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Abstract—Although various predictors and methods for
BP estimation have been proposed, differences in study
designs have led to difficulties in determining the optimal
method. This study presents analyses of BP estimation
methods using 2.4 million cardiac cycles of two commonly
used non-invasive biosignals, electrocardiogram (ECG) and
photoplethysmogram (PPG), from 1376 surgical patients.
Feature selection methods were used to determine the
best subset of predictors from a total of 42 including PAT,
heart rate (HR), and various PPG morphology features, and
BP estimation models constructed using linear regression
(LR), random forest (RF), artificial neural network (ANN),
and recurrent neural network (RNN) were evaluated. 28
features out of 42 were determined as suitable for BP es-
timation, in particular two PPG morphology features out-
performed PAT, which has been conventionally seen as the
best non-invasive indicator of BP. By modelling the low
frequency component of BP using ANN and the high fre-
quency component using RNN with the selected predictors,
mean errors of 0.05 + 6.92 mmHg for systolic BP, and
-0.05 £ 3.99 mmHg for diastolic BP were achieved. External
validation of the model using another biosignal database
consisting of 334 intensive care unit patients led to simi-
lar results, satisfying three standards for accuracy of BP
monitors. The results indicate that the proposed method
can contribute to the realization of ubiquitous non-invasive
continuous BP monitoring.
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|. INTRODUCTION

ARDIOVASCULAR diseases (CVD) are the leading
C cause of worldwide mortality [1], and since hypertension
is amajor predictor of CVD, proper monitoring and management
of blood pressure (BP) is important [2]-[4]. However, a dis-
crete BP measurement, generally performed in clinical settings
with a conventional cuff-type oscillometric device, can lead to
misdiagnosis and cannot observe circadian fluctuations of BP
[4], [5]. As the importance of ambulatory blood pressure has
been stressed in many recent studies on the topic [5], [6], it
can be deduced that while continuous monitoring is required
in daily life for accurate diagnosis of BP and cardiovascular
health, the conventional cuff-based method is not practical due
to its inconvenient and cumbersome nature.

As one of the promising techniques for realizing NCBPM,
pulse wave velocity (PWV) based approaches have gained
the most interest over the recent decades [7]-[14]. This
technique based on the concept that the velocity of
the arterial pulse traveling in an artery is affected by
physiological variations of the arterial vessels, which is
closely related to BP [15]. PWYV can be approximated using
its surrogate, pulse transit time (PTT), which is the time delay
for the arterial pulse to propagate between two arterial sites.
Although numerous studies have tried to establish a BP esti-
mation method using PTT, most studies have used pulse arrival
time (PAT) instead, because of the ease of measurement [8],
[16]-[20]. PAT is defined as the time difference between the R-
peak of the electrocardiogram (ECG) and a point on distal pulse
waveform such as the photoplethysmogram (PPG) measured at
the fingertips. Although some studies have shown remarkable
results in NCBPM using PAT and/or PTT methods [8], [10],
[14], [21], [22], the results are still widely varied in terms of
accuracy [19], [23], [24].

In order to find alternative predictors associated with BP toim-
prove the estimation accuracy, many researchers have attempted
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to analyze the morphology of the PPG waveform [25]-[31],
since it theoretically could reflect both the ejection of blood pulse
from the heart and the conditions of the peripheral artery [32].
However, most of these studies have analyzed different charac-
teristics extracted from the morphology of the PPG waveform
in less than 100 subjects. While a few studies have presented
results from large pools of subjects by using an open biosignal
database called the Physionet Medical Information Mart for
Intensive Care (MIMIC) [33]—[38], the database had issues with
inter-waveform alignments due to unspecified filtering delays or
channel delays, which made the data unsuitable for traditional
inter-waveform analysis [39]. In addition, there were no studies
that clearly confirmed the relations between BP and various
PPG morphology features from a large group of heterogeneous
subjects.

In a previous research [40], a moderate degree of association
between BP and PAT from a large database called the VitalDB
[41] was found, but a linear model based BP estimation using
PAT as a sole predictor with a simple calibration did not show
satisfactory level of performance in systolic blood pressure
(SBP). In order to improve the performance of the BP estimation
model, in this study, various PPG morphology based features
were analyzed from the same surgical biosignal database to
determine the valid markers of BP, and BP estimation models
using these features with PAT were constructed and evaluated.
Furthermore, the models were validated externally in MIMIC
database. First, the VitalDB database and the data exclusion
process for the selection of usable data are introduced and
the detailed definitions of various features are described. Then,
the method of constructing BP estimation models is presented.
Lastly, the results of analyses are presented and discussed.

Il. METHODS
A. Data Acquisition & Data Pre-Processing

Data loading, pre-processing and feature extraction were
performed automatically using a MATLAB script (MATLAB
2018b; Mathworks, Natick, MA, USA). The data used in this
study were retrieved from the VitalDB, an open multi-biosignal
database provided by the Seoul National University Hospital
Department of Anesthesia (Seoul, Korea) [41]. The VitalDB
contains time-synchronized biosignals during various surgeries
including arterial blood pressure (ABP), ECG, and PPG from a
total of 6388 patients. The experimental setup of the VitalDB is
described in detail in two previous studies [40], [41]. The data
used in this study were selected and pre-processed according to
data selection criteria as shown in Fig. 1. Since the available
recordings contained segments in which the biosignals were
severely distorted due to saturation and/or unknown causes
generated during the surgery, several exclusion criteria were
applied to remove these corrupted sections prior to analyses. The
example plots of data exclusion process and data pre-processing
are shown in Fig. 2.

First, the recordings were checked for ECG, PPG, and ABP
signals. Second, recordings less than 30 minutes were removed.
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Fig. 1. Outline of the data exclusion process for the selection of usable
data from the VitalDB and data pre-processing. Solid lines correspond
to the data selection criteria, and dashed lines correspond to the data
pre-processing.
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Fig. 2. Example plots of data exclusion process and data pre-

processing. (a) Example plot for visual inspection of PPG waveform with
the corrupted section highlighted; (b) Example plot for baseline removal
of PPG waveform; (c) Example plot of ensemble averaged PPG; (d)
Example plot of ensemble averaged ABP. In (c) and (d), dotted lines
denote to 10 adjacent cardiac cycles of PPG/ABP, and solid line denotes
to the ensemble averaged waveform with the characteristic points of
PPG/ABP labeled.

Third, the recordings were visually inspected to manually re-
move sections where the biosignals were saturated as shown in
Fig. 2(a).

