%) attained with other IMU
devices [23], [24] and to the accuracies (95.2% to 98.3% ac-
curacy) attained with RGB-D cameras [10], [25]. The greater
performance in this study compared to previous studies could
be explained by the additional IMUs allowing for additional
joint kinematic data that is not ascertainable with simpler sensor
designs. Each exercise can be identified with a “biomechanical
fingerprint” in that there is a unique combination of movement
in each plane and joint. Furthermore, previous work has shown
that multi-sensor systems outperform single sensor systems
when classifying continuous data and do not require complex

Fig. 5. Performance metrics of RF classifiers using the combined fea-
ture set with different participant stratified training group sizes ranging
from 10% to 98%. Error bars indicate average standard deviation of 10
randomly blinded samples.

classification algorithms which may improve processing speed
and usability [26]. One study did achieve near perfect activity
recognition of 10 CrossFit exercises using a wrist and ankle
sensor, but repetition counting performance was poor with an
average error rate of 6.1% (range: 2%–20%) [27].

The primary benefit of reducing sensors is operating under
the assumption that reduction of sensors improves ergonomics
and clinical usability. However, this device already uses the
minimum number of IMUs necessary for kinematic analysis
as each body segment requires an IMU to calculate relative
joint angles. Furthermore, clothing with integrated IMUs have
been developed that would make putting on multiple sensors as
easy as a single sensor [28]. Fewer IMUs may also actually
result in worse processing time as the data structure would
shift from relative joint angles (3DOF per joint) to raw sensor
data (9DOF per sensor). In order to retain the ability to clas-
sify exercises while the body is in any orientation, this would
require a minimum of two sensors (18DOF): a sensor on the
torso for orientation, and a sensor on the wrist or hand for
assessing exercises (sensors more proximal to the torso would
fail to capture distal joint exercises). Thus, this data would be
approximately 50% larger than this paper’s data and negatively
impact processing time. Furthermore, using raw sensor data
requires more consistent placement of sensors as accelerations
can differ greatly depending upon placement along a limb. With
relative joint angle data, the sensor placement is more resistant
to inconsistent sensor placement.

Classifier performance was consistent regardless of the
joint(s). Furthermore, the classifier performed similarly for the
one compound exercise (standing row) as it did for the isolation
exercises. The classifier’s lack of specificity for certain exercises
shows promise that the classifier should perform well with
additional exercises. Unexpectedly, the classifier struggled with
exercises that are similar in motion but performed in different
planes as shown by the higher rates of misclassification for
front and lateral arm raises. Similar patterns of misclassification
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between abduction and forward elevation and an even stronger
pattern (up to 21% of trials misclassified) between internal
and external rotation have been found in another study [23].
However, the previous study used only a single IMU. This
study should have been capable of discerning similar movements
in different planes as relative 3D joint angles were calculated
between pairs of IMUs. It is possible that by using nearest
relative rotations instead of a specific rotation order could lead to
similar angular data. In validating IMU-based motion capture,
greatest reliability is achieved by using different rotation orders
to calculate humerothoracic joint angles depending upon the
arm position [29]. More accurate classification could also be
attained by retaining individual sensor orientations in addition
to the joint angle calculations. This could help differentiate
between forward and lateral motions. Furthermore, alternative
pairs of IMUs may be needed to more accurately calculate
transverse movements. For example, the forearm may be a better
measure of internal and external rotation compared to upper
arm as skin artifacts cause IMUs on the upper arm to move
disproportionately to the humerus.

With some machine learning methods, high accuracy was
attainable with train and test times that would be reasonable
in a clinical setting. RF and k-NN models performed similarly
in this study, but the differences in training and testing time
can impact device usability. If real time activity classification
is desired, testing time is a priority as patients will not use a
device that significantly hinders exercise. RF algorithms offer a
balance between classification accuracy and speed. If additional
speed is necessary, the ROM feature set may be used at the cost
of accuracy. However, the previously mentioned suggestions of
improving accuracy may make up for this loss.

Deep learning algorithms may also be applied to increase
accuracy compared to simpler RF or k-NN algorithms [23], [30].
However, deep learning algorithms require more time to train
models, which can impact usability and device adoption. A new
method of learning features called probabilistic First-Take-All
could be applied to accelerate the training and testing speeds in
deep learning models with marginal changes to accuracy [30].
Notably, the sample size of this study (i.e. classifying 2250
exercise movements) is much larger than in a clinical setting,
where the task is to classify one exercise movement at a time.

The classifier’s performance did not deteriorate substantially
with down-sampled data. The classifier’s excellent performance
despite using inaccurate down sampled data supports previ-
ous findings, where inaccurate sensors have limited impact on
classification [31]. Having an IMU device collect data at a
lower sampling rate has several benefits. An important benefit
is longer battery—a priority in clinical settings [32]. Second,
with fewer data points, the classifier can be trained and tested
significantly faster, thus increasing the feasibility of real time
processing of IMU data. Lower sampling frequencies may also
allow the Pi to keep up with data calls – decreasing the number of
random outliers – and hence decrease or eliminate the need for
intensive cleaning and filtering algorithms. However, if cleaning
and filtering are still required, the kinematic data may no longer
be representative of the real movement and may not be useable

in more detailed classifiers, such as classifying proper versus
improper form.

A valid concern that many classification studies face is the
generalizability of the findings. This study attempted to address
this through two approaches: 1) under the premise that patients
would build their own training data, and 2) under the premise that
patients would utilize a previously created database as training
data. The decrease in performance as the training split decreased
from 50% to 10% suggests patients might not need large amounts
of training data for the classifier to perform well. While a 10%
split in this study consists of 50 trials per exercise, a seemingly
large number, a single session of PT typically includes at least
30 repetitions per exercise. One advantage for this approach is
that the classifier can be tuned to the patient’s current functional
status. For example, patients who are beginning PT may perform
exercises with limited range of motion, which can impact clas-
sification. Furthermore, this allows for good generalizability as
the device’s use will not be restricted to exercises in a database,
but any exercises may be performed as long as a sufficiently
large training set is created.

The findings show that classifier performance can be depen-
dent upon using previously seen data. Classifier performance
decreased nearly 10% when testing on data from unseen par-
ticipants. Similar decreases have been observed in other studies
[23]. Using a pre-existing database to classify exercises may
require many trials as accuracy did not exceed 90% until a
70% training split was used. Overfit is also possible as the
consistency of classifier performance decreased as the training
split increased, particularly for the 80% training split, which
also saw a large drop in accuracy. This may be due to large
between-subject variation. However, a large enough dataset may
contain enough information to handle between-subject variation
as shown by the high accuracy and low standard deviation when
using training splits greater than 90%.

There were several study limitations. First, the study data set
consisted of segmented trials and does not address the accuracy
possible with data from a continuous exercise session, as has
been done in other studies [23]. In practice, exercise data will
not be segmented but must be extracted from a continuous strip
of movement data. This increases the difficulty of classification
as exercises need to be separated from other random movement
patterns such as walking prior to exercise classification. How-
ever, the use of multiple sensors allows for improved filtering
of random movements as recognized exercises will have a very
characteristic movement pattern. Previous work has shown 94-
96% accuracy is possible when classifying continuous data with
multiple data inputs [26], [33].

Second, the study results regarding down-sampled data may
not apply to classifying exercises that are more complicated,
dynamic, or rapidly performed than those of this study. For
example, such exercises can be prescribed in “functional PT”,
which uses and sport-specific movements. 90% classification
accuracy was obtained when classifying movements designed
to challenge mobility and stability despite using kinematic data
collected with a motion capture system [34]. Third, the study
evaluated only a few of the many machine learning methods.
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Fourth, as discussed above, there are concerns about the gen-
eralizability of the specific classifiers developed in this study.
While the study included exercises involving all three joints
of the upper extremity and movements occurred in all planes
of motion, classifier accuracy could be less when applied to
exercises not included in the study.

Finally, the study sample was relatively homogeneous and
consisted of healthy, young adults. In obese adults, subcutaneous
fat may increase slippage in IMU location or increase movement
artifact. Participants with impairments may also have incon-
sistent exercise performance resulting in decreased accuracy.
However, since our data structure consists of joint kinematic
data rather than raw sensor data, our classifiers should perform
well even on participants with impairments under the assumption
that the participants with impairments are still able to perform
exercises with proper form. That is, a properly performed exer-
cise will look the same regardless of who is performing the
exercise. Factors such as length of an exercise repetition or
movement speed may lower classifier performance. However,
the participants in this study were given limited coaching result-
ing in a wide variety of performance despite an overall healthy
sample. Participants were only told to perform exercises over
their complete range of motion, spend one second on the lifting
phase, spend one second on the lowering phase, and to not
pause at maximum range of motion. Trials were only repeated if
there was an issue with data collection (device failure or motion
tracking issues) or if participants were performing exercises
incorrectly (e.g., movement in the wrist during a bicep curl or
abducting the arm during external rotation). This allowed for
greater variability in the kinematic data.