Following data selection, biosignals were pre-processed to
detect the characteristic points of ABP and PPG for each cardiac
cycle. First, the low frequency baseline fluctuations of ECG
and PPG waveforms were removed using non-linear filtering as
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shown in Fig. 2(b) [42]. Then, the ECG R-peaks detected by Pan-
Tompkins algorithm [43] were used to separate the waveform
data into cardiac cycles for ensemble-averaging; 10 adjacent
cardiac cycles of ABP and PPG were ensemble-averaged in a
smoothing window manner to accentuate the waveform features
as shown in Fig. 2(c) and Fig. 2(d). After ensemble-averaging,
the characteristic points of ABP and PPG were detected. For
ABP, the peak and valley points were detected. In the case of
PPG, the valleys, peaks, maximum derivatives, and intersecting-
tangent points (or the intersecting point between the tangent
lines of the maximum derivative and the diastolic minimum)
[44] were detected. SBP and diastolic blood pressure (DBP)
were derived from the peak and the valley points of ABP, and
four different PAT (PATv, PATp, PAT\ip, and PATT) values
were derived from the time difference between ECG R-peak and
one of the characteristic points of PPG (‘V’ denotes the valley,
‘P’ denotes the peak, ‘MD’ denotes the maximum derivative,
and ‘IT” denotes the intersecting-tangent points of PPG). Since
the waveforms of ABP and PPG could be severely distorted
by various artifacts, signal quality of each ensemble-averaged
cardiac cycle was evaluated using the following conditions:
e s the extracted SBP greater than 50 mmHg and less than
250 mmHg?
e s the extracted DBP greater than 30 mmHg and less than
160 mmHg?
¢ [s the change in the extracted BP (SBP or DBP) during the
previous 5 s interval less than 30 mmHg?
¢ Is the change in the extracted PATs during the previous 5
s interval less than 30ms?

If the above conditions were satisfied, the cardiac cycle was
evaluated as having high signal quality, and was determined to be
appropriate for further analyses. If the ratio of the number of ap-
propriate cardiac cycles to the total number of cardiac cycles was
less than 70%, the recording was excluded as shown in Fig. 1.
Finally, 30 minutes sections in each recording were selected to
adjust the number of data points per subject to a similar level
for proper validation. As a result, 1376 recordings (2,470,560
cardiac cycles) were selected. The demographic characteristics
of the patients and the BP characteristics of the selected data are
shown in Table L.

B. Feature Extraction

A total of 42 features including four different PAT (PATvy,
PATp, PAT\ip, and PAT 1) values, HR, and various PPG mor-
phology features used in previous studies were extracted from
each cardiac cycle as shown in Fig. 3. The definitions of the
features are listed in Table II. The detailed description of PPG
morphology features is as followed:

1) Photoplethysmogram Intensity Ratio (PIR): Photo-
plethysmogram intensity ratio (PIR), defined as the ratio of the
intensity of the peak point of PPG to the intensity of the valley
point of PPG, is used as BP estimation predictor by Ding et al.
[45]. According to the Beer-Lambert law, Photoplethysmogram
intensity of the peak and valley point of PPG (PIp and PIy) can
be derived as below.

Plp =PIl

. e—EDC'CDC'dDC . e—a'dD (1)

TABLE |
DEMOGRAPHIC AND BP CHARACTERISTICS OF THE DATA (N = 1376)

Characteristics Subjects
Age (years) 58 + 14 (range 8-92)
Gender (male) 720 (52%)
Height (cm) 162+9
Weight (kg) 61£11
BMI (kg/m?)® 23+3
Hypertension 484 (35%)
Diabetes 159 (12%)

# of cardiac cycles 1788 +289
SBP

Mean value (mmHg) 115+15

A value® (mmHg) 37+19
DBP

Mean value (mmHg) 62+ 10

A value ® (mmHg) 21+11

“Body mass index.
bThe difference between max and min values of each recording.
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Fig. 3. Features labeled on ECG, PPG, and APG waveforms.

Ply =PI, - e €pcepcdpc | p—ads )

where Pl is the incident light intensity, € p¢ is the absorbance
coefficient, cpc is the concentration, dpc is the optical path
of the DC component, « is the characteristic parameter, dg and
dp are the systolic diameter and diastolic diameter, respectively.
Therefore, as taking the ratio of (1) and (2), PIR is exponentially
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TABLE I as below.
DEFINITIONS OF THE ANALYZED FEATURES
CT =PATp — PATy )
IndexFeatureDefinition
PATy Time delay from the R-peak of ECG to the valley point of PPG AS = Plp — Ply 5)
PAT, Time delay from the R-peak of ECG to the peak point of PPG PATp — PATy

PATup Time delay from the R-peak of ECG to the ‘MD’ point of PPG

PAT;r Time delay from the R-peak of ECG to the ‘IT” point of PPG
HR Time delay between two adjacent R-peaks of ECG
Ply Intensity of the valley point of PPG

Plp Intensity of the peak point of PPG

O 003 N AW —

Plyp  Intensity of the ‘MD’ point of PPG
Phir Intensity of the ‘IT” point of PPG
10 PIRp  Ratio of PPG peak point intensity to PPG valley point intensity
11 PIRmp Ratio of PPG ‘MD’ point intensity to PPG valley point intensity
12 PIR;r  Ratio of PPG ‘IT” point intensity to PPG valley point intensity
13 CT Time delay from the valley point of PPG to the peak point of
PPG
14 AS Ascending slope
15 PPGK PPG characteristic value
16  SBW3;
i; Sﬁxzz Systolic branch width at x % of the pulse height of PPG
(x: 33, 50, 66, 75, 90)
19  SBWjys
20 SBWy,
21  DBW3;
;g gggzz Diastolic branch width at x % of the pulse height of PPG
(x: 33, 50, 66, 75, 90)
24  DBW;s
25 DBWyy
26 BWis
i; gx:: Branch width at x % of the pulse height of PPG
(x: 33, 50, 66, 75, 90)
29 BW75
30 BWy
31  BWRy;
i? E\\xﬁzz Branch width ratio at x % of the pulse height of PPG
(x: 33, 50, 66, 75, 90)
34 BWRys
35 BWRy
36 Al Intensity of the a-wave of APG
37 Al Intensity of the b-wave of APG
38 AIR  Ratio of APG b-wave intensity to APG a-wave intensity
39 PCl 1* principal component of the one cardiac cycle PPG
40 PC2 2" principal component of the one cardiac cycle PPG
41  PC3 3" principal component of the one cardiac cycle PPG
42 PC4 4" principal component of the one cardiac cycle PPG

linked with arterial diameter change through the following equa-
tion:
Plp

PIRp = —— = ¢ (ds~dp)

Ply 3)

Since the arterial diameter change affects total peripheral
resistance, a direct influencer of BP [15], PIRp can theoretically
be used for BP estimation. In this paper, PIRyip and PIRyp
are additionally defined using PPG intensity of the maximum
derivative or intersecting-tangent points of PPG (PIyip or Plyr)
instead of Plp in (3), respectively. As a result, three different
PIR (PIRp, PIRyp, and PIRy7) values and four different PI
(PLy, PlIp, PIyip, and PIy7) values are extracted.