In order to begin clinical testing, additional studies need to be
performed: 1) repeat validation of the device on healthy and im-
paired participants but with continuous data streams to simulate
real-world use, 2) usability analysis with a revised device that
incorporates feedback from this study (e.g., wireless sensors,
integrating the sensors into clothing, reducing the footprint of the
Raspberry Pi hub), 3) repeat exercise classification analyses with
the continuous data. The major challenge is segmenting data.
In participants with impairments, it may become more difficult
to identify exercise patterns if there are additional movements
at the start or finish of exercise. Furthermore, with different
physical impairments, these additional movement patterns may
not be consistent and depend upon the impairment. Aggressive
filtering and thresholds could be used to remove these patterns
prior to using a sliding window approach to identify timepoints.
The timepoints can then be used on the original data to en-
sure the actual movement pattern is intact. Previous work has
shown activity recognition is possible with reasonable accuracy
(82.6%–88.8%) in children and adolescents with cerebral palsy
[35]. Once exercise patterns have been segmented, we would
not expect a change in classifier performance as kinematics are
independent of the performer.

V. CONCLUSION

Upper extremity PT exercises can be classified with a high
degree of accuracy using kinematic data captured by IMUs. This

sets forth the basis for clinical testing to better assess at-home
PT. Future devices should use a Random Forest classifier and
flattened data as features, as these models had the greatest accu-
racy with an acceptable test time. However, contrary to the trend
seen in exercise wearables, high sampling frequencies are not
needed for the purposes of machine learning, and sampling rates
ranging from 10 Hz to 30 Hz should suffice. Lower sampling
frequencies will result in faster data processing and exercise
classification as well as improve device battery life, an essential
consideration to wearables. It would be best for participants to
generate their own training data under the supervision of their
physical therapist. The main reason for this is that patients are
often limited in unique manners, and a pre-existing dataset might
exclude a user’s exercise kinematic patterns despite being correct
with respect to the user’s abilities and limitations. While our
sample consisted of healthy adults, we showed that it is possible
to achieve perfect classification if the dataset is large enough
to accommodate a wide variation in exercise performance. One
possible solution is an open-access database where researchers
may deposit data, though variations in data format (sampling
rate, hardware, etc.) may pose a challenge, which would require
standardization.

Clinical studies should explore the two approaches to train-
ing classifiers for real world use – generating patient-specific
training data versus using a general pre-existing database of
training data. Specifically, PT patients may fatigue easier and
have larger variation between repetitions, which may benefit
more from the former approach. It is possible that participants
with impairments will be unable to perform exercises to the
same degree as healthy participants and thus cannot be accu-
rately classified. In this scenario, training data can be created
from therapist-supervised exercise sessions resulting in a new
attainable “correct” kinematic pattern.

Device usability should also be evaluated. The current de-
vice is cumbersome and difficult to use, and ergonomic im-
provements, such as wireless sensors and reducing the device
footprint, should be made to reduce burden on the user. Patients,
particularly those with physical limitations, will likely be incon-
sistent in sensor placement, and the impact of sensor placement
on classification accuracy should be examined.

Future work should focus on clinical testing of IMU wearables
to study and augment PT. With objective records of at-home PT
exercise, researchers and therapists will have more insight into
why PT is sometimes ineffective and be able to develop more
effective solutions. Rehabilitation protocols are ideally person-
alized for each patient according to their recovery timeline, but
it requires therapists to assess and monitor patient progress at a
detailed level, which can be difficult due to time limitations.
Automated exercise analysis through kinematic analysis and
exercise classification will deliver additional information to
patients, and therapists will be able to identify which aspects
of a protocol may need additional focus despite not actually
supervising the exercise. Implementation of multi-category ma-
chine learning models to identify specific errors in technique will
further help patients understand how to improve their exercise
when unsupervised. Additional sensors may be integrated with
IMUs in the future to improve performance. Electromyography
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can identify which muscles are being activated to better assess
the effectiveness of exercises in rehabilitation and may improve
classifier models through additional features such as muscle
fatigue [36]. Thermal sensors can improve relative orientation
measures and have been shown to significantly improve classi-
fication accuracy from 75 to 94% [37].

Current remote physical therapy solutions with video calls
are ineffective as a single camera perspective over video call is
not enough to accurately assess performance. The integration
of these wearable sensors to the IoT, would allow for objective
and personalized feedback to be provided to end users via a
smartphone or smartwatch, and physical therapists may be able
to monitor patient progress remotely. Physical therapists would
be able to see exactly how patients perform exercises in all
dimensions.

IMU-based kinematic analysis can guide patients through
rehabilitation by reinforcing proper technique during unsuper-
vised exercise. IMUs also allow for measuring metrics that
were previously difficult to obtain such as range of motion
and adherence to rehabilitation protocols. Combined metrics of
exercise quality and quantity can ultimately be used to improve
exercise self-efficacy and rehabilitation outcomes.
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