2) Crest Time (CT) and Ascending Slope (AS): Crest time
(CT), defined as the time delay from the valley point to the
peak point of the PPG waveform is known to be a useful feature
for cardiovascular disease classification [46]. Ascending slope
(AS) was previously reported as the rate of wave front sloping
for BP estimation [47]. In this study, CT and AS was calculated

3) PPGK: PPGK, also called PPG characteristic value or K
value, was previously reported to be related to total peripheral
resistance and blood viscosity [48]. PPGK is based on the change
of PPG area and defined as below.

P, — Ply

PPGK = I, — Ply

where Py, is the average value of one cardiac cycle of PPG
waveform.

4) Branch Width (BW) Based Features: Awad et al. previ-
ously reported that pulse width at half height of a PPG waveform
isrelated to total peripheral resistance [49]. Following this study,
in order to extract as much information as possible, Kurylyak
et al. calculated the widths at 25%, 33% and 75% of the pulse
height and extracted separate values for the systolic part and for
the diastolic part, and for the ratio between these values [34]. In
this paper, systolic branch width (SBW) is defined as the systolic
part of the pulse width, diastolic branch width (DBW) is defined
as the diastolic part of the pulse width as shown in Fig. 3. Branch
width (BW) is defined as the sum of SBW and DBW, and branch
width ratio (BWR) is defined as the ratio of DBW to SBW. BW,
SBW, DBVW, and BWR are calculated at 33%, 50%, 66%, 75%,
and 90% height of the beat respectively.

5) Acceleration Plethysmogram (APG) Features: The sec-
ond derivative of PPG waveform, also called the acceleration
plethysmogram (APG) is an indicator of the acceleration of the
pulse through an artery. The waveform of the APG includes five
waves, namely a-wave to e-wave as shown in Fig. 3. The ratios of
the height of the each wave to that of the a-wave are commonly
used as characteristic waveform features of APG [50]. APG
intensity ratio (AIR), defined as the ratio of the APG intensity
of the b-wave (Al}) to the APG intensity of the a-wave (Al,),
is reported to reflect arterial stiffness and distensibility of the
peripheral artery [51]. The c-wave to e-wave of APG are usually
used to detect the dicrotic notch and diastolic peak point of PPG
waveform [50]. However, a dicrotic notch is usually only seen
in subjects with healthy compliant arteries [52]. According to a
previous study, the higher harmonic frequency components of
PPG diminish with age, consistent with the loss of the dicrotic
notch features in older subjects [53]. Therefore, in this study,
features related to the dicrotic notch such as c-wave to e-wave
in APG waveform, augmentation index [51], and large artery
stiffness index [54] were excluded from further analyses in order
to develop a generalized BP estimation model for heterogeneous
subjects. As a result, three features (AIR, Al,, and Aly) are
extracted from the APG waveform.

6) Principal Component Analysis (PCA) Features: All of
the above mentioned features are based on the assumptions
that these characteristic points of the PPG are physiologically
meaningful. On the other hand, principal component analysis
(PCA) features are a representation of the whole PPG waveform
shape and timing. This approach is presented as a “whole-based

(6)
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feature” in a previous study [55]. In this paper, PCA features
were extracted as followed. First, the PPG waveform in each
cardiac cycle was re-sampled to 100 points. Second, each cardiac
cycle of PPG was normalized by dividing by the maximum value
of the waveform (the offset was previously removed during
pre-processing steps). Finally, PCA is used to aggregate and
analyze each pre-processed cardiac cycles of PPG for each
subject. In other words, one cardiac cycle of PPG is treated as a
100-dimensional data point. Top 4 principal components (PC1,
PC2, PC3, and PC4) were chosen among results of the PCA for
further analyses.

C. Feature Selection

In general, the aims of feature selection process are: to elimi-
nate irrelevant and redundant features to reduce the dimensional-
ity of the data; and to gain a better understanding of the features
and their relationship to the response variables [56]. In this study,
several feature selection methods, which were more suitable for
latter purpose, were applied to the extracted features in order to
gain an interpretation of the features and their relationship to BP.
Feature redundancy was not considered since the fundamental
purpose of feature selection in this study was not to reduce
the dimensionality of the features. Furthermore, noise reduction
and better estimation performance might be obtained by adding
variables that were presumed to be redundant [56].

Before performing feature selection process, the mean value
of BP was subtracted from the BP values and the mean value of
each feature was subtracted from the feature values in a given
recording for the purpose of calibration, and then these values
obtained from 1376 subjects were analyzed. As a result, a total
of 2,470,560 pairs of BP and features were analyzed for feature
interpretation.

All feature selection processes were performed using Python
(version 3.6.3) and Scikit-learn library (version 0.19.1). Feature
selection methods were categorized into filter methods, wrapper
methods, and embedded methods [56]. A detailed description of
each method is as follows:

1) Filter Methods: Filter methods are based on univariate
statistical techniques to evaluate the strength of the relation-
ship of each feature and the response variable [57]. In this
study, Pearson correlation coefficient and mutual information
(MI) were analyzed. While Pearson correlation captures linear
dependency, MI, which measures mutual dependence between
variables, is able to present the non-linear relationship between
variables [58].

2) Wrapper Methods: Wrapper methods incorporate learn-
ing algorithms in the process of feature selection [57]. Features
are ranked based on the regression performance. One of the
representative techniques of a wrapper method is the recursive
feature elimination (RFE) [59]. In this study, RFE with linear
support vector machine (SVM) regression was performed. Vary-
ing the hyper-parameters of SVM such as epsilon or regular-
ization parameter did not lead to significant difference in the
RFE results. Therefore, epsilon was set to 0, and regularization
parameter was set to 1.

3) Embedded Methods: Embedded methods perform fea-
ture selection in the process of model training and are usually

model-specific [57]. Among the embedded methods, ridge re-
gression [60], randomized lasso regression [61], and random for-
est’s impurity based ranking [62] were performed in this study.
Parameter setting for the random forest method is discussed in
Section E.

Finally, a total of six feature selection methods were applied
in this study in order to reliably assess the statistical significance
of the relevance of the features to BP. The feature importance
scores calculated by using each of the methods were normalized
to a scale between O and 1. Then, the mean value of feature
importance scores for each features were analyzed to gain an
interpretation of the features and to determine the best BP
estimation predictors amongst all the features.

For the purpose of validating the feature selection without
considering feature redundancy, the result was compared with
two well-known feature selection algorithms introduced in a
prior research [63]. The first is the MaxRel algorithm that maxi-
mizes the average of the mutual information values between the
response variable and each feature of the subset, and the second
is the minimal-redundancy-maximal-relevance (mRMR) algo-
rithm which combines MaxRel algorithm and min-redundancy
criterion that minimizes the dependencies between features of
the subset.

D. Frequency Component Separation of
BP and Features

Some previous studies have suggested that BP estimation
features such as PAT could track only certain frequency compo-
nents of BP variation. Chen et al. reported that lower frequency
component of PAT was not well correlated to SBP [8]. Therefore,
they combined the high frequency component of PAT and used
intermittent calibration to adjust for low frequency fluctuations
of BP. Ding et al. also suggested that PAT could track BP in
high frequency range well, but was inadequate to follow the
low frequency variations in BP [29]. They proposed PIR as
an indicator that could track BP in the low frequency range.
These studies showed that the linear relationship between BP
and certain predictors can be more apparent when BP and
features are separated based on frequency. Therefore, estimation
performance may be improved by separating BP and feature vari-
ations into low frequency components (LFC) and high frequency
components (HFC), and modeling each separately.

In order to verify this hypothesis, extracted BP and features
were separated into LFC and HFC. First, since the BP and fea-
tures were extracted on beat-by-beat basis, they were re-sampled
to a sampling rate of 1 Hz using cubic spline interpolation (i.e.
resampled in the time domain to be 1 cardiac cycle per second).
Then, LFC of BP and features were obtained by filtering using
a st order low-pass Butterworth digital filter. HFC of BP and
features were obtained by subtracting the LFC of BP and features
from the raw BP and features. The cutoff frequency of the
low-pass filter was set at 0.004 Hz, referring to a previous study
showing a linear relationship between SBP and PAT between
0.00053 Hz to 0.004 Hz [8]. Fig. 4 shows the example plots of
separating SBP and PATyt into their LFC and HFC. The optimal
cutoff frequency was determined by comparing the performance
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Fig. 4. Example plots of separating SBP and PATy into LFC and HFC.

(a) Example plot of raw SBP (dotted black line), LFC of SBP (solid red
line), and HFC of SBP (solid blue line) from one representative subject;
(b) Example plot of raw PAT;r (dotted black line), LFC of PAT;t (solid
red line), and HFC of PATyT (solid blue line) from one representative
subject. Raw SBP and PATt are the calibrated values.

of the BP estimation model constructed by linear regression
algorithm for each cutoff frequency.

E. BP Estimation Models

BP estimation models based on the selected features using
several modeling algorithms were constructed and evaluated.
The LFC and HFC of BP were modelled separately. That is,
the LFC of BP was estimated by the LFC of the features, and
the HFC of BP was estimated by the HFC of the features. In
order to calibrate the model to each subject, the mean value of
BP was subtracted from the BP values and the mean value of
each feature was subtracted from the feature values in a given
recording prior to modeling. Then, the mean BP was added back
to the BP estimate model output for each subject.

The entire dataset consisting of 1376 subjects was randomly
divided into two sets in 7:3 ratio; 963 recordings were used to
train BP estimation model and 413 recordings were used for
validation accounting for a total of 741,690 cardiac cycles. The
two sample t-test between the training and the validation dataset
showed no statistically significant differences in age, gender,
height, weight, BMI, SBP values, and DBP values between the
two groups. The modeling algorithms used in this study included
linear regression, random forest, artificial neural network, and
recurrent neural network. The detailed description of these al-
gorithms is as followed:

1) Linear Regression (LR): Asthe baseline machine learning
model, linear regression (LR) model was constructed by using
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Fig. 5. The architectures of the ANN and RNN used in this study.
(a) The architecture of the ANN; (b) The architecture of the RNN.

BP as the dependent variable and the selected features as the
explanatory variables. LR model was trained using a MATLAB
script.

2) Random Forest (RF): Due to the size of the training
dataset in this study (more than 1 million cardiac cycles), a
method called “Extremely Randomized Trees”, which is compu-
tationally less expensive than the typical random forest method
was used [64]. Parameters such as the number of trees, the
maximum number of leaf nodes, and the minimum number of
samples required to be at a leaf node were tuned using the grid
search method. The RF model in this study consisted of 500
trees with the maximum 10,000 leaf nodes, and the minimum
100 samples required to be at a leaf node. The training of RF
was done using Python and Scikit-learn library.

3) Artificial Neural Network (ANN): Parameters of artificial
neural network (ANN) such as the number of hidden layers,
the number of hidden nodes, and the activation functions were
chosen after considering multiple different combinations. The
ANN model in this study consisted of an input layer, one hidden
layer with 100 nodes using tanh function as the activation
function, and one node for SBP or DBP prediction in the output
layer as shown in Fig. 5(a). Mean Squared Error (MSE) was
used as the cost function. To optimize the network, an ADAM
optimizer with initial learning rate of 0.001 was used. The
training of ANN was done using Python and Tensorflow (version
1.12.0).

4) Recurrent Neural Network (RNN): Recurrent neural net-
work (RNN) has a recurring connection to itself at consecutive
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TABLE Il
FEATURE IMPORTANCE SCORES OF TOP 28 RANKED FEATURES
Feature importance score (feature selection analyses with SBP)

Rank Feature

Pearson MI RF RFE Ridge R-lasso Mean
1 PPGK 1.00* 0.93* 1.00* 0.81 0.83* 0.89* 0.91*
2 PIRp 0.98* 0.95° 0.90° 0.84 0.74* 0.97* 0.90*
3 HR 0.43 1.00* 0.90* 1.00° 1.00° 1.00* 0.89*
4 PAT,r 0.65* 0.74 0.98* 1.00° 0.59 0.91° 0.81*
5 BWgq 0.64* 0.88* 0.33 1.00° 0.59 0.61 0.68*
6 BW, ¢ 0.63* 0.89* 0.45 0.65 0.22 0.89° 0.62
7 Al 0.26 0.55 0.10 0.76 0.44 0.49 0.43
8 Plp 0.22 0.66 0.11 0.78 0.55 0.25 0.43
9 SBW¢ 0.23 0.30 0.06 0.97 0.81° 0.09 0.41
10 BWRs, 0.09 0.34 0.03 1.00* 1.00* 0.00 0.41
11 PATy 0.32 0.51 0.18 0.89 0.06 0.45 0.40
12 SBWs, 0.20 0.32 0.06 1.00* 0.74 0.00 0.39
13 DBW;, 0.34 0.60 0.07 0.86 0.47 0.01 0.39
14 PATyp 0.54 0.52 0.57° 0.11 0.06 0.50 0.38
15 BWy, 0.44 0.78 0.21 0.38 0.03 0.36 0.37
16 DBW,, 0.36 0.51 0.10 0.92 0.23 0.03 0.36
17 PC2 0.21 0.31 0.11 0.95 0.41 0.03 0.34
18 BW;, 0.48 0.82 0.13 0.46 0.03 0.09 0.34
19 AS 0.14 0.41 0.09 0.68 0.40 0.09 0.30
20 DBW;, 0.17 0.62 0.04 0.49 0.31 0.00 0.27
21 SBW, ¢ 0.22 0.28 0.04 0.73 0.29 0.04 0.27
22 PAT, 0.14 0.52 0.16 0.51 0.13 0.12 0.26
23 DBW, 0.49 0.66 0.21 0.05 0.00 0.09 0.25
24 BWR, 0.19 0.39 0.02 0.70 0.20 0.00 0.25
25 DBWg, 0.48 0.67 0.13 0.14 0.06 0.03 0.25
26 Ply 0.03 0.55 0.06 0.62 0.26 0.00 0.25
27 CT 0.09 0.40 0.07 0.59 0.27 0.00 0.24
28 PC1 0.01 0.28 0.18 0.57 0.11 0.00 0.19

4Top 5 features in each feature selection method.

time points, thus the features from a previous time step can
influence the prediction of BP at a future time step [65]. In this
study, a RNN model was constructed in many-to-many fashion
consisting of bidirectional long short-term memory (LSTM)
cells [66], [67]. Similar to ANN, the architecture of RNN devel-
oped in this study was chosen after considering multiple different
architectures. The chosen network consisted of 2 hidden layers
with 40 LSTM cells in each layer, and 250 time steps as shown
in Fig. 5(b). To optimize the network, an ADAM optimizer with
initial learning rate of 0.01 was used. The training of RNN was
done using Python and Tensorflow.

The performance of the constructed BP models was evaluated
against three international standards. First, mean error (ME)
and standard deviation of the error (SDE) were calculated to
validate the models against the Association for the Advancement
of Medical Instrumentation (AAMI) standards, which requires
ME and SDE values lower than 5 and 8 mmHg [68]. Second, the
cumulative error percentages within 5, 10, and 15 mmHg were
calculated to evaluate the models against the British Hyperten-
sion Society (BHS) BP monitor standards, which grades devices
based on their cumulative error percentages under three different
thresholds [69]. Finally, the mean absolute difference (MAD)
was calculated to evaluate the models in accordance with the
latest standard for wearable and cuffless BP monitoring devices
published by the IEEE Engineering in Medicine and Biology
Society (IEEE Standard 1708) [70]. All performance measures
were calculated between the estimated BP (i.e. the sum of the

outputs of the LFC estimation model and the HFC estimation
model) and the reference BP.

I1l. RESULTS
A. Feature Selection Results

The results of feature selection processes analyzing a total of
2,470,560 pairs of SBP and the extracted 42 features are shown
in Table III. Although the top features ranked by different feature
selection methods vary as shown in Table III, PPGK, PIRp, HR,
PAT11, BWgg, and BWy5 rank high across almost all methods.
Among them, PPGK has the highest feature importance score
with a mean value of 0.91. The absolute Pearson correlation
coefficient value of PPGK was 0.49 for SBP, and 0.48 for DBP.
Among the four PAT values, PAT;r showed the highest mean
feature importance score with the highest Pearson correlation,
consistent with the findings of the previous study [40]. Among
the PPG morphology features, PPGK and PIRp along with HR
showed higher mean feature importance score when compared to
PAT . Similar results were found on the same feature selection
analyses with DBP.

When comparing SDE and MAD values calculated from the
linear regression models constructed by sequentially adding
features in order of highest mean feature importance score, there
were no significant differences between the model using only
28 features and one using all features. Therefore, PPGK, PIRp,
HR, PAT[1, BWgg, BWr5, Aly, Plp, SBWgg, BWR5g, PATYy,
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Fig. 6. Comparison of estimation performance of proposed, MaxRel,
and mRMR algorithms.

TABLE IV
PERFORMANCE OF BP LINEAR MODELS WITH DIFFERENT CUTOFF
FREQUENCIES OF FILTER SEPARATING LFC/HFC ACROSS
413 VALIDATION RECORDINGS

Cutoff frequency SBP DBP
ME SDE  MAD ME SDE MAD

0° <0.001 7.43 549 <0.001 4.17 3.00
0.001 -0.018 737 543 -0.004 4.14 298
0.002 -0.011 727 5.35 -0.005 4.10 2.95
0.004 -0.004 7.19 5.30 -0.002 4.08 2.93
0.006 -0.002 7.17 5.29 -0.001 4.07 292
0.008 -0.001 7.18 5.30 -0.001 4.07 293
0.016 -0.001 7.22 5.34 <0.001 4.09 2.95

In the case of modeling without LFC/HFC separation.

SBW50, DBW5g, PAT\ip, BWgg, DBWgg, PC2, BW5g, AS,
DBW33, SBWr75, PATp, DBW75, BWRgg, DBWgg, Ply, CT,
and PC1 were selected as the BP estimation predictors (totaling
28 features) for further analyses.

In order to validate the feature selection results, the proposed
feature selection algorithm in this study without considering fea-
ture redundancy was compared with the MaxRel algorithm and
the mRMR algorithm. The three methods (proposed, MaxRel,
and mRMR) were used to select 28 sequential feature sets and
computed the respective SDE values using linear regression. As
shown in Fig. 6, for most k € {1, 28}, smaller SDE values on
proposed feature sets were obtained.

B. Optimization of the BP Estimation Models

The performance of the BP linear models constructed by
changing the cutoff frequency of the filter separating LFC/HFC
of BP and features is shown in Table IV. As shown in Table IV,
modeling LFC and HFC of BP separately showed slightly better
performance as compared to modeling without LFC/HFC sepa-
ration. The optimal cutoff frequency was found to be 0.006 Hz.

The performance of the SBP models with different modeling
algorithms is shown in Table V. All modeling algorithms were
constructed by separating LFC/HFC of BP and features with
a cutoff frequency of 0.006 Hz. The performance measures
were calculated for the LFC estimation model and the HFC
estimation model separately. Since the ME values between

TABLE V
PERFORMANCE OF SBP ESTIMATION MODELS WITH DIFFERENT MODELING
ALGORITHMS ACROSS 413 VALIDATION RECORDINGS

. SBP
Modeling LFC HFC
algorithm
ME SDE MAD ME SDE  MAD
LR -0.002 624 4.63 <0.001 2.20 1.42
RF -0.135 6.32  4.59 0.003 2.15 1.37
ANN -0.025  6.07 4.48 0.008 216 1.39
RNN 0.310 691 499 0.077 214 1.36
TABLE VI

PERFORMANCE OF BP ESTIMATION MODELS WITH DIFFERENT MODELING
SETTINGS ACROSS 413 VALIDATION RECORDINGS

SBP DBP
ME SDE MAD ME SDE MAD
<0.0018.83 6.53 <0.0014.98 3.59
<0.0017.43 549 <0.0014.17 3.00
-0.002 7.17 529 -0.001 4.07 2.93
0.052 6.92 5.07 -0.054 3.99 2.86

Model
index
1 LR (LFC+HFC)* — PAT®
2 LR (LFC+HFC)?

3 LR(LFC) + LR(HFC)

4 ANN(LFC) + RNN(HFC)

Modeling methods

“In the case of modeling without LFC/HFC separation.
"In the case of modeling using only 4 PAT (PATV, PATP, PATMD, and PATIT)
values as estimation predictors.

different algorithms did not differ significantly, the performance
comparisons between algorithms were conducted based on their
SDE and MAD values. As shown in Table V, ANN showed the
best performance in LFC modeling, and RNN showed the best
performance in HFC modeling. Similar results were found on
the same analyses with DBP.

The performances of the BP estimation models with varying
settings are shown in Table VI. Comparing model 1 and model
2, itis confirmed that the estimation performance is improved by
adding several PPG morphology features to the estimation pa-
rameters in addition to the conventional PAT values. Moreover,
it can be seen that the application of the LFC/HFC separation
method (model 2 versus model 3) as well as using non-linear
machine learning based regression method (model 3 versus
model 4) further improve the estimation performance.

C. Performance of the Best-Case BP Estimation Models

The best performing was model 4 in Table VI, which is ob-
tained by modeling LFC of BP as ANN and HFC of BP as RNN
using all 28 selected features as predictors. The detailed analysis
of the best-case BP estimation model is shown in Table VII and
Fig. 7. As shown in Table VII, both SBP and DBP estimation
models satisfy the AAMI standards and are rated grade A against
the BHS standards. Based on the IEEE standards, both SBP and
DBP models pass the standards as grade B for SBP, and as grade
A for DBP.

For the purpose of external validation, the constructed BP
estimation model was evaluated using an external dataset from
the MIMIC III waveform database [71]. Data from part O of the
MIMIC III waveform database matched subset was used. Data
loading, pre-processing and feature extraction processes were
performed in the same manner as described above. As a result, a
total of 750,898 pairs of BP and features from 334 subjects are
extracted. The estimation performance of the model across the
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TABLE VI
PERFORMANCE OF THE BEST-CASE BP ESTIMATION MODEL ACROSS 413
VALIDATION RECORDINGS

SBP estimation model ~ DBP estimation model

Performance Measure

Value Evaluation  Value Evaluation

ME (mmHg) 0.052 PASS? -0.054 PASS*
SDE (mmHg) 6.92 PASS? 3.99 PASS?
Cumulative Error <5 b b
mmHg (%) 62 Al 84 Al
Cumulative Error < 10 b b
mmHg (%) 87 A 97 A
Cumulative Error < 15 b b
mmHg (%) 96 A 99 A
MAD (mmHg) 5.07 B¢ 2.86 A¢
Correlation to reference 0.63 + 036 0.60 + 036

(mean +STD)

“Evaluation against the AAMI standards.
"Evaluation against the BHS BP monitor standards.
“Evaluation against the IEEE standards.
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Fig. 7. Regression plots, Bland-Altman plots, and correlation his-

tograms of the best-case SBP and DBP estimation models across 413
validation recordings. (a) Regression plot for SBP estimation; (b) Re-
gression plot for DBP estimation; (c) Bland-Altman plot for SBP estima-
tion; (d) Bland-Altman plot for DBP estimation. (e) Correlation histogram
for SBP estimation; (f) Correlation histogram for DBP estimation.

external validation dataset is shown in Table VIII. As shown in
Table VIII, the model satisfies AAMI, BHS, and IEEE standards
for both SBP and DBP estimated in the external database.
Example plots of the reference BP and the BP estimates from
four representative subjects in the external database are shown
in Fig. 8.

IV. DISCUSSION

In general, previous studies of BP estimation using PPG
morphology features have analyzed different features and have
used small homogeneous subject pools to generate models of

TABLE VI
PERFORMANCE OF THE BEST-CASE BP ESTIMATION MODEL ACROSS 334
EXTERNAL VALIDATION RECORDINGS

SBP estimation model ~ DBP estimation model

Performance Measure

Value Evaluation ~ Value Evaluation
ME (mmHg) -0.006 PASS? -0.004 PASS?*
SDE (mmHg) 7.04 PASS* 4.77 PASS*
Cumulative Error <5 b b
mmHg (%) 61 A 86 A
Cumulative Error < 10 b b
mmHg (%) 87 A 96 A
Cumulative Error < 15 b b
mmHg (%) 95 A 98 A
MAD (mmHg) 5.13 B¢ 2.81 A®
Correlation to reference 0.52 + 040 0.53 + 038

(mean +STD)

“Evaluation against the AAMI standards.
YEvaluation against the BHS BP monitor standards.
“Evaluation against the IEEE standards.
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Fig. 8. Example plots of estimated BP (solid red lines for SBP, and

solid blue lines for DBP) and reference BP (dotted black lines) in 4
external validation recordings. The correlation and SDE values for the
SBP estimation are labeled. (a) The recording with the highest SBP
correlation; (b) The recording with the lowest SBP correlation; (c) The
recording with the lowest SBP SDE; (d) The recording with the highest
SBP SDE.

BP. This is the first study to use a large heterogeneous dataset
to validate the potential of a diverse PPG morphology features
as predictors of BP comprehensively. The key findings of the
study were that 1) 28 features including several PPG morphology
features and PAT were determined as suitable BP predictors,
in particular two PPG morphology features (PPGK and PIRp)
outperformed PAT, and 2) BP estimation models constructed by
modeling LFC using ANN and HFC using RNN with selected 28
predictors showed the best estimation performance, satisfying
the three relevant international standards for BP monitors.

A. PPG Morphology Features as Predictors of BP in
Ubiquitous NCBPM

Although PAT or PTT based approach for continuous BP
monitoring has already shown remarkable progress through
numerous studies [8], [10], [14], [19], [21]-[24], it has not yet
been widely accepted for ubiquitous NCBPM due to its limited
accuracy. One of the reasons for this may be that PAT alone
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cannot fully reflect the complex BP dynamics and that conven-
tionally measured PAT in ubiquitous BP monitoring involves
PAT measured at peripheral arteries rather than central arteries.
PAT is associated with BP through the physiological charac-
teristics of arterial vessels such as arterial elastance, but BP is
affected by physiological factors other than arterial elastance
[15]. In order to address this issue, many studies have attempted
to find new predictors for BP estimation through extracting
physiologically meaningful features from the morphology of
PPG waveforms [25]-[31], [33]-[38]. However, to the authors’
knowledge, there has not been a study that confirmed to the
validity of these features as predictors of BP in a large diverse
dataset.

In this study, a large biosignal database from a diverse group
of 1376 surgical patients were analyzed to assess the efficacy
of various PPG morphology features and PAT values. As a
result, PPGK, PIRp, HR, PAT1, and BWgs were found to
be the top 5 important features according to several feature
selection methods. PPGK and PIRp, which may be physio-
logically related to total peripheral resistance as described in
Methods B, ranked top 2 in the mean feature importance scores.
Similar results were found in a prior study analyzing several
PPG morphology features using a genetic algorithm based fea-
ture selection method, although the number of subjects in the
study was less than 100 [28]. Since BP can be as the product
of cardiac output and total peripheral resistance by applying
Ohm’s law in the hydraulic version, the variation of arterial BP
relies upon the changes of the total peripheral resistance to a
degree [15]. Among the branch width based features which are
also reported to be associated with total peripheral resistance,
features extracted at the mid-level height (i.e. 50%, 66%, and
75%) of the PPG waveform ranked high in general. In addition,
BW values generally showed high mean feature importance
scores when compared to SBW, DBW, and BWR. As a result,
28 features including the conventional PAT values and HR were
determined as suitable BP estimation predictors. In particular, 2
features (i.e. PPGK and PIRp) along with HR were even found
to be superior to traditional PAT (PATyr, specifically) as BP
estimation predictors.

The performance of the BP estimation model constructed
by using only PPG morphology features without PAT and HR
as estimation predictors and applying the best-case modeling
method mentioned above is shown in Table IX. Although the
model is inferior to the model that includes PAT features and
HR, it was able to output seemingly decent performance that
satisfies all relevant standards. This implies the potential for
simple ubiquitous NCBPM using PPG measured at the finger
without bulky electrode attachments for ECG. Since the ECG
waveform was used in pre-processing of the PPG waveforms for
the extraction of the PPG morphology features in this study, a
further study is warranted to develop a method solely based on
PPG for BP estimation that completely excludes ECG.

B. Frequency Component Separation of BP and
Features

In order to prove the hypothesis that the relationship between
BP and features can be clarified in a specific frequency band

TABLE IX
PERFORMANCE OF THE BP ESTIMATION MODEL USING PPG MORPHOLOGY
FEATURES WITHOUT PAT AND HR ACROSS 413 VALIDATION RECORDINGS

SBP estimation model  DBP estimation model

Performance Measure

Value Evaluation = Value Evaluation
ME (mmHg) 0.016 PASS* -0.043 PASS*
SDE (mmHg) 7.66 PASS* 422 PASS?
Cumulative Error <5 b b
mmHg (%) 58 B 81 A
Cumulative Error < 10 b b
mmHg (%) 84 B 97 A
Cumulative Error < 15 b b
mmHg (%) 94 B! 99 A
MAD (mmHg) 5.57 B¢ 3.03 A®
Correlation to reference 0.57 + 0.40 0.5 + 0.39

(mean +STD)

“Evaluation against the AAMI standards.
bEvaluation against the BHS BP monitor standards.
“Evaluation against the IEEE standards.

TABLE X
PEARSON CORRELATION COEFFICIENTS AND MI VALUES BETWEEN SBP
AND TOE 10 RANKED FEATURES ACROSS 1376 RECORDINGS

Rank  Feature LFC+HFC*® LFC® HFC*
Pearson® MI  Pearson® MI  Pearson® MI

1 PPGK 0.49 0.35 0.52 1.07 0.28 0.10
2 PIRp 0.49 0.35 0.52 1.06 0.28 0.10
3 HR 0.34 0.37 0.33 1.06 0.32 0.12
4 PATr 0.42 0.30 0.44 1.01 0.21 0.05
5 BWqs 0.42 0.35 0.45 1.09 0.18 0.08
6 BW;s 0.41 0.35 0.45 1.09 0.18 0.08
7 Al 0.29 0.24 0.31 0.99 0.12 0.05
8 Plp 0.27 0.27 0.29 0.99 0.12 0.06
9 SBWgs 0.26 0.17 0.30 0.86 0.08 0.03
10 BWRs 0.18 0.19 0.20 091 0.07 0.03

“Correlation between the raw SBP and the raw features.
bCorrelation between the LFC of SBP and the LFC of features.
¢Correlation between the HFC of SBP and the HFC of features.
d Absolute values of Pearson correlation coefficients.

based on previous studies, frequency components of BP and
features were separated. As a result of separately modeling LFC
and HFC of BP with the optimal cutoff frequency at 0.006 Hz
using linear regression, the performance of the estimation model
was improved as compared to modeling both components of
BP simultaneously. Similar results were found using non-linear
regression methods such as ANN and RNN. The Pearson corre-
lation coefficients and MI values between SBP and top 10 ranked
features across 1376 subjects calculated for each of the LFC and
HFC are shown in Table X. The correlation values and mutual
dependence values of the features are generally lower in HFC,
but almost all features are significantly better related to SBP
in low frequency domain. Performing power spectral analysis,
the power over low frequency bandwidth (0.0005-0.006 Hz)
and the power over high frequency bandwidth (over 0.006 Hz)
are calculated as the area under the power spectral density of
SBP variation of each subject. As a result, the mean power
across 1376 subjects are 101.16 mmHg? for LFC, and 4.96
mmHg? for HFC. Since the LFC of BP contains most of the
components of BP variation, the enhanced relationships between
BP and features in the LFC might improve the overall estimation
performance.
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TABLE XI
THE COMPARISON OF THE RESULTS OF THIS WORK WITH OTHER WORKS

Performance measure of SBP (mmHg)

Performance measure of DBP (mmHg)

Work Subject Estimation algorithm
SDE MAD RMSE* SDE MAD RMSE*
[26] 15 LR 7.32 - - 4.39 - -
[34] 15000 (beats) ANN - 3.80 - - 221 -
[35] 4254 (records) SVM, ANN 16.17 12.38 - 8.45 6.34 -
[29] 27 LR 5.21 4.09 - 4.06 3.18 -
[28] 73 LR, SVM 3.10 - - 2.20 - -
[25] 84 RNN - - 3.73 - - 2.43
[30] 32 LR, SVM, RF 6.50 - - 5.20 . .
[38] 772 (records) LR, SVM 5.52 327 - 1.97 1.16 -
[33] 441 SVM, RF 8.90 3.97 8.90 4.17 2.43 4.18
[31] 103 LR, RF, ANN, RNN - - 7.86 - - 6.49
This work 1376 LR, RF, ANN, RNN 6.92 5.07 6.92 3.99 2.86 3.99

“Root mean square error.

C. Comparison of Modeling Algorithms

Several modeling algorithms including LR, RF, ANN, and
RNN were evaluated. When comparing the estimation perfor-
mances between these algorithms, the overall accuracy im-
proved when using non-linear regression methods as compared
to LR in terms of SDE and MAD, potentially indicating nonlin-
ear relationships between the features and BP values. However,
due to the moderate degree of linear association between the
features and BP values, the differences of the error values
between LR and nonlinear modeling algorithms were minimal.

For LFC modeling, ANN showed the best performance in
terms of SDE and MAD. Comparing the mean squared error
values between models constructed by changing the number of
hidden layers and the number of hidden nodes in the architecture
of ANN, the optimal architecture was 100 hidden nodes with 1
hidden layer. In the case of the hidden layer activation function,
models using tanh function outperformed models using relu or
sigmoid functions.

In the case of RNN, it achieved the best performance in HFC
modeling. However, it performed worse than ANN and LR in
LFC modeling. There may be a few reasons for this lack of pre-
diction performance, but one may be due to the problem of long-
term dependencies [72]. Since LFC only contains slowly varying
components below 0.006 Hz, the size of the time step of RNN
modeling LFC should be large enough to properly capture the
sequential change of features over time in the input data. A fur-
ther study in which the period between each input time step may
provide a suitable solution to this issue and such methods can be
used to further improve estimation performance in the future.

Due to the range of complexities of the modeling algorithms
used in this study, the duration for training varied widely. How-
ever, in terms of post optimization application of the algorithms,
all of the methods were able to output a BP estimate within
600 microseconds using the current graphics processing unit
(Geforce RTX 2080Ti; NVIDIA, Santa Clara, CA, USA), which
is sufficient for pseudo real-time estimation of BP.

D. Performance of the Best-Case BP Estimation Model

The best-case BP estimation model was obtained by modeling
the LFC of BP values using ANN and the HFC of BP values using

RNN with a total of 28 features as estimation predictors. The
model satisfied AAMI, BHS, and IEEE standards for both SBP
and DBP estimates. In particular, in the case of SBP estimation,
even though the high absolute magnitude of SBP led to large
errors, the model was rated grade A against the BHS standards
and nearly grade A against the IEEE standards. The comparisons
of the estimation results with prior studies which have estimated
BP based on PPG morphology features are presented in Table XI.
However, direct comparisons of estimation error values are
difficult since the factors affecting the absolute magnitude of the
errors, such as the degree of BP variations of the data used, the
number of subjects, and the calibration method, are all different.

The distribution of the correlation values between the refer-
ence BP and the estimated BP across 413 validation datasets
are shown in Fig. 7(e) and Fig. 7(f). For SBP, about 70% of the
subjects showed the correlation values higher than 0.6, and 45%
of the subjects showed higher than 0.8. Similar trends were seen
on the same analyses with DBP. Unlike most of the previous
studies used only error-based validation criteria, these results
present the degree of association in trends between the reference
BP and the estimated values. However, as some cases still show
low or opposite correlation, a further study is warranted to further
improve the estimation performance in terms of correlation.

According to the external validation results, the model satis-
fies AAMI, BHS, and IEEE standards for both SBP and DBP
estimates in the external database, indicating that the developed
BP estimation model can be applied to data with different
measurement modalities and different demographics. As shown
in Table VIII and Fig. 8(b), in terms of correlation to reference
BP, the performance was degraded, which might be caused
due to the lower BP variations in the test dataset (the standard
deviation values of SBP were 10.3 mmHg for validation dataset
and 8.6 mmHg for test dataset), or incorrect PAT values due
to the inter-waveform alignment issue. As shown in Fig. 8(d),
a sample with very low or very high BP values tended not to
be accurately estimated. It might be caused due to the limited
number of subjects with very high or very low BP values in the
training dataset, or it may have been caused by sharp changes in
BP during this particular surgery, which is not usually observed.
Howeyver, the overall trend of BP variations was well tracked as
indicated by the high correlation value in Fig. 8(d).
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E. Limitations

As mentioned in previous research [40], there is a consistent
delay between the biosignals in VitalDB due to the experimental
setup. The mean PATyt across 2,470,560 cardiac cycles of 1376
subjects was 659 ms, which is abnormally large compared to
previous reports of PAT values derived from ECG to finger PPG.
However, the standard deviation of PATyr across 1376 subjects
was about 30 ms, which indicates the time delay between ECG
and PPG was nearly consistent. The authors have verified with
the creators of the database the consistency of this delay through-
out all recordings used. Through the calibration procedure, it is
ensured that this delay does not affect the analyses of this study.

Another limitation is that the VitalDB database used in this
study only contains biosignals obtained from patients undergo-
ing surgery. Most of the data was measured from motionless
subjects who were in supine position. However, previous re-
search has shown that postural changes affect the morphology
of PPG [73]. In terms of ubiquitous NCBPM, the underlying
mechanism of BP variation during surgery may be very different
as compared to the ones dominating the circadian fluctuations
of BP, and the range of BP during surgery is dependent on each
case and may vary wildly as compared to the normal range of
BP observed in daily life. Therefore, a further study is warranted
to validate the estimation model against data measured in less
controlled environment.

V. CONCLUSION

In this study, various features obtained from the morphology
of PPG waveforms were analyzed across a large heterogeneous
group of 1376 subjects, and BP estimation models using these
features in conjunction with PAT were evaluated. The results of
the analyses indicate that 1) several PPG morphology features
outperform PAT as a predictor for BP, 2) modeling low and high
frequency components of BP separately can improve estimation
performance, and 3) modeling using non-linear regression meth-
ods based on ANN or RNN can improve estimation performance
as compared to linear regression. The best-case BP estimation
model constructed by applying these three points yielded an
improved performance that satisfied AAMI, BHS, and IEEE
standards for both SBP and DBP in validation and in external
validation datasets.
